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Abstract—Pedestrian detection has remained an important
research topic in both the computer vision and multimedia com-
munities because of its importance in practical applications, such
as driving assistance and video surveillance. Existing methods
compare the response score with a fixed threshold to determine
whether a candidate region contains pedestrians and produce
dissatisfactory results that contain either missed detections or
false detections, which are difficult to balance. This situation
has a serious impact under the condition of variable scale. This
paper investigates the functional relationship between the scores
and scales of pedestrians. By designing experiments with multiple
scales, we have found a discriminant surface in the score scale
space. Pedestrians can be distinguished at various scale levels
according to their locations on the discriminant surface. The
proposed approach is evaluated using four challenging pedestrian
detection datasets, including Caltech, INRIA, ETH and KITTI,
and superior experimental results are achieved when compared
with baseline methods.

Index Terms—Pedestrian detection, Multiple scales, Score scale
curve, Discriminant surface

I. INTRODUCTION

Pedestrian detection, which aims to find and locate all
pedestrians in an image, has aroused increasing interest in the
computer vision and multimedia analysis communities [1]–
[3]. This topic is also the basis for many advanced multime-
dia applications, such as pedestrian retrieval [4], pedestrian
tracking [5] and behavior analysis [6]. A direct application
of pedestrian detection is that we can automatically locate
pedestrians with cameras, which is particularly important in
criminal investigations and for driving assistance. Although
considerable progress has been achieved in recent years [7]–
[22], this task remains challenging due to complex conditions,
such as occlusions, deformations and illumination changes.
Moreover, the various scales of pedestrians cause additional
difficulties.

Representative methods include traditional methods, such
as histogram of oriented gradient (HOG) [14], aggregated
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Fig. 1. A higher threshold causes missed detections, whereas a lower threshold
leads to a large number of false positives.

channel features (ACF) [23], locally decorrelated channel fea-
tures (LDCF) [24] and Checkerboards [25], and convolutional
neural network (CNN) methods, such as region-based CNN
(R-CNN) [22], Fast R-CNN [26], Faster R-CNN [27], you
only look once (YOLO) [28]–[30] and single shot detector
(SSD) [31]. These methods typically contain three stages:
candidate region generation, feature extraction and classifi-
cation decision. The candidate region generation stage aims
to generate all possible pedestrian candidates. The feature
extraction stage aims to construct discriminative and robust
feature descriptions. Subsequently, the classification decision
stage focuses on seeking an optimal decision to determine
whether the candidate region contains pedestrians according
to features in the candidate region. The final goal of these
stages is to obtain one response score for each candidate
region. The response score is the basis for determining whether
this region contains one pedestrian. A fixed threshold is often
used to assist this decision. If one score is greater than the
fixed threshold, then the corresponding candidate region will
be considered to contain one pedestrian; otherwise, it will be
considered to contain no pedestrians.

The score changes with the various scales of the pedestrian
region. As is known, the score decreases as the pedestrian scale
decreases because the discriminative features have degraded.
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Fig. 2. The discriminant process of the score scale space is shown. In the above figures, the horizontal axis represents the sample height, which is the relevant
amount of sample scale, and the vertical axis denotes the response score. (a) Three score scale curves. The three curves are generated by comparing the
response scores with the different scales of pedestrian samples p+1 , p+3 and non-pedestrian sample p−2 . A large threshold can correctly identify p+1 and
p−2 , but it cannot identify p+3 (missed pedestrian). A small threshold can correctly identify p+1 and p+3 , but it cannot identify p−2 (false pedestrian). (b) The
score scale surface. We choose more positive/negative samples to generate score scale curves and obtain expansion areas of these score scale curves in score
scale space. The interface between positive and negative score scale curves is displayed. (c) Two test samples can be distinguished in the score scale surface
according to whether it lies in the positive area or the negative area.

Their scores are usually lower than the threshold and the
corresponding regions will be determined as non-pedestrian.
In this case, these pedestrians are missed by even the best
detectors. Intuitively, a lower threshold is adopted that can
recall missed pedestrians. However, it will result in false
detections. These methods are inappropriate for dealing with
pedestrians with this variable scale and thus result in a certain
degree of missed detections and false detections, as shown in
Figure 1. There is an urgent need for a discriminant model
that can accommodate various scales. The discriminant model
must recall missed pedestrians without result in false positives.

