Sample Test 3

The actual test will only have about 5 questions

1. Using the quotient and chain rules, find the derivative of $f(x)=\frac{\sqrt{x^{2}+1}}{x-2}$.
2. Find the critical values of the function $f(x)=\frac{x^{2}+3}{x+1}$.
3. Compute the first derivative of $f(x)=x^{7} / 7-3 x^{5} / 5+x^{4} / 2$ and find the intervals on which $f(x)$ is increasing. Also find the local minima and maxima. (Hint: $x=1$ is a critical value.)
4. Use the second derivative test to find the relative minima and maxima of $f(x)=x^{3} / 3+$ $3 x^{2} / 2-10 x$.
5. Find the vertical asymptotes and holes of the rational function $f(x)=\frac{x^{2}-x-2}{x(x-2)(x+3)^{2}}$ and state the left and right limits that exist at these x-values.
6. Find the intervals, on which the function $f(x)=x^{5} / 20-x^{4} / 4+2 x^{2}$ is concave up. (Hint: $x=-1$ is a root of the second derivative.)
7. Find the absolute minimum and maximum values of $f(x)=\left(x^{2}+3 \cdot x\right) \cdot \sqrt{x+3}$ on the interval $[-3,1]$.
8. Find the absolute minimum and maximum values of $f(x)=x^{3} / 3-x^{2} / 2-2 x$ on the interval $[-2,3]$.
9. The perimeter of a Norman window is 15 feet. Write the area of the window as a function of the width x and find the value of x for which the area is maximal.
10. Find $\lim _{x \rightarrow \infty} 3-2 \cdot 5^{x}$ and $\lim _{x \rightarrow-\infty} 3-2 \cdot 5^{x}$. Also find the domain and the range of $f(x)=3-2 \cdot 5^{x}$.
11. Find the domain and range of $f(x)=1-\ln (x+1)$ and also the appropriate limits at -1 and ∞. State whether the function is increasing or decreasing.

Solutions:

1.

$$
f^{\prime}(x)=\frac{\frac{1}{2 \cdot \sqrt{x^{2}+1}} \cdot 2 x \cdot(x-2)-\sqrt{x^{2}+1}}{(x-2)^{2}}=\frac{x \cdot(x-2)-\left(x^{2}+1\right)}{(x-2)^{2} \cdot \sqrt{x^{2}+1}}=\frac{-2 x-1}{(x-2)^{2} \cdot \sqrt{x^{2}+1}} .
$$

2. The critical values are the ones where the derivative is zero or not defined. We have

$$
f^{\prime}(x)=\frac{2 x(x+1)-\left(x^{2}+3\right)}{(x+1)^{2}}=\frac{x^{2}+2 x-3}{(x+1)^{2}}=\frac{(x+3)(x-1)}{(x+1)^{2}},
$$

which is zero at $x=1, x=-3$, and undefined at $x=-1$. These are the critical values.
3. The derivative is $f^{\prime}(x)=x^{6}-3 x^{4}+2 x^{3}=x^{3}\left(x^{3}-3 x+2\right)$. Using the hint, $f^{\prime}(x)$ factors as $f^{\prime}(x)=x^{3}(x-1)^{2}(x+2)$. The derivative is positive on $(-\infty,-2) \cup(0,1) \cup(1, \infty)$, so these are the intervals on which the function is increasing. The function is decreasing on $(-2,0)$. There is a local maximum at $x=-2$ and a local minimum at $x=0$. (There is an inflection point at $x=1$, but this was not asked.)
4. The first derivative is $f^{\prime}(x)=x^{2}+3 x-10=(x+5)(x-2)$, so the critical values are $x=-5$ and $x=2$. The second derivative is $f^{\prime \prime}(x)=2 x+3$. The second derivative satisfies $f^{\prime \prime}(-5)=-7<0$ and $f^{\prime \prime}(2)=7>0$. Hence we have a relative maximum at $x=-5$ and a relative minimum at $x=2$.
5. The denominator is zero at $x=0, x=2$ and $x=-3$. The numerator factors as $(x-2)(x+1)$, after simplification we get

