Assignment 5

Mandatory questions to be answered orally

1. Consider the equivalence relation on $\mathbb{P} \times \mathbb{P}$ defined by $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if $x_{1}+y_{2}=y_{1}+x_{2}$, and the addition on equivalence classes defined by $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$. Prove that $\left(x_{1}, x_{2}\right)+\left(z_{1}, z_{2}\right) \sim$ $\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)$ implies $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$. (Cancellation law for addition.)
2. Consider the same equivalence relation as in the previous exercise and the multiplication on equivalence classes defined by $\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(x_{1} \cdot y_{1}+x_{2} \cdot y_{2}, x_{1} \cdot y_{2}+x_{2} \cdot y_{1}\right)$. State and prove the cancellation law for multiplication. Is it completely analogous to the cancellation law for addition?
3. Prove Theorem 123 in Landau's book.
4. Prove that the set $\left\{x \in \mathbb{Q}^{+} \mid x^{2}<2\right\}$ is a cut. How about $\left\{x \in \mathbb{Q}^{+} \mid x^{2} \leq 2\right\}$?
5. Assume that ξ is a cut and n is a positive integer. Define $\xi+n$ by $\left\{x \in \mathbb{Q}^{+} \mid \exists y \in \xi(x<y+n)\right\}$. Prove that $\xi+n$ is a cut. (Use only the definition of a cut, or use Theorem 129, but then explain how n corresponds to a cut.)
6. Consider positive rational numbers as equivalence classes of positive natural numbers, as defined in Landau's book. Prove that $\frac{1}{3}+\frac{1}{6} \sim \frac{1}{2}$. Does this mean that every ordered pair $\frac{p}{q}$ that is equivalent to $\frac{1}{2}$ is of the form

$$
\frac{p}{q}=\frac{p_{1}}{q_{1}}+\frac{p_{2}}{q_{2}} \quad \text { for some } \frac{p_{1}}{q_{1}} \sim \frac{1}{3} \quad \text { and some } \quad \frac{p_{2}}{q_{2}} \sim \frac{1}{6} ?
$$

Analyze $\frac{1}{3}+\frac{1}{5}=\frac{8}{15}$ from the same point of view.

Mandatory question to be answered in writing

1. Assume that $a, b \in \mathbb{P}$ satisfy $a<b$. Prove that there is an $n \in \mathbb{P}$ such that $b<n \cdot a$. (Do not use any theorem on rational numbers from the book!)
