Assignment 3

Mandatory questions to be answered orally

1. Introduce the following relation on the set of ordered pairs of positive integers: $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if $x_{1}+y_{2}=x_{2}+y_{1}$. Prove that \sim is an equivalence relation.
2. Define an addition operation on ordered pairs of positive integers as follows:

$$
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right):=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) .
$$

Prove that this addition is compatible with the equivalence relation \sim of the previous question, that is, $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(y_{1}, y_{2}\right) \sim\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ imply $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)+\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$. (As a consequence, addition may be defined on equivalence classes.)
3. Prove that the set of ordered pairs $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=x_{2}\right\}$ is an equivalence class in itself. Denote this equivalence class by 0 . Prove that $0+\left(x_{1}, x_{2}\right) \sim\left(x_{1}, x_{2}\right)+0 \sim\left(x_{1}, x_{2}\right)$ holds for any ordered pair of positive integers $\left(x_{1}, x_{2}\right)$.
4. Given a positive integer x, prove that the set of all ordered pairs $\{(x+t, t) \mid t \in \mathbb{P}\}$ is an equivalence class. (Here \mathbb{P} stands for the set of positive integers.) Denote this equivalence class by A_{x}. Prove that the map $x \mapsto A_{x}$ is injective and that it satisfies $A_{x+y}=A_{x}+A_{y}$.
5. Similarly to the previous question one may prove that given a positive integer x, the set of all ordered pairs $B_{x}:=\{(t, x+t) \mid t \in \mathbb{P}\}$ is an equivalence class. One may also prove that the map $x \mapsto B_{x}$ is injective and that it satisfies $B_{x+y}=B_{x}+B_{y}$. What is $A_{x}+B_{x}$ equal to? Prove your answer.
6. Prove that every equivalence class satisfies exactly one of the following: it is either 0 , or of the form A_{x} or of the form B_{x}.

Mandatory questions to be answered in writing

1. Introduce multiplication on ordered pairs of positive integers as follows. Set

$$
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right):=\left(x_{1} y_{1}+x_{2} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
$$

Prove that this multiplication operation is compatible with the equivalence relation introduced in the oral questions, that is, $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(y_{1}, y_{2}\right) \sim\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$ imply $\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \cdot\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$.
2. Consider again the equivalence relation on $\mathbb{P} \times \mathbb{P}$ introduced in the mandatory exercises. Prove that every ordered pair $\left(x_{1}, x_{2}\right)$ satisfies $\left(x_{1}, x_{2}\right) \cdot 0=0$. (Here 0 is the equivalence class from oral question 3.)
3. Prove that multiplication of positive integers satisfies the Cancellation Law, i.e., $x z=y z$ implies $x=y$.
(Turn page for a Bonus question)

Bonus question

1. A ring is a set R with a commutative and associative addition operation + and an associative multiplication operation - such that:

- Multiplication is distributive over addition, that is $(x+y) \cdot z=x \cdot z+y \cdot z$ and $(x+y) \cdot z=z \cdot x+z \cdot y$ for all $x, y, z \in R$.
- There is an additive zero element $0 \in R$ satisfying $x=0+x$ for all $x \in R$.
- Every element $x \in R$ has an additive inverse \bar{x} satisfying $x+\bar{x}=0$.

Prove that in a ring $0 \cdot x=x \cdot 0=0$ holds for all $x \in R$.

