## Assignment 2

## Mandatory questions to be answered orally

1. Give an example of a finite set with a successor operation that satisfies all of Peano's axioms except for Axiom 3. (Axiom 3 states that $x^{\prime} \neq 1$ for all $x$.)
2. Give an example of an infinite set with a successor operation that satisfies all of Peano's axioms except for the Axiom of Induction.
3. Give an example of a finite set with a successor relation that satisfies all of Peano's axioms, except for Axiom 2, which has to be replaced by the following weakened axiom: Each $x$ has at most one successor $x^{\prime}$.
4. Prove that $m+n \neq n$ for every pair of positive integers.
5. Prove that for every positive integer $n$ where $n \neq 1$ there exists exactly one natural number $m$ such that $m^{\prime}=n$. The number $m$ is called the predecessor of $n$.
6. Prove that if $m$ and $n$ are positive integers then $m+n \neq 1$.
7. Define $2:=1^{\prime}, 3:=2^{\prime}, 4:=3^{\prime}$, and $5:=4^{\prime}$. Prove that $2+3=5$.
8. Prove that $n \geq 1$ for every positive integer $n$.

## Mandatory questions to be answered in writing

1. A total order on a set $S$ is dense if for every $x, y \in S$ satisfying $x<y$ there is a $z$ satisfying $x<z<y$. Prove that a densely ordered set is not well-ordered.
2. The symmetric difference $X \triangle Y$ of two sets consists of all elements of $X$ that do not belong to $Y$ and all elements of $Y$ that do not belong to $X$. (In other words, $X \triangle Y=(X \backslash Y) \cup(Y \backslash X)$, where $X \backslash Y$ is the set theoretic difference of $X$ and $Y$ ). Define "addition" and "multiplication" on the powerset of a set $S$ by setting

$$
X+Y:=X \triangle Y \quad \text { and } \quad X \cdot Y:=X \cap Y \quad \text { for all } X, Y \subseteq S
$$

Prove the Distributive Law, for these operations, i.e., prove

$$
(X+Y) \cdot Z=X \cdot Z+Y \cdot Z \quad \text { for all } X, Y, Z \subseteq S
$$

3. Prove that multiplication of positive integers satisfies the Cancellation Law, i.e., $x z=y z$ implies $x=y$.
(Turn page for Bonus questions)

## Bonus questions

1. Give an example of a set with a successor relation that satisfies all of Peano's axioms except for Axiom 2, which has to be replaced by the following weakened axiom: Every element has at least one successor (but may have more than one). (You may want to draw a picture.)
2. Assuming $2=1^{\prime}$ prove that $2 \cdot n=n+n$ for all positive integer $n$.
3. Give an example of an infinite well-ordered set with a successor operation that satisfies all of Peano's axioms except for the Axiom of Induction.
