Study Guide for the Midterm Exam

1 Definitions to remember

1. continuous functions (Definition 17.1 and Theorem 17.2), uniform continuity (Definition 19.1), limits of functions (Definitions 20.1, 20.3, and Theorem 20.6; only left, right, and two-sided limits, essentially Corollaries 20.7 and 20.8), variations on the definition of the limit ("Discussion" 20.9), derivatives (Definition 28.1). You have to remember the proofs of the theorems mentioned above.
2. From the lecture: right and left derivatives.

2 Statements you should remember with their proof

1. From the book: Theorems $17.3,17.4$, and 17.5 (continuity is preserved by some operations), 18.1 (continuous function on a closed bounded interval reaches its maximum, plus counterexamples to generalizations), 19.2 (on a closed bounded interval, continuous \Rightarrow uniformly continuous, plus counterexamples to generalizations), 19.4 (uniformly continuous function takes Cauchy sequence into Cauchy sequence), 20.4 and 20.5 (limits and certain operations), 20.10 (two-sided limit exists iff. both one-sided limits exist, and they are equal), 28.2 (differentiable \Rightarrow continuous, plus counterexample to opposite implication), 28.3 (derivatives and basic operations).
2. From your homework assignments: all mandatory exercises (oral or written) that were listed in the first six assignments.

3 Statements you should know (without proof)

1. From the book: Theorems $16.2,16.3$, and 16.5 (decimal expansion), 18.2 (intermediate value), Corollary 18.3, Theorems $18.4,18.5,18.6$ (one-to-one continuous functions on an interval are the strictly monotone functions, and their inverse is also continuous), 19.5 (uniformly continuous on $(a, b) \Leftrightarrow$ it may be continuously extended to $[a, b]$), 19.6 (derivative bounded \Rightarrow uniformly continuous), Theorem 28.4 (chain rule).
2. From the lecture: The bonus questions on merging sequences with the same limit, and $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.

4 What to expect

The exam will be closed book. You will have 80 minutes. Some questions may ask you to state and prove a theorem from the list above, others may be exercises similar to your homework assignments. There may be questions about examples, whether they have certain properties. You may have to give a counterexample to a false statement. You may have to calculate the limit or the derivative of a function, in some cases, using the definitions only, in others you will be allowed to use all rules learned. You may also have to convert a rational number to a repeating decimal or vice versa.