A. Motivation

Since the scale affects the response score, we attempt to
determine the score variation rule as the scale changes. To
investigate this issue, we conducted a preliminary experi-
ment. One pedestrian sample p was randomly selected from
the Caltech pedestrian dataset [32]. A subset of samples p
= {p10, p11, · · · , po} could be obtained after we changed the
scale of p step by step, where the superscript represents the
height of the new sample.

The height can reflect the scale of pedestrians because
the aspect ratio of pedestrians is fixed. The score of each
new sample can be obtained by matching the new sample
with the learned pedestrian model [33]. This model can
discriminate samples of any scale. A series of response scores
s = {s10, s11, · · · , so} corresponding to the set of samples p
can be obtained. To visualize the changes of scores with scales,
we fit a score scale curve based on the distribution of scores
with various scales. The curve fitting details are presented in
Section III C.

Figure 2 (a) shows three score scale curves that are re-
spectively generated by samples p+1 , p−2 and p+3 . The positive
and negative samples appear to be separated from each other
in Figure 2 (a). The same method is applied to all posi-
tive and negative samples of the dataset. Then, score scale
curves for the positive and negative samples are obtained.
The coverage area of positive/negative score scale curves can
be obtained through the distribution of positive/negative score

scale curves. In Figure 2 (b), the upper shaded area represents
the corresponding spread of positive score scale curves, which
is called the score scale surface (SSS) for positive samples.
Meanwhile, the bottom shaded area represents the SSS for the
negative samples. The interface between positive and negative
SSSs is displayed. Fortunately, we found that positive and
negative samples can be authentically separated in Figure
2 (b). To test the validity of the discriminant surface, we
selected two test samples for verification. These two samples
can easily be separated, as shown in Figure 2 (c). The scores
of both test samples on the original scale are lower than the
selected threshold (as shown by the dotted line in Figure
2(a) and (c)), and the scores of pedestrian samples are even
lower than those of non-pedestrian samples. It is impossible
for existing methods to distinguish them. However, SSS can
correctly identify these samples. Although it is difficult to
separate some samples that have landed in the overlapping
area, they are the most valuable samples for reducing the
overlapping area and optimizing the discriminant surface.
The smaller the overlap area, the better the discrimination
performance. The proposed SSS discrimination (S3D) method
accommodates various scales and explores the discriminative
power for pedestrian detection.

The remainder of this paper is organized as follows: Section
II provides a brief review of related work for pedestrian de-
tection under various scales. Section III presents the technical
details of the proposed S3D method. The representation of
a score scale curve is introduced in Section III C, and SSS
discrimination is described in Section III D. The experimental
results are shown in Section IV, and conclusions are discussed
in Section V.

II. RELATED WORK

In this section, some related studies are briefly reviewed and
discussed to illustrate the novelties and contributions of this
paper. Pedestrian detection can be regarded as a special image
classification problem that needs to locate the position of all
pedestrians in image. Therefore, the discriminant region in de-
tection is not the whole image but rather a certain region in the
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Fig. 3. Different strategies for multiscale detection. (a) Densely sampled image pyramid. (b) Densely sampled classifier pyramid. (c) Densely sampled image
and classifier pyramid. (d) Approximating features at multiple scales. (e) Region proposal. (f) Region proposal network.

image. An important process is feature extraction. Well-known
features, such as Haar-like features [7], scale-invariant feature
transform (SIFT) [34], HOG [14], local binary patterns (LBP)
[11] and integral channel features (ICF) [20], are designed to
be robust to intraclass variations while remaining sensitive to
interclass variations. Recently, CNNs have been successfully
applied in generic object recognition [22], [26], [27], [33]
because of their power in learning features. Therefore, most
researchers tend to focus on improving the performance of
pedestrian detection [22], [35]–[38] by using deep learning
models. The final stage is to make a proper discrimination
based on these features.

