Assignment 9

Mandatory questions to be answered orally

- 1. Exercise 9.4 from the yellow book.
- 2. Exercise 9.6 from the yellow book.
- 3. Exercise 9.10 from the yellow book.
- 4. Exercise 9.12 from the yellow book.
- 5. Exercise 9.18 from the yellow book.
- 6. The sequence a_1, a_1, \ldots is given by $a_1 = 1$ and the recursion formula $a_{n+1} = 1 + 1/a_n$. Assuming that a limit $a = \lim_{n \to \infty} a_n$ exists, find its value.

Mandatory question to be answered in writing

1. Show that if $z_n = (a^n + b^n)^{1/n}$ where 0 < a < b then $\lim_{n \to \infty} z_n = b$. (Hint: Show that $b < z_n < 2^{1/n}b$. You are allowed to assume that $\lim_{n \to \infty} x_n = 0$ implies $\lim_{n \to \infty} 2^{x_n} = 1$.)