Sample Test 3

- 1. Suppose y varies directly as the square root of x, and that y = 18 when x = 36. What is y when x = 9
 - (a) 7 (b) 8 (c) 9 (d) 10
- 2. Find $f \cdot g$ if f(x) = 6x 1 and g(x) = 7x + 7. (a) $13x^2 + 35x + 6$ (b) $42x^2 + x - 7$ (c) $42x^2 + 35x - 7$ (d) $42x^2 - 7$
- 3. The domain of f(x) = √3 x is (-∞, 3], the domain of g(x) = √x is [0,∞). What is the domain of f/g?
 (a) [0,3] (b) [0,3) (c) (0,3] (d) (0,3)
- 4. Find $f \circ g$ if $f(x) = \sqrt{x+7}$ and g(x) = 8x 11. (a) $8\sqrt{x+7} - 11$ (b) $2\sqrt{2x-1}$ (c) $8\sqrt{x-4}$ (d) $2\sqrt{2x+1}$
- 5. Which of the following functions is not one-to one?
 (a) f(x) = x² on (0,5) (b) f(x) = x² on (-5,0) (c) f(x) = x² on (-5,5) (d) f(x) = x³ on (-∞,∞)
- 6. If the function f(x) = 7x 3 is one-to-one, find its inverse. (a) $f^{-1}(x) = \frac{x-7}{7}$ (b) $f^{-1}(x) = \frac{x+7}{7}$ (c) $f^{-1}(x) = \frac{x-3}{7}$ (d) $f^{-1}(x) = \frac{x+3}{7}$
- 7. Find the end behavior of $p(x) = (2 x)(x^2 + 2x 1)$
 - (a) as $x \to \infty$, $p(x) \to \infty$ and as $x \to -\infty$, $p(x) \to \infty$
 - (b) as $x \to \infty$, $p(x) \to \infty$ and as $x \to -\infty$, $p(x) \to -\infty$
 - (c) as $x \to \infty$, $p(x) \to -\infty$ and as $x \to -\infty$, $p(x) \to \infty$
 - (d) as $x \to \infty$, $p(x) \to -\infty$ and as $x \to -\infty$, $p(x) \to -\infty$

- 8. Find the end behavior of $f(x) = x^4 2x$.
 - (a) $f(x) \to \infty$ as $x \to \infty$ and $f(x) \to \infty$ as $x \to -\infty$
 - (b) $f(x) \to \infty$ as $x \to \infty$ and $f(x) \to -\infty$ as $x \to -\infty$
 - (c) $f(x) \to -\infty$ as $x \to \infty$ and $f(x) \to \infty$ as $x \to -\infty$
 - (d) $f(x) \to -\infty$ as $x \to \infty$ and $f(x) \to -\infty$ as $x \to -\infty$
- 9. Which are the points where the graph of the polynomial $f(x) = 7(x-5)(x+5)^2$ crosses the x-axis?

(a) x = 5 only (b) x = -5 only (c) at x = 5 and at x = -5 (d) nowhere

10. Solve the inequality $x^2 + x \leq 1$.

(a)
$$x \ge \frac{-1+\sqrt{5}}{2}$$
 (b) $x \le \frac{-1-\sqrt{5}}{2}$ or $x \ge \frac{-1+\sqrt{5}}{2}$ (c) $x < \frac{-1-\sqrt{5}}{2}$ or $x > \frac{-1+\sqrt{5}}{2}$ (d) $\frac{-1-\sqrt{5}}{2} \le x \le \frac{-1+\sqrt{5}}{2}$

- 11. Solve the inequality (x+3)(x-3)(x-5) > 0. (a) $(-\infty, 3)$ (b) $(-\infty, -3) \cup (5, \infty)$ (c) $(-3, 3) \cup (5, \infty)$ (d) $(5, \infty)$
- 12. Use synthetic division to find $(3x^3 + 22x^2 + 22x 12) : (x + 6)$. (a) 3x + 4 (b) $3x^2 + 4x - 2$ (c) $-3x^2 - 6x - 2$ (d) $\frac{1}{2}x^2 + \frac{11}{3}x + \frac{11}{3}$
- 13. Use the factor theorem to decide which of the following is a factor of $3x^3 + 4x^2 3x + 2$. (a) x - 2 (b) x + 2 (c) x - 1 (d) x + 1
- 14. Find the remainder of $x^{1000} 2^{1000} + 3$ when divided by x 2. (a) 0 (b) 3 (c) 4 (d) 2^{1000}

15. Which of the following functions could be the one whose graph is shown in the picture?

- (a) $3x^2(x+2)$ (b) $3x(x+2)^2$ (c) $3x(x-2)^2$ (d) $3x^2(x-2)^2$
- 16. List the potential rational zeros of $f(x) = 6x^4 + 4x^3 2x^2 + 2$. Do not solve!

(a)
$$\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm 1, \pm 2, \pm 3$$
 (b) $\pm \frac{1}{6}, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm 1, \pm 2$
(c) $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm 1, \pm 2$ (d) $\pm \frac{1}{2}, \pm \frac{3}{2}, \pm 1, \pm 2, \pm 3, \pm 6$

17. Find the horizontal asymptote of
$$h(x) = \frac{3x^2 - 9x - 4}{5x^2 - 4x + 8}$$
.
(a) none (b) $y = \frac{9}{4}$ (c) $y = 0$ (d) $y = \frac{3}{5}$

- 18. Find the vertical asymptotes and holes of $h(x) = \frac{x^2 3x + 2}{x^2 4}$.
 - (a) Asymptotes at $x = \pm 2$ (b) Asymptote at x = 2, hole at x = -2
 - (c) Asymptote at x = -2, hole at x = 2 (d) Holes at $x = \pm 2$

19. Which function matches the graph below?

20. Which function matches the graph below?

21. Solve the inequality $\frac{2x}{7-x} \ge x$. (a) $(7,\infty)$ (b) $(0,5] \cup (7,\infty)$ (c) $(-\infty,0] \cup [5,7]$ (d) $(-\infty,0] \cup [5,7)$

Solution key:

- 1. c
- 2. c
- 3. c
- 4. b
- 5. c
- 6. d
- 7. c
- 8. a
- 9. a
- 10. d
- 11. c
- 12. b
- 13. b
- 14. b
- 15. b
- 16. c
- 17. d
- 18. c
- 19. b
- 20. c
- 21. d