Pedestrian detection has recently made a breakthrough.
Zhang et al. [39] introduced CityPersons annotations, which
enable generalization over multiple benchmarks and are con-
ducive to properly adapting the model for pedestrian detection
and pre-training. Zhou et al. [40] learned a deep convolu-
tional neural network (CNN) that consists of two branches:
a branch for full body estimation and a branch for visible
part estimation. Tian et al. [41] proposed the utilization of
the candidate head-top locating stage to efficiently identify
the plausible head-top locations and a DMH representation
that encodes three channels of information for each candidate
region. Zhang et al. [42] proposed a two-staged approach
for human detection, which has a physical blob (P-Blob)
to identify plausible human heads and used a combination
of human upper-body features to filter false positives. This
paper focuses on pedestrian detection, primarily pedestrians
under various types of scales. Brazil et al. [43] provided
an in-depth analysis to demonstrate how shared layers are
shaped by the segmentation supervision and to show that the
resulting feature maps become more semantically meaningful
and robust to shape and occlusion. The relevant studies of
pedestrian detection for this topic can generally be categorized
into two types: handcrafted models [7]–[11], [13]–[18], [20],
[21], and deep learning models [44]–[48]. These two types
of models use handcrafted sliding windows and a region
proposal network, respectively, to extract candidate regions
with different scales.

Handcrafted sliding windows. In traditional methods, can-
didate regions are primarily obtained using the sliding window
scanning method, which mainly consists of three strategies.
The first strategy is to learn a single classifier that can match

possible pedestrian positions by rescaling the image multiple
times [14] (as shown in Figure 3 (a)). This strategy requires
repeated feature computations at multiple scales during the
testing process. The second strategy is to apply multiple
classifiers with different scales to a single input image [16] (as
shown in Figure 3 (b)), which avoids the repeated computation
of feature maps. However, training detectors with different
scales introduces a complicated computational cost. Several
approaches have been proposed to balance the computational
costs of the testing and training processes. The third strategy
is to rescale the input image a few times and learn a num-
ber of different scale detectors (as shown in Figure 3 (c)).
The representative works are FPDW [21], ACF [23], LDCF
[24] and Checkerboards [25]. To reduce the computational
complexity of feature extraction during the testing process, a
feature approximation strategy (as shown in Figure 3 (d)) was
proposed in [23]. This strategy interpolates the missing feature
maps and achieves considerable speed-ups with almost no loss
in terms of detection accuracy. This method is also applied
to this paper. In the aforementioned strategies, windows slide
from left to right and from top to bottom in each level
of the pyramid to obtain candidate regions, which requires
classifying approximately 104 to 105 candidate regions [49]
per image (640 × 480) if the step of the sliding window
(64× 128) is 1 for each layer of the pyramid.

Therefore, there are multiple candidate windows of different
scales in a pedestrian region. However, the response score of
each candidate with different scales is extracted separately,
and the maximum response is used for comparison with the
threshold value. These strategies have difficulty balancing
missed detection and false detection and ignore the relation-
ships among candidate regions at different scales.

Region proposal network. The solutions of the deep
learning pedestrian detection model for candidate regions are
region proposal and region proposal network (RPN). Deep
learning has made major breakthroughs in computer vision.
CNNs are particularly prominent in the recognition field [38],
[50], [51]. Extracting CNN features requires very complicated
calculations because there are millions of parameters [50]. It is
not practical in applications to extract CNN features 104 times
[49] if we obtain candidate regions via handcrafted sliding
windows.

A better solution uses the internal structure of the im-
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SSS classifier on the score scale feature space. During the testing phase, candidate regions are represented as score scale curves and distinguished by SSS
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age to extract candidate regions and offers fewer candidate
windows and almost no reduction in recall rate compared to
handcrafted methods. Selective search [52], EdgeBoxes [53]
and Objectness [54]. R-CNN [22] and Fast R-CNN [26] are
classic methods that have used this strategy (Figure 3 (e))
and have achieved remarkable breakthroughs. RPN (Figure
3 (f)) was first proposed in Faster R-CNN [27]. RPN is
designed to predict candidate regions with different scales and
aspect ratios. With almost no effect on the recall rate, the
number of candidate areas has been reduced by two orders
of magnitude. This approach introduces anchor boxes that
serve as candidates at multiple scales and aspect ratios. This
scheme avoids enumerating images/filters and performs well.
The anchor mechanism has also been applied to multiple
feature layers for detecting pedestrians under various scales,
such as scale-aware fast (SAF) R-CNN [55] and multiscale
CNN (MS-CNN) [56]. These approaches divided pedestrian
scales into two different scales: large scale and small scale.
YOLOv3 [30] combines features of three different scales for
prediction. SSD [31] combines features of six different scales
for prediction. There are far more than six scales in the actual
scene data. Song et al. [57] devised a fully convolutional
network (FCN) with somatic topological line localization
(TLL), which takes multi-scale feature representations and
regresses the confidence of topological elements. Zhang et al.
[58] proposed an active pedestrian detector (TFTS) that ex-
plicitly operates over multiple-layer neuronal representations
of the input still image. Lin et al. [59] introduced scale-aware
pedestrian attention masks and a zoom-in-zoom-out module to
improve the capability of the feature maps to identify small
pedestrians. Moreover, these methods deal with predictions at
different scales independently.