$$
f(x)=\frac{x+1}{x(x+3)^{2}} \quad \text { for } x \neq 2 .
$$

We have a hole at $x=2$ and $\lim _{x \rightarrow 2} f(x)=\frac{2+1}{2(2+3)^{2}}=\frac{3}{50}$. We have a vertical asymptote at $x=0$ and $x=-3$. The multiplicity of $x=-3$ is even, there is no sign change there, the function is positive near $x=-3$. Hence $\lim _{x \rightarrow-3} f(x)=\infty$. The multiplicity of x is odd. Using test points we get $\lim _{x \rightarrow 0^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
6. The first derivative is $f^{\prime}(x)=x^{4} / 4-x^{3}+4 x$, the second derivative is $f^{\prime \prime}(x)=x^{3}-3 x^{2}+4$. Using the hint, $f^{\prime \prime}(x)=(x-2)^{2} \cdot(x+1)$. This function is positive on $(-1,2) \cup(2, \infty)$.
7. The first derivative is

$$
\begin{aligned}
f^{\prime}(x) & =(2 x+3) \cdot \sqrt{x+3}+\left(x^{2}+3 x\right) \cdot \frac{1}{2 \sqrt{x+3}}=(2 x+3) \cdot \sqrt{x+3}+\left(x^{2}+3 x\right) \cdot \frac{\sqrt{x+3}}{2(x+3)} \\
& =\frac{4 x+6}{2} \cdot \sqrt{x+3}+x \cdot \frac{\sqrt{x+3}}{2}=\frac{5 x+6}{2} \cdot \sqrt{x+3} .
\end{aligned}
$$

This is negative on $[-3,-6 / 5)$ and positive on $(-6 / 5,1)$ The function $f(x)$ is decreasing on the first interval, and increasing on the second. The absolute minimum is at $x=-6 / 5$ where $f(-6 / 5)=-162 \cdot \sqrt{5} / 125$. The absolute maximum is at one of the endpoints of the interval $[-3,1]$. We have $f(-3)=0$ and $f(1)=8$. The maximum value is 8 .
8. The first derivative is $f^{\prime}(x)=x^{2}-x-2=(x+1) \cdot(x-2)$. The critical values are $x=-1$ and $x=2$. We have $f(-2)=-2 / 3, f(-1)=7 / 6, f(2)=-10 / 3$ and $f(3)=-3 / 2$. The absolute minimum is $f(2)=-10 / 3$, the absolute maximum is $f(-1)=7 / 6$.
9. Introducing h for the height of the rectangular part, the perimeter is $15=2 h+x+\pi \cdot x / 2$. Solving for h yields $h=\frac{15-x-\pi \cdot x / 2}{2}$. Hence the area function is

$$
A(x)=x \cdot h+\frac{\pi \cdot x^{2}}{8}=x \cdot \frac{15-x-\pi \cdot x / 2}{2}+\frac{\pi \cdot x^{2}}{8}=\frac{(-\pi-4) \cdot x^{2}}{8}+\frac{15 \cdot x}{2} .
$$

The derivative is

$$
A^{\prime}(x)=\frac{(-\pi-4) \cdot x}{4}+\frac{15}{2} .
$$

This is zero, when $x=30 /(4+\pi)$, positive for $x<30 /(4+\pi)$, negative for $x>30 /(4+\pi)$. The absolute maximum is at $x=30 /(4+\pi)$.
10. The domain of $f(x)$ is $(-\infty, \infty)$. (This is the domain of all exponential functions.) The range of 5^{x} is $(0, \infty)$, the range of -5^{x} is $(-\infty, 0)$, the range of $f(x)$ is $(-\infty, 3)$. The line $y=3$ is a horizontal asymptote. We have $\lim _{x \rightarrow \infty} 3-2 \cdot 5^{x}=-\infty$ and $\lim _{x \rightarrow-\infty} 3-2 \cdot 5^{x}=3$.
11. The domain of $f(x)$ is $(-1, \infty)$. The function is decreasing, the range is $(-\infty, \infty)$. (This range is the same for all logarithm functions.) We have $\lim _{x \rightarrow \infty} f(x)=-\infty$ and $\lim _{x \rightarrow-1^{+}} f(x)=\infty$.

