Sample Test 1

The actual test will only have about 5 questions

1. Find the equation of the line passing through $(1,2)$ and $(2,5)$. Write your answer in slope-intercept form.
2. Find the equation of the line passing through $(5,2)$, perpendicular to the line given by $y=3 / 2 \cdot x-2$.
3. Find the domain of $f(x)=\frac{\sqrt{5-x}}{2 x-3}$.
4. The piecewise-defined function $f(x)$ is given by

$$
f(x)= \begin{cases}\sqrt{x} & \text { if } x \geq 1 \\ 2-x & \text { if } x<1\end{cases}
$$

Find $f(0)+f(1)+f(3)$
5. Find the difference quotient of the function $f(x)=\sqrt{3 x-1}$ at $x=2$. Simplify your answer and state the limit when $h \rightarrow 0$.
6. A pair of supply and demand functions is $p=2(x+1)^{2}$ and $p=5-2 x$. State which one is the supply and which one is the demand function and find the equilibrium price
7. Find $\lim _{x \rightarrow 3 / 2} \frac{4 x^{2}-9}{2 x-3}$.
8. Find the horizontal asymptote of the following rational functions, if they exist and state your answer in terms of limits:

- $f(x)=\frac{x^{2}-1}{3-x^{2}}$
- $g(x)=\frac{x^{2}-x}{3+x^{3}}$
- $h(x)=\frac{3 x^{2}-x}{1+x}$

9. Find $\lim _{x \rightarrow 2} \frac{\sqrt{3 x-2}-2}{x-2}$.
10. Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 3 \\ 1-x & \text { if } x<3\end{cases}
$$

What is the limit $\lim _{x \rightarrow 3} f(x)$? Does it exist? If not, find the one-sided limits. Is the function continuous at $x=3$?
11. Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 1 \\ 2-x & \text { if } x<1\end{cases}
$$

What is the limit $\lim _{x \rightarrow 1} f(x)$? Does it exist? If not, find the one-sided limits. Is the function continuous at $x=1$?
12. Let

$$
f(x)= \begin{cases}2 x-2 & \text { if } x>2 \\ 4-x & \text { if } x<2 \\ 1 & \text { if } x=2\end{cases}
$$

What is the limit $\lim _{x \rightarrow 2} f(x)$? Does it exist? If not, find the one-sided limits. Is the function continuous at $x=2$?

Solutions:

1. The slope is $m=\frac{5-2}{2-1}=3$. The point-slope equation is $y-2=3(x-1)$. After rearranging we get $y=3 x-1$.
2. The slope of he line $y=3 / 2 \cdot x-2$ is $3 / 2$. The perpendicular slope is $-2 / 3$. The point slope equation is $y-2=-2 / 3 \cdot(x-5)$. After rearranging we get $y=-2 / 3 \cdot x+16 / 3$.
3. The square root of $5-x$ is only defined if $5-x \geq 0$, that is $5 \geq x$. The denominator can not be zero, so $2 x-3 \neq 0$, that is, $x \neq 3 / 2$. The domain is $(-\infty, 3 / 2) \cup(3 / 2,5]$.
4. We have $f(0)=2-0=2, f(1)=\sqrt{1}=1$ and $f(3)=\sqrt{3}$. The sum of these numbers is $3+\sqrt{3}$.
5. The definition of the difference quotient is $\frac{f(x+h)-f(x)}{h}$. Substituting $x=2$ we get $f(2+h)=\sqrt{3(2+h)-1}=\sqrt{5+3 h}$ and $f(2)=\sqrt{5}$. The difference quotient is

$$
\frac{\sqrt{5+3 h}-\sqrt{5}}{h}=\frac{(\sqrt{5+3 h}-\sqrt{5})(\sqrt{5+3 h}+\sqrt{5})}{h(\sqrt{5+3 h}+\sqrt{5})}=\frac{5+3 h-5}{h(\sqrt{5+3 h}+\sqrt{5})}=\frac{3 h}{h(\sqrt{5+3 h}+\sqrt{5})}
$$