III. SCORE SCALE SURFACE DISCRIMINATION (S3D)
A. Overview of the Proposed Model

In this section, we describe our S3D method. First, the
candidate generation approach is introduced. It contains the

original RPN structure and the modified RPN structure. The
purpose of the modification is to restrict the candidate area
to the shape of pedestrians and exclude the interference of
other forms to provide more suitable candidate regions for
pedestrians. Second, the score scale curve representation is
described with an exponential function that combines the score
and the scale. The coverage areas of the sample’s score scale
curves constitute the SSS. Last, the SSS discrimination method
is provided to distinguish the score scale curve as a pedestrian
candidate region or a non-pedestrian candidate region. The
whole paradigm is shown in Figure 4.

B. Candidate Generator

For the implementation described in this section, we extract
candidate regions that cover possible pedestrian locations. In-
spired by [39], the aspect ratio (width to height) of the anchor
is changed to 0.41, which is a reasonable aspect ratio for
pedestrians [32], [48]. The candidate generator can generates
a large pool of candidates with the goal of containing all
possible pedestrians, The width-to-height ratio of pedestrians
is fixed; thus, the height directly reflects the pedestrian scale.
The distribution is as follows:

hn = h1q
(n−1) (1)

where hn represents the n-th anchor’s height, n ∈
{1, 2, 3, · · · , N}, N is the number of pedestrian candidate
boxes in the anchor, and q is the ratio among adjacent scales.
According to the statistics of the training data [32], in our
settings, the values of N and q are 9 and 0.83, respectively.
h1 is the maximum height of the ground truth in the datasets.
The same as the structure of [24] and [25], the end of the
candidate generator is fed into two fully connected layers, i.e.,
a box-regression layer and a box-classification layer, followed
by the score scale curve representation.

The framework in this paper is a multitask learning frame-
work with three main branches: the extraction of candidate
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Fig. 5. The comparison between scale and response score of pedestrian
samples with different scales is with purple dots. In score scale space, the
response score has been transformed by s̄ = exp(s ∗ σ − 1), which is more
discriminative.

regions, the acquisition of pedestrian scores, and the discrim-
ination of SSS. During training, the correspondence between
the ground truth and the predicted pedestrian position needs
to be established. This branch is constrained by positional
regression loss. Pedestrian response scores are used in score
scale curve representation multiple times. This branch is
constrained by classification loss. The two branch structures
rely on previous work [27]. The loss function of this part is
as follows:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )

+ 1
Nreg

∑
i

p∗iLreg(ti, t
∗
i )

(2)

where i is the index of predicted pedestrians in a minibatch
and pi is the predicted probability. The ground-truth label p∗i
is 1 if the candidate region from the anchor is positive and 0
if the candidate region is negative. ti is a vector representing
the 4 parameterized coordinates of the predicted pedestrian
region, and t∗i is that of the ground truth associated with a
positive anchor. The classification loss Lcls is log loss over two
classes (pedestrian vs. non-pedestrian). The regression loss is
Lreg(ti, t

∗
i ) = L1(ti−t∗i ), where L1 is the robust loss function

defined in [26].

C. Score Scale Curve Representation

Since the scale affects the response score, the response score
alone is not sufficient for making accurate pedestrian detection
decisions under varying scale conditions. To this end, we
introduce the score scale curve representation to characterize
and analyze the trend of the score scale changes of pedestrian
and non-pedestrian samples to provide more accurate guidance
for pedestrian detection with various scales. In the following,
we elaborate the score scale curve representation details.

