Assignment 5

Oral questions

- 1. Exercises $20.2 \ \mathrm{and} \ 20.6$
- 2. Exercises $20.4~{\rm and}~20.8$
- 3. Exercise 20.10
- 4. Exercise 20.12
- 5. Exercise 20.14
- 6. Exercise 20.16a
- 7. Exercise 20.18

Question to be answered in writing

1. Assume the function $f : \mathbb{R} \to \mathbb{R}$ has limit L at 0. Show that, for any fixed positive number a > 0, the function $g : \mathbb{R} \to \mathbb{R}$ given by g(x) = f(ax) has the same limit at 0.

Bonus question

- 1. (3 points) Find $\lim_{x\to 0} \frac{\sin(x)}{x}$ and prove your claim using geometry. (You are *not allowed* to use L'Hospital's rule or derivatives in any other way.)
- 2. (3 points) Assume that the sequences $a_1, a_2, a_3 \dots$ and b_1, b_2, b_3, \dots converge to the same limit L. Let c_1, c_2, c_3, \dots be a sequence obtained by "merging" the sequences $a_1, a_2, a_3 \dots$ and b_1, b_2, b_3, \dots in any possible way. (For example, we may have $c_1 = a_1, c_2 = a_2, c_3 = b_1, c_4 = a_3, c_5 = a_4, c_6 = b_2, c_7 = b_3$, and so on.) Prove that the sequence (c_n) converges to the same limit as (a_n) and (b_n) .