Sample Test 2

The actual test will only have about 5 questions

1. Using the definition of the derivative as the limit of the difference quotient, find the derivative of $f(x)=x^{3}-4 x^{2}$ at $x=3$.
2. Using the definition of the derivative as the limit of the difference quotient, find the derivative of $f(x)=\sqrt{x}$.
3. Using the definition of the derivative as the limit of the difference quotient, find the derivative of $f(x)=1 / x$.
4. Use the basic rules for derivatives, to find the equation of the tangent line of $f(x)=$ $x^{3}-40 \cdot \sqrt{x}$ at $x=4$.
5. Using the product rule, find the derivative of $\left(x^{2}+3 x\right) \cdot\left(x^{3}+1\right)$.
6. Using the quotient rule, find the derivative of $\frac{x^{2}-3}{x+1}$.
7. Using the chain rule, find the derivative of $y=\sqrt{x^{2}-2 x+5}$.
8. The price of a product is given by $p=400-x^{2}$ where x is the number of items sold. Find the revenue and the marginal revenue for $x=10$.
9. For a certain product, the number x of items sold is the following function of the price p : $x=\sqrt{50-p}$. What is the elasticity of the demand? Is the demand at price level $p=1$ elastic, inelastic or unitary? Use the formula $E(p)=-\frac{p \cdot f^{\prime}(p)}{f(p)}$.
10. The distance s (in feet) covered by a car after t seconds is given by $s(t)=-t^{3}+55 t^{2}+21 t$. Find the formula expressing the velocity and acceleration of the car after t seconds (in feet $/ \sec ^{2}$).
11. The distance s (in feet) covered by a car after t seconds is given by $s(t)=-t^{3}+7.5 t^{2}-18 t$. Find the formula expressing the velocity car after t seconds (in feet/ sec^{2}). When will the car turn around for the first time?

Solutions:

1. $f(3+h)=h^{3}+5 h^{2}+3 h-9$ and $f(3)=-9$, so

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{h^{3}+5 h^{2}+3 h}{h}=\lim _{h \rightarrow 0} h^{2}+5 h+3=3 .
$$

2.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

3.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}} .
$$

4. The derivative is $f^{\prime}(x)=3 x^{2}-\frac{20}{\sqrt{x}}$, so the slope of the tangent line is $f^{\prime}(4)=38$. If $x=4$ then $f(4)=-16$. The equation of the tangent line is $y+16=38(x-4)$, that is, $y=38 x-168$.
5.

$$
\begin{aligned}
\left(\left(x^{2}+3 x\right) \cdot\left(x^{3}+1\right)\right)^{\prime} & =\left(x^{2}+3 x\right)^{\prime} \cdot\left(x^{3}+1\right)+\left(x^{2}+3 x\right) \cdot\left(x^{3}+1\right)^{\prime} \\
& =(2 x+3) \cdot\left(x^{3}+1\right)+\left(x^{2}+3 x\right) \cdot 3 x^{2}=5 x^{4}+12 x^{3}+2 x+3
\end{aligned}
$$

6.

$$
\begin{aligned}
\left(\frac{x^{2}-3}{x+1}\right)^{\prime} & =\frac{\left(x^{2}-3\right)^{\prime} \cdot(x+1)-\left(x^{2}-3\right) \cdot(x+1)^{\prime}}{(x+1)^{2}}=\frac{2 x \cdot(x+1)-\left(x^{2}-3\right) \cdot 1}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x+3}{(x+1)^{2}}
\end{aligned}
$$

7. The outer function is $y=\sqrt{u}$, the inner function is $u=x^{2}-2 x+5$. The derivatives are $\frac{d y}{d u}=\frac{1}{2 \sqrt{u}}$ and $\frac{d u}{d x}=(2 x-2)$. The derivative is

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{1}{2 \cdot \sqrt{x^{2}-2 x+5}} \cdot(2 x-2)=\frac{x-1}{\sqrt{x^{2}-2 x+5}} .
$$

8. The revenue is given by $R(x)=x \cdot\left(400-x^{2}\right)=400 x-x^{3}$. Substituting $x=10$ gives a revenue of $R(10)=3000$. The derivative of $R(x)$ is $400-3 x^{2}$ and so the marginal revenue is $R^{\prime}(10)=100$.
9. For $f(p)=\sqrt{50-p}$ the chain rule gives

$$
f^{\prime}(p)=\frac{1}{2 \sqrt{50-p}} \cdot(-1)=\frac{-1}{2 \sqrt{50-p}}
$$

Substituting into the formula for $E(p)$ gives

$$
E(p)=-\frac{p \cdot \frac{-1}{2 \sqrt{50-p}}}{\sqrt{50-p}}=\frac{p}{100-2 p}
$$

Hence $E(1)=1 / 98<1$ and the demand is inelastic at $p=1$.
10. We need to find the first two derivatives. The first derivative is $s^{\prime}(t)=-3 t^{2}+110 t+21$, this is the velocity. The second derivative is $s^{\prime \prime}(t)=-6 t+110$, this is the acceleration.
11. We need to find the first derivative, which is $s^{\prime}(t)=-3 t^{2}+15 t-18=-3(t-2)(t-3)$. The smaller zero of this polynomial is at $t=2$.