A pedestrian classifier [27] is initialized with the Caltech
dataset [32]. One pedestrian sample p is selected randomly
from the training dataset. To obtain samples of different scales,

p is resized into various scales to form a set of samples,
p = {p10, p11, · · · , po}, where the superscript denotes the
height of the new resized sample, and o denotes the original
height of the pedestrian sample p. With the above setting,
the pedestrian classifier is adopted to generate a score vector
s = {s10, s11, · · · so}. To accurately describe score changes
under various scales, we can obtain response score vectors for
all pedestrians in the training dataset. The mean score vector
s can be obtained by averaging the corresponding bits, and an
example is shown as the pink stars in Figure 5 (a). To make
a more discriminative and easier discriminative, the response
score was transformed by s̄ = exp(s ∗ σ − 1), where σ is the
scale ratio of sampled sample to original sample. That is, if
the height and the width of the downsampled pedestrian are
half those of the pedestrian, then the scale ratio σ = 0.5. The
comparison in the score scale space is shown in Figure 5 (b).

To decrease noise and enhance robustness, this paper adopts
several smooth curves to describe the dynamic relationship
between response scores and scales. Specifically, several com-
mon curves are evaluated as shown in Table I. R-square is

TABLE I
DIFFERENT CURVE FITTING METHODS AND EVALUATION PERFORMANCES.

R-square INDICATES THE FITTING PERFORMANCE OF THE CURVE AND
SCORE POINTS. WHEN R-square IS CLOSE TO 1, THE FIT IS GOOD.

Fitting method Function R-square
Linear fitting f(h) = ah+ k 0.6349
Sine fitting f(h) = a sin(bh+ c) + k 0.7288
Gaussian fitting f(h) = ae−(h−b)2/2δ2 + k 0.8937
Exponential-1 fitting f(h) = aebh + k 0.9253
Exponential-2 fitting f(h) = aebh + cedh + k 0.9682

an objective indicator of the effectiveness of curve fitting. The
larger the R-square value, the better the fit. Through the above
comparison, the exponential-2 function, f(h) = aebh+cedh+
k, is adopted to describe the score scale relationship of various
response scores under different pedestrian sample scales. The
fitted curve is named the proposed score scale curve.

D. SSS discrimination

SSS generation. During the training phase, score scale
curves for positive and negative samples corresponding to
pedestrian and non-pedestrian samples are obtained, as shown
in Figure 6 (b). With the derived score scale curves for
both positive and negative samples, the positive and negative
SSSs can be outlined by the variance spread of their standard
deviations with their mean score scale curves. The mean score
scale curves of positive and negative samples are shown as
black and yellow curves, respectively, in Figure 6 (b).

We are even more concerned with the interface between the
positive and negative score scale curves. For this purpose, the
standard deviation of the positive score scale curves has been
used to obtain the lower bound, and the standard deviation
of the negative score scale curve has been used to obtain the
upper bound. The interface between the positive and negative
samples is shown in Figure 6 (c).
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Fig. 6. Score scale curve fitting and SSS generation. (a) The distribution is shown from one average distribution of pedestrian samples from the Caltech
dataset [32]. (b) The red score scale curve is generated by positive samples. The blue score scale curve is generated by negative samples. The black score
scale curve is the mean of the positive score scale curves. The black dotted score scale curve is the lower bound of positive SSS generated as the spread from
the variances of the positive score scale curves (σpositive). The upper bound of negative SSS is generated using the same method. (c) Positive/negative SSSs
and their interface.

Algorithm 1 SSS classifier learning
Input: {(p1, l1), (p2, l2), · · · , (pi, li), · · · (pn, ln)},li ∈ (0, 1)
Output: SSS classifier.

1: for Each sample (pi, li) in training data do
2: Construct a subset p by sampling pi;
3: Obtain scores s for subset p;
4: Form score scale curve according to the distribution

of h-s pairs;
5: Express score scale curve as a feature vector;
6: Optimize SSS classifier according to loss function.
7: end for
8: return SSS classifier

Feature descriptor. To express all properties of the score
scale curve in score scale feature space, this paper exploits a
feature expression that can accommodate various scales. The
feature expression of this part has two components: response
scores and curve fitting parameters. The first component re-
flects the scores of the samples of different scales. The second
component shows the relationships among samples of different
scales. Specifically, the two components are Com1 and Com2.
The first component is used to represent the direct relationship
corresponding to scores with different scales and expressed
as Com1 = s. The second component is used to represent
the indirect relationship corresponding to scores with different
scales and is expressed as Com2 = [a, b, c, d, k]. This feature
descriptor can accommodate changing scales and be described
as [Com1, Com2].