$=\frac{3}{\sqrt{5+3 h}+\sqrt{5}}$

As $h \rightarrow 0$, this expression goes to $\frac{3}{2 \sqrt{5}}$.
6. The line $p=5-2 x$ has negative slope, this must be the demand function. The parabola $p=2(x+1)^{2}$ is open up, has its vertex at $x=-1<0$, so it is increasing on $[0, \infty)$, this must be the supply function. Supply meets demand when $5-2 x=2(x+1)^{2}$. This can be rewritten as $2 x^{2}+6 x-3=0$. The quadratic formula gives

$$
x=\frac{-6 \pm \sqrt{60}}{4}=\frac{-3 \pm \sqrt{15}}{2} .
$$

Only the positive solution is valid, so we must have

$$
x=\frac{-3+\sqrt{15}}{2} .
$$

The equilibrium price is

$$
p=5-2 \cdot \frac{-3+\sqrt{15}}{2}=8-\sqrt{15}
$$

7. We have

$$
\frac{4 x^{2}-9}{2 x-3}=\frac{(2 x-3)(2 x+3)}{2 x-3}=2 x+3 \quad \text { for } x \neq 3 / 2
$$

As $x \rightarrow 3 / 2$, the expression $2 x+3$ goes to $2 \cdot 3 / 2+3=6$.
8. The degree of the numerator is the same as the degree of the denominator in $f(x)$. The quotient of the leading terms is -1 . The horizontal asymptote is $y=-1$. In terms of limits

$$
\lim _{x \rightarrow \infty} f(x)=-1 \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x)=-1
$$

The degree of the numerator is less than the degree of the denominator if $g(x)$. The horizontal asymptote is $y=0$. In terms of limits

$$
\lim _{x \rightarrow \infty} g(x)=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} g(x)=0
$$

The degree of the numerator is more than the degree of the denominator if $h(x)$. There is no horizontal asymptote. We have

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-x}{1+x}=\lim _{x \rightarrow \infty} \frac{3 x-1}{1 / x+1}=\lim _{x \rightarrow \infty} 3 x-1=\infty .
$$

Similarly, $\lim _{x \rightarrow-\infty} \frac{3 x^{2}-x}{1+x}=-\infty$.
9.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{3 x-2}-2}{x-2} & =\lim _{x \rightarrow 2} \frac{(\sqrt{3 x-2}-2)(\sqrt{3 x-2}+2)}{(x-2)(\sqrt{3 x-2}+2)}=\lim _{x \rightarrow 2} \frac{3 x-6}{(x-2)(\sqrt{3 x-2}+2)} \\
& =\lim _{x \rightarrow 2} \frac{3}{\sqrt{3 x-2}+2}=\frac{3}{4} .
\end{aligned}
$$

10. $\lim _{x \rightarrow 3^{+}} f(x)=3^{2}=9$ but $\lim _{x \rightarrow 3^{-}} f(x)=1-3=-2$. These are different numbers. $\lim _{x \rightarrow 3} f(x)$ does not exist, the function is not continuous at $x=3$.
11. $\lim _{x \rightarrow 1^{+}} f(x)=1^{2}=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=2-1=1$. The right-hand limit and the left hand limit exists and they are equal. $\lim _{x \rightarrow 3} f(x)=1$ does exist. The function is continuous at $x=1$, because the function value $f(1)=1$ at $x=1$ is the same as the limit.
12. $\lim _{x \rightarrow 2^{+}} f(x)=2 \cdot 2-2=2$ and $\lim _{x \rightarrow 2^{-}} f(x)=4-2=2$. The right-hand limit equals the left-hand limit. $\lim _{x \rightarrow 2} f(x)=2$ does exist. The function is not continuous at $x=2$, because $f(2)=1 \neq 2=\lim _{x \rightarrow 2} f(x)$.
