
Birkhoff’s Theorem

Definition A square matrix is doubly stochastic if all its entries are non-negative and the sum of the
entries in any of its rows or columns is 1.

Example The matrix  7/12 0 5/12
1/6 1/2 1/3
1/4 1/2 1/4


is doubly stochastic.

A special example of a doubly stochastic matrix is a permutation matrix.

Definition A permutation matrix is a square matrix whose entries are all either 0 or 1, and which
contains exactly one 1 entry in each row and each column.

Example The matrix  1 0 0
0 0 1
0 1 0


is a permutation matrix.

Recall that a convex combination of the vectors v1, . . . , vn is a linear combination α1v1 + · · ·+αnvn

such that each αi is non-negative and α1 + · · ·+ αn = 1. (Necessarily, each αi is at most 1.)

Theorem(Birkhoff) Every doubly stochastic matrix is a convex combination of permutation matrices.

The proof of Birkhoff’s theorem uses Hall’s marriage theorem. We associate to our doubly sto-
chastic matrix a bipartite graph as follows. We represent each row and each column with a vertex
and we connect the vertex representing row i with the vertex representing row j if the entry xij in the
matrix is not zero. The graph associated to our example is given in the picture below.
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The proof of Birkhoff’s theorem depends on the following key Lemma.

Lemma The associated graph of any doubly stochastic matrix has a perfect matching.

Proof: Assume, by way of contradiction that the graph has no perfect matching. Then, by Hall’s
theorem, there is a subset A of the vertices in one part such that the set R(A) of all vertices connected
to some vertex in A has strictly less than |A| elements. Without loss of generality we may assume that
A is a set of vertices representing rows, the set R(A) consists then of vertices representing columns.
Consider now the sum

∑
i∈A,j∈R(A) xij , i.e., the sum of all entries located in a row belonging to A and

in a column in R(A). In the rows belonging to A all nonzero entries are located in columns belonging
to R(A) (by the definition of the associated graph). Thus∑

i∈A,j∈R(A)

xij = |A|
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since the graph is doubly stochastic and the sum of elements located in any of given |A| rows is
|A|. On the other hand, the sum of all elements located in all columns belonging to R(A) is at least∑

i∈A,j∈R(A) xij since the entries not belonging to a row in A are non-negative. Since the matrix is
doubly stochastic, the the sum of all elements located in all columns belonging to R(A) is also exactly
|R(A)|. Thus we obtain ∑

i∈A,j∈R(A)

xij ≤ |R(A)| < |A| =
∑

i∈A,j∈R(A)

xij ,

a contradiction.

Proof of Birkhoff’s theorem: We proceed by induction on the number of nonzero entries in the matrix.
Let M0 be a doubly stochastic matrix. By the key lemma, the associated graph has a perfect matching.
Underline the entries associated to the edges in the matching. For example in the associated graph
above (1, 3), (2, 1), (3, 2) is a perfect matching so we underline x13, x21 and x32. Thus we underline
exactly one element in each row and each column. Let α0 be the minimum of the underlined entries.
Let P0 be the permutation matrix that has a 1 exactly at the position of the underlined elements. If
α0 = 1 then all underlined entries are 1, and M0 = P0 is a permutation matrix. If α0 < 1 then the
matrix M0 − α0P0 has non-negative entries, and the sum of the entries in any row or any column is
1− α0. Dividing each entry by (1− α0) in M0 − α0P0 gives a doubly stochastic matrix M1. Thus we
may write M0 = α0P0 + (1 − α0)M1 where M1 is not only doubly stochastic, but has less non-zero
entries than M0. By our induction hypothesis M1 may be written as M1 = α1P1 + · · · + αnPn where
P1, · · · , Pn are permutation matrices, and α1P1 + · · · + αnPn is a convex combination. But then we
have

M0 = α0P0 + (1 − α0)α1P1 + · · · (1 − α0)αnPn

where P0, P1, · · · , Pn are permutation matrices, and we have a convex combination since, α0 ≥ 0, each
(1− α0)αi is non-negative and we have

α0 + (1− α0)α1 + · · · (1− α0)αn = α0 + (1− α0)(α1 + · · ·αn) = α0 + (1 − α0) = 1.

In our example

P0 =

 0 0 1
1 0 0
0 1 0


and α0 = 1/6. Thus we get

M1 =
1

1− 1/6

(
M0 −

1
6
P0

)
=

6
5

 7/12 0 1/4
0 1/2 1/3
1/4 1/3 1/4

 =

 7/10 0 3/10
0 3/5 2/5
3/10 2/5 3/10

 .

The graph associated to M1 is the following.
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A perfect matching is {(1, 1), (2, 2), (3, 3)}, the associated permutation matrix is

P1 =

 1 0 0
0 1 0
0 0 1

 ,
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and we have α1 = 3/10. Thus we get

M2 =
1

1 − 3/10

(
M1 −

3
10

P1

)
=

10
7

 4/10 0 3/10
0 3/10 2/5
3/10 2/5 0

 =

 4/7 0 3/7
0 3/7 4/7
3/7 4/7 0


The graph associated to M2 is the following.
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A perfect matching in this graph is {(1, 3), (2, 2), (3, 1)}, the associated permutation matrix is

P2 =

 0 0 1
0 1 0
1 0 0

 ,

and we have α2 = 3/7. Thus we get

M3 =
1

1 − 3/7

(
M2 −

3
7
P2

)
=

7
4

 4/7 0 0
0 0 4/7
0 4/7 0

 =

 1 0 0
0 0 1
0 1 0

 .

We are done since M3 = P3 is a permutation matrix. Working our way backwards we get

M2 = α2P2 + (1 − α2)M3 =
3
7
P2 +

4
7
P3,

M1 = α1P1 + (1− α1)M2 =
3
10

P1 +
7
10

(
3
7
P2 +

4
7
P3

)
=

3
10

P1 +
3
10

P2 +
4
10

P3,

and

M0 = α0P0 + (1− α0)M1 =
1
6
P0 +

5
6

(
3
10

P1 +
3
10

P2 +
4
10

P3

)
=

1
6
P0 +

1
4
P1 +

1
4
P2 +

1
3
P3.

We obtained that 7/12 0 5/12
1/6 1/2 1/3
1/4 1/2 1/4

 =
1
6

 0 0 1
1 0 0
0 1 0

 +
1
4

 1 0 0
0 1 0
0 0 1

 +
1
4

 0 0 1
0 1 0
1 0 0

 +
1
3

 1 0 0
0 0 1
0 1 0

 .
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