Training SSS classifier. With the above feature representa-
tion, this paper uses random forest (RF) [60] as the classifier
for S3D. RF is a combination of some binary decision trees
built based on bootstrap samples. A subset of the parameter
vector is randomly chosen for each node of the decision tree,
and the best split is calculated with this subset. According to
the distribution of parameters in separating positive and nega-
tive score scale curves in SSS, RF makes effective decisions;
thus, the classifier has been named the SSS classifier.

The SSS interface between positive and negative score scale
curve areas reflects the discrimination ability of S3D. The loss

Algorithm 2 S3D pedestrian detection framework
Input: image I
Output: Candidate regions that contain pedestrians

1: Extract candidate regions using the modified RPN;
2: for Each pedestrian candidate region p do
3: Construct a subset p by sampling the candidate region;
4: Obtain corresponding scores s for the subset p;
5: Form the score scale curve according to the distribu-

tion of h-s pairs;
6: Express the score scale curve as a feature vector;
7: Determine whether the candidate region contains

pedestrians with the discrimination of the SSS classifier.
8: end for
9: return candidate region that contains one pedestrian.

of this part is expressed as follows:

LSSS(p̂i, p̂
∗
i ) = − 1

Ncls
(p̂i ln p̂

∗
i + (1− p̂i) ln (1− p̂∗i )) (3)

where LSSS(p̂i, p̂
∗
i ) is the loss function in SSS classifiers

learning, p̂i denotes the distribution of the i-th pedestrian
sample in score scale space, and p̂∗i denotes the prediction
probability of the distribution in the score scale space. The
optimal loss function directly reflects the size of the overlap-
ping area in Figure 6 (c). The smaller this overlapping region
is, the more discriminative the SSS classifier will be. The SSS
classifier’s learning process is illustrated in Algorithm 1.

SSS for pedestrian detection. The pedestrian detection
process in this paper is summarized in three steps: candidate
generation, score scale curve representation and SSS discrimi-
nation. The detection process is illustrated in Algorithm 2. To
avoid unnecessary operations, the scale of the feature map is
varied (as shown in Figure 3) (d)) rather than directly changing
the candidate regions. Therefore, the proposed method has
almost the same computational time as previous pedestrian
detection methods.

IV. EXPERIMENTS

In this section, the proposed approach is validated through
comparison with several classical pedestrian detection methods
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on four pedestrian datasets: Caltech [32], INRIA [14], ETH
[61] and KITTI [62]. We chose these datasets because they
provide many challenges faced in practical surveillance, such
as viewpoint, pose, illumination changes, background variation
and occlusions. More detailed experimental analyses of the
effectiveness of each component in S3D are further given on
the challenging Caltech dataset [32].

A. Implementation details

The scalable ideas are added to the candidate regions rather
than a single scale as in [26], [27], [33]. To obtain a fair com-
parison with most of the existing algorithms [22], [26], [27],
the pretrained VGG16 model [37] was used to initialize the
modified RPN for candidate regions. The convolutional layers
and max-pooling layers are used as the shared convolutional
layers before S3D to produce feature maps from the input
image. To obtain richer features, the fourth max-pooling layer
is removed to produce larger feature maps.

For RPN training, an anchor is considered to be a positive
example if it has an intersection-over-union (IoU) ratio greater
than 0.5 with one ground-truth box, and others are considered
as negative examples. As in [26], [27], each minibatch consists
of 1 image and 120 randomly sampled anchors for computing
loss. The ratio of positive to negative samples is 1:5 in a
minibatch. To extract the candidate regions for pedestrians,
we modified the scale and aspect ratio of the anchor in RPN
as the candidate generator in this paper. Because there is only
one pedestrian category in our work, the original anchors are
changed to the aspect ratio of pedestrians. The candidates from
the modified RPN are selected as the pedestrian candidate
regions in this paper rather than selecting the proposals from
the original RPN. The main concern in our work is multiple
scales, which is different from [48]. Thus, there are more
scales of the anchors in this paper relative to [48].

