
MATH 1165-001 Introduction to Discrete Structures Fall 2008

Study Guide for Test 2.

The real test will have less questions and you will have about 80 minutes to answer them. The usage
of books or notes, or communicating with other students will not be allowed. You will have to give the
simplest possible answer and show all your work. Below you find sample questions and indications
which theorems and proofs you will have to remember from the book. Review also all past homework
questions as questions similar to them might appear on the test.

1. Either prove or give a counterexample to the statement: “If a relation is not reflexive then it is
irreflexive”.

2. Either prove or give a counterexample to the statement: “If a relation is irreflexive then it is not
reflexive”.

3. Similarly to the previous two questions, explain the difference between “not symmetric” and
“antisymmetric” relations. Which property implies the other one, and which does not?

4. Give an example of a relation that is reflexive and symmetric, but not transitive.

5. Determine whether each of the relations below is reflexive, irreflexive, symmetric, antisymmetric,
and/or transitive.

(a) The relation x|y (“x divides y”) on the set of positive integers.

(b) R = {(x, y) ∈ R × R : y − x > 1}.

(c) R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (2, 1), (3, 2)}.

6. Let R be the relation on Z×Z defined by (x, y) ∈ R if x and y have the same parity. Prove that
R is an equivalence relation. How many equivalence classes are there?

7. Explain how an equivalence relation defines a partition and vice versa.

8. How many different anagrams (including nonsensical words) can be made from the word MASSA-
CHUSETTS ?

9. State and prove the multinomial theorem.

10. Find the coefficient of x3y2z2 in (x + y + z)7.

11. How many ways are there to line up 5 apples, 3 oranges, and 2 peaches on a shelf? Explain your
answer.

12. Explain the meaning of the symbol
(
n
k

)
in terms of selecting subsets from a set and prove that(

n
k

)
= (n)k

k! .

13. Explain why the previous formula implies
(
n
k

)
= n!

k!(n−k)! .
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14. State and prove the binomial theorem.

15. Express
∑n−1

k=1 k as a binomial coefficient.

16. State and prove Pascal’s identity.

17. Explain why each row in Pascal’s triangle is symmetric. (=If you read it “backwards”, you get
the same list.)

18. Prove the identity (
n + 2
k + 2

)
=

(
n

k

)
+ 2

(
n

k + 1

)
+

(
n + 2
k + 2

)
.

19. Explain how
(
x
k

)
can be defined for any natural number k and variable x. Using this definition,

calculate
(
2/3
3

)
.

20. Give a formula for
(
1/2
n

)
and explain how this could be used to calculate the square root of a

number between 1 and 2.

21. Explain why
∑n

k=0(−1)k
(
n
k

)
= 0.

22. How many ways are there to select 5 coins from an unlimited supply of nickels, dimes, and
quarters?

23. Express
((

n
k

))
as a binomial coefficient and prove your claim.

24. State the inclusion-exclusion formula for four sets A,B, C, D. Explain why using Venn-diagrams
may be misleading.

25. State the inclusion-exclusion formula for n sets.

26. How many ternary lists of length 5 have n repeated consecutive digits? Give a formula using
inclusion-exclusion. Is there a simpler way to answer the question?

27. Five people go to a party, each wearing a hat. Upon arrival, they leave the hats in the wardrobe.
When they leave, they pick up a hat as random. What is the probability no one picked his or
her own hat?

Good luck. Gábor Hetyei
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