Assignment 3

Mandatory questions to be answered orally

- 1. Introduce the following relation on the set of ordered pairs of positive integers: $(x_1, x_2) \sim (y_1, y_2)$ if $x_1 + y_2 = x_2 + y_1$. Prove that \sim is an equivalence relation.
- 2. Define an addition operation on ordered pairs of positive integers as follows:

$$(x_1, x_2) + (y_1, y_2) := (x_1 + y_1, x_2 + y_2).$$

Prove that this addition is compatible with the equivalence relation \sim of the previous question, that is, $(x_1, x_2) \sim (x'_1, x'_2)$ and $(y_1, y_2) \sim (y'_1, y'_2)$ imply $(x_1, x_2) + (y_1, y_2) \sim (x'_1, x'_2) + (y'_1, y'_2)$. (As a consequence, addition may be defined on equivalence classes.)

- 3. Prove that the set of ordered pairs $\{(x_1, x_2) | x_1 = x_2\}$ is an equivalence class in itself. Denote this equivalence class by 0. Prove that $0 + (x_1, x_2) \sim (x_1, x_2) + 0 \sim (x_1, x_2)$ holds for any ordered pair of positive integers (x_1, x_2) .
- 4. Given a positive integer x, prove that the set of all ordered pairs $\{(x+t,t) | t \in \mathbb{P}\}$ is an equivalence class. (Here \mathbb{P} stands for the set of positive integers.) Denote this equivalence class by A_x . Prove that the map $x \mapsto A_x$ is injective and that it satisfies $A_{x+y} = A_x + A_y$.
- 5. Similarly to the previous question one may prove that given a positive integer x, the set of all ordered pairs $B_x := \{(t, x+t) | t \in \mathbb{P}\}$ is an equivalence class. One may also prove that the map $x \mapsto B_x$ is injective and that it satisfies $B_{x+y} = B_x + B_y$. What is $A_x + B_x$ equal to? Prove your answer.
- 6. Prove that every equivalence class satisfies exactly one of the following: it is either 0, or of the form A_x or of the form B_x .

Mandatory questions to be answered in writing

1. Introduce multiplication on ordered pairs of positive integers as follows. Set

$$(x_1, x_2) \cdot (y_1, y_2) := (x_1y_1 + x_2y_2, x_1y_2 + x_2y_1).$$

Prove that this multiplication operation is compatible with the equivalence relation introduced in the oral questions, that is, $(x_1, x_2) \sim (x'_1, x'_2)$ and $(y_1, y_2) \sim (y'_1, y'_2)$ imply $(x_1, x_2) \cdot (y_1, y_2) \sim (x'_1, x'_2) \cdot (y'_1, y'_2)$.

- 2. Consider again the equivalence relation on $\mathbb{P} \times \mathbb{P}$ introduced in the mandatory exercises. Prove that every ordered pair (x_1, x_2) satisfies $(x_1, x_2) \cdot 0 = 0$. (Here 0 is the equivalence class from oral question 3.)
- 3. Prove that multiplication of positive integers satisfies the Cancellation Law, i.e., xz = yz implies x = y.

(Turn page for a Bonus question)

Assignment 3

Bonus question

- 1. A ring is a set R with a commutative and associative addition operation + and an associative multiplication operation \cdot such that:
 - Multiplication is distributive over addition, that is $(x+y) \cdot z = x \cdot z + y \cdot z$ and $(x+y) \cdot z = z \cdot x + z \cdot y$ for all $x, y, z \in R$.
 - There is an additive zero element $0 \in R$ satisfying x = 0 + x for all $x \in R$.
 - Every element $x \in R$ has an additive inverse \overline{x} satisfying $x + \overline{x} = 0$.

Prove that in a ring $0 \cdot x = x \cdot 0 = 0$ holds for all $x \in R$.