Sample Test 2

The actual test will have only 5 questions.

1. Give an upper bound for the number of edges of a plane graph in terms of its girth and the number of its vertices, and prove your claim.
2. Prove that K^{5} is not planar.
3. Prove that $K_{3,3}$ is not planar.
4. State Kuratowski's theorem.
5. Find the plane dual of the graph shown below.

6. Which theorem is used to prove that a graph is planar if and only if it has an abstract dual?
7. Let G be a plane graph, G^{*}, its dual, and e an edge of G that is neither a bridge, nor a loop. How can you get the dual of $G \backslash e$ and the dual of G / e from G^{*} ?
8. Find a minimum cut and a maximum flow for the graph shown below. Show all your work!

9. Find a maximum size matching and a minimum size cover for the bipartite graph below, by converting the problem to a maximum flow-minimum cut problem. You will get full credit only if you find the answer using network flows.

10. State Menger's theorem on the maximum number of internally disjoint paths between two vertices. Illustrate how this statement may be reduced to the Ford-Fulkerson theorem, using the graph below.

11. Convert the \mathbb{Z}_{3}-flow shown below to a 3-flow.

12. Find the polynomial expressing the number of H-flows in terms of $|H|$ for the graph below.

