Additional Homework problems

This dynamically updated document lists the mandatory and bonus homework problems that were assigned on the board and can not be found in the book.

Last update: Monday, October 4, 2010

B1 Bonus problem, due Wednesday, September 22.
Let $n>1$ be a fixed positive integer and consider the set \mathbb{P} of positive integers modulo n. For any $a \in \mathbb{P}$ let $[a]$ denote the set $\{a+k n \mid k \in \mathbb{Z}, a+k n>0\}$, i.e., the set of positive integers congruent to a, modulo n. We have seen in class that $[a]+[b] \subseteq[a+b]$ holds for any pair (a, b) of positive integers. Is it true that $[a]+[b]$ always contains $[a+b]$? If yes, prove your claim, if not, show a counterexample.

B2 Bonus problem, due Wednesday, October 13.
Consider the set of all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$, together with the composition operation. As we saw it in class, this is a semigroup, and the identity element is the function $\imath: x \mapsto x$. Give an example of a function with infinitely many right inverses but no left inverse. A function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ is a right inverse of f if $f \circ g=\imath$. Similarly, a function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ is a left inverse of f if $g \circ f=\imath$.

B3 Bonus problem, due Wednesday, November 17.
Prove that $\sqrt[5]{2}$ is irrational.
B4 Bonus problem, due Monday, December 6.
Let V be any subset of \mathbb{C}^{n}. Prove that the set $I:=\left\{f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: f\left(c_{1}, \ldots, c_{n}\right)=\right.$ 0 for all $\left.\left(c_{1}, \ldots, c_{n}\right) \in V\right\}$ is an ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

