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• Introduction of HPC batch job schedulers
• Challenges of existing schedulers
• Background of Reinforcement Learning
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Different Job 
Traces

Different 
Scheduling Goals

Complicated 
Scheduling Goals

Amvrosiadis,	et.	al.	On	the	diversity	of	cluster	workloads	and		
its	impact	on	research	results,	USNIX	ATC’18

From	
https://www.cs.huji.ac.il/labs/parallel/workload/l_ricc/index.html Slurm classic	Fair	Share

https://slurm.schedmd.com/classic_fair_share.html10

Motivation & Background

For a Given Scheduler



0
500

1000
1500
2000
2500

FCFS WFP3 UNI SJF F1

SDSC-SP2

0

100

200

300

400

FCFS WFP3 UNI SJF F1

Lublin-2
Impact	of	Different Job	Traces

Best!

Worst!

Job Schedulers 
behave differently on 
Different Job Traces

Av
er

ag
e

bo
un

de
d

slo
w

do
w

n

11

Motivation & Background



0

0.2

0.4

0.6

FCFS WFP3 UNI SJF F1

Lublin-2

0

5000

10000

15000

FCFS WFP3 UNI SJF F1

Lublin-2

Impact	of	Scheduling Goals

Best!

Not the best

Job schedulers behave 
differently toward 

different goals
Av

er
ag

e
bo

un
de

d
slo

w
do

w
n

Re
so

ur
ce

U
til

iza
tio

n

12

Motivation & Background



Impact	of	Complicated Goals

What Scheduling Policy?

Complicated Goals 
require new schedulers

Maximize Resource Utilization

Minimize Average Bounded
Slowdown

Maximize User Fairness

Minimize Average Turnaround
time

Minimize Average Waiting time

Minimize Average Bounded
Slowdown 

&
Maximize User Fairness
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Reinforcement Learning

14

David Silver,	et.	al.	Mastering	the	game	of	Go	with	deep	
neural	networks	and	tree	search,	Nature vol.	529	(2016)

Volodymyr	Mnih,	et.	al.	Playing	Atari	with	Deep	
Reinforcement	Learning arXiv:1312.5602	(cs)

From https://www.selfdrivingcars360.com/how-
autonomous-vehicles-fit-into-our-ai-enabled-future/
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• Overview of RLScheduler
• Challenges and Our Solutions



Our	Contributions
• The first reinforcement learning based 

batch job scheduler for HPC systems

• New neural network and trajectory 
filtering mechanism to enable efficient 
RL training

• Extensively evaluations on efficiency, 
usability, and stability of RLScheduler.
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Challenge 1: Impact of Input Order
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Solution: Kernel-based Policy Network

Policy network: Kernel-based network

Kernel-based Policy
Network is insensitive to

the order of jobs
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Challenge 2: High Variance in Samples

The average bounded slowdown of scheduling sequence of 256 jobs in PIK-IPLEX-2009 job trace.
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Solution	1: Value Network

Value network

Value Network helps reduce the variance by
estimating the value of different states

21
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Solution	2: Trajectory Filter

Filter out jobs and retrain jobs with average
bounded slowdown in between Mid and 2*Mean
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• Efficiency Evaluations
• Usability Evaluations
• Stability Evaluations



Efficiency

Usability

Stability

Evaluation
Outline

• How is the performance of kernel-based neural network?
• How well can value network and trajectory filtering

reduce the variance?

• How is the performance on various job traces?
• How is the performance for different optimization goals?
• How is the performance of complex metrics?

If RLScheduler works well in above scenarios,
is it stable?
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The horizontal axis shows the total number of training epoch; the vertical axis 
shows the performance of the agent. The larger vertical axis value indicates a 
smaller average bounded job slowdown and is better

Converge Converge
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Compare	Different	Neural	Networks



The training curves of RLScheduler on PIK-IPLEX2009 job trace with and without trajectory filtering.

With trajectory enabled, RLScheduler converges
within 100 epochs.
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With/Without	Trajectory	Filtering
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RLScheduler converges in all of the workloads within 100 training epochs
and different job traces have different converge pattern.

Synthetic Workloads

Real-world Job Traces
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Training on Different Job Traces:
Evaluation & Analysis



RLScheduler performs either comparably well to the best or is the best 
among the presented schedulers. 
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Testing on Different Job Traces:
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RLScheduler converges towards this new goal but with different 
patterns
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Training on Different Goals:
Evaluation & Analysis



Resource Utilization

Average bounded slowdown
Best!

Not the best

RLScheduler has good
performance among all the 

presented schedulers. 
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Minimizing maximal average bounded slowdown among users 
is a complicated metrics considering Performance and Fairness

at the same time. 
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Results of scheduling different job traces towards average bounded slowdown with Maximal Fairness.

RLScheduler can consider multiple metrics at the same time: 
minimizing average bounded slowdown and keeping fairness 

among users together. 
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A learned RLScheduler model, regardless of which job trace it 
was trained on, can be safely applied to other job traces 
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Stability	Evaluation
Evaluation & Analysis
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Conclusion
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Summary
• We designed and implemented the first RL-based HPC batch job scheduler. 

• https://github.com/DIR-LAB/deep-batch-scheduler

• We introduced new network design and trajectory filtering mechanism in 
RLScheduler to stabilize and speedup the training.

• We conducted extensive evaluations to show the efficiency, usability, and stability 
of RLScheduler across various HPC job traces and scheduling goals. 
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https://github.com/DIR-LAB/deep-batch-scheduler
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