A replacement for Theorem 26.5

Theorem 26.5 in our textbook uses the Fundamental Theorem of Calculus [Theorem 34.3] that is covered only later. To avoid this apparent contradiction, we prefer to derive it from the following theorem.

Theorem Assume that a sequence of functions $\left(f_{n}\right)$ converges pointwise to the function f on an interval $[a, b]$. Assume furthermore that each f_{n} is differentiable on $[a, b]$ and that $f_{n} \rightarrow g$ uniformly on $[a, b]$. Then f is differentiable on $[a, b]$ and we have $f^{\prime}=g$.

Proof: Consider any $x_{0} \in[a, b]$, and let us fix $\varepsilon>0$. By the Mean Value Theorem (applied to $f_{n}-f_{m}$), for all $x \in[a, b]$ and all pairs of positive integers (m, n), there is a z between x and x_{0} such that

$$
\left(f_{m}(x)-f_{n}(x)\right)-\left(f_{m}\left(x_{0}\right)-f_{n}\left(x_{0}\right)\right)=\left(x-x_{0}\right)\left(f_{m}^{\prime}(z)-f_{n}^{\prime}(z)\right)
$$

Hence for $x \neq x_{0}$ we have

$$
\left|\frac{f_{m}(x)-f_{m}\left(x_{0}\right)}{x-x_{0}}-\frac{f_{n}(x)-f_{n}\left(x_{0}\right)}{x-x_{0}}\right| \leq \sup _{z \in[a, b]}\left|f_{m}^{\prime}(z)-f_{n}^{\prime}(z)\right|
$$

Since the sequence $\left(f_{n}^{\prime}\right)$ is uniformly Cauchy, there is a N_{1} such that $\sup _{z \in[a, b]}\left|f_{m}^{\prime}(z)-f_{n}^{\prime}(z)\right|<\varepsilon$ whenever $m, n>N_{1}$. Thus we may write

$$
\left|\frac{f_{m}(x)-f_{m}\left(x_{0}\right)}{x-x_{0}}-\frac{f_{n}(x)-f_{n}\left(x_{0}\right)}{x-x_{0}}\right|<\varepsilon \quad \text { for } m, n>N_{1}
$$

Let us keep n fixed and let $m \rightarrow \infty$. Then we get

$$
\begin{equation*}
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-\frac{f_{n}(x)-f_{n}\left(x_{0}\right)}{x-x_{0}}\right| \leq \varepsilon \quad \text { for } n>N_{1} \tag{1}
\end{equation*}
$$

Since $g\left(x_{0}\right)=\lim _{n \rightarrow \infty} f_{n}^{\prime}\left(x_{0}\right)$, there is an N_{2} such that

$$
\begin{equation*}
\left|f_{n}^{\prime}\left(x_{0}\right)-g\left(x_{0}\right)\right|<\varepsilon \quad \text { for } n>N_{2} \tag{2}
\end{equation*}
$$

Finally, by the definition of the derivative, there is a $\delta>0$ such that

$$
\begin{equation*}
\left|\frac{f_{n}(x)-f_{n}\left(x_{0}\right)}{x-x_{0}}-f_{n}^{\prime}\left(x_{0}\right)\right|<\varepsilon \quad \text { for }\left|x-x_{0}\right|<\delta \tag{3}
\end{equation*}
$$

Combining equations (1), (2), and (3) for any n satisfying $n>\max \left(N_{1}, N_{2}\right)$ we get that

$$
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-g\left(x_{0}\right)\right|<3 \varepsilon \quad \text { for }\left|x-x_{0}\right|<\delta
$$

The argument may be repeated for any $\varepsilon>0$ showing that $f^{\prime}\left(x_{0}\right)=g\left(x_{0}\right)$.