To compare the scores of candidate regions with different
scales, the features of each pedestrian sample are represented
with the same dimension. Region of interest (RoI) pooling has
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Fig. 8. Quantitative evaluation results (miss rate versus false positives per
image) on the ETH dataset. Performance in the legend is evaluated in terms
of average miss rate.

been adopted to extract fixed-length features, and the score
of each candidate region was calculated by the classification
layer. In more detail, the data are augmented by horizontal
flipping and color altering. Dropout [32] is used on the two
fully connected layers. A momentum of 0.9 and a weight decay
of 0.0005 were used in this paper. The learning rate starts
from 0.01 and is divided by 10 when the error plateaus. Our
experiments are run on a GeForce GTX Titan X GPU. The
layers update parameters with an initial learning rate of 0.001,
which is lowered to 1/10 of the current rate after every 4
epochs.

B. Comparisons with State-of-the-art Methods

ETH and INRIA datasets. The INRIA dataset [14] in-
cludes a training set and a test set. The training set consists of
614 positive images and 1,218 negative images. The test set
consists of 288 images. Our model is evaluated on the test set.
The ETH [61] dataset is also used to verify the discrimination
capability of the S3D models. The data were recorded using
a pair of AVT Marlins mounted on a chariot. Approximately
12,298 annotated pedestrians have been labeled. The size of
these images is 640×480, and the frame rate of the data
is 13–14 FPS. The ETH dataset consists of 3 testing video
sequences. Our models are evaluated on the 1,804 images in
the ETH dataset. Many studies [50], [63] have found that
using more training data is beneficial for training models.
To evaluate the discrimination capacity of the S3D model,
the INRIA dataset is added to the training set following the
approach commonly adopted by the superior approaches [16],
[44], [64]. Although these training data have been added, the
quantity is not sufficient to train our model. We implement
Gaussian blurring and motion blurring on the training set for
data augmentation. The evaluation metric of the INRIA [14]
and ETH [61] datasets for the following experiments is the
average miss rate on false positives per image (FPPI) [32].
An IoU of 0.5 is used to determine true positives.
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Fig. 9. Quantitative evaluation results (miss rate versus false positives per
image) on the Caltech dataset. Performance is evaluated in terms of average
miss rate.

Both the INRIA and ETH test sets are used to evaluate
our S3D model. Figure 7 and Figure 8 provide the results of
the comparison of the S3D model with several methods with
state-of-the-art performance. On the INRIA set, our method
obtains an average miss rate of 7.89%, which is considerably
better than that of the SAF R-CNN [55] method. For the ETH
dataset, the S3D model in this paper obtains an average miss
rate of 30.12%, which outperforms the second-best method
(SAF R-CNN) [55] by 4.52%.

It can be observed that the S3D model achieves a better
average miss rate on both datasets. In general, the method
proposed in this paper outperforms other popular methods and
achieves satisfactory performance on both datasets.

Caltech dataset. The Caltech pedestrian detection dataset
[32] and its associated benchmark are among the most popular.
This dataset consists of approximately 10 hours of 30-Hz
video that has been taken from a vehicle driving through
regular traffic in an urban environment. Every frame has been
annotated with bounding boxes indicating whether the frame
is a pedestrian or not a pedestrian. Approximately 250,000
frames (640×480) with a total of 350,000 bounding boxes
and 2,300 unique pedestrians were annotated. The dataset
contains a training set and test set. The training set consists
of six training subsets (set00–set05). We sample the training
data every 4th frame for training S3D in this paper. The
test set consists of five subsets (set06–set10). According to
the evaluation method, the test data with the 30th frame are
sampled to verify the effectiveness of S3D.

The evaluation metric of the Caltech [32] dataset for the
following experiments is the average miss rate on FPPI [32].
An IoU of 0.5 is used to determine true positives.

The Caltech training set was used to train our method, and
the test set was used to evaluate the S3D method. The overall
experimental results are presented in Figure 9. Existing meth-
ods that achieved superior performance on the Caltech test set
are compared with the S3D method proposed in this paper.
The comparison algorithms include VJ [7], HOG [14], ACF
[23], LDCF [24], R-CNN [22], Katamari [65], SpatialPooling+

TABLE II
AVERAGE PRECISION (%) ON THE KITTI DATASET.

Methods Easy Moderate Hard
R-CNN 61.61 50.13 44.79

pAUCEnsT 65.26 54.49 48.6
FilteredICF 67.65 56.75 51.12
DeepParts 70.49 58.67 52.78

CompACT-Deep 70.69 58.74 52.71
Regionlets 73.14 61.15 55.21

SAF R-CNN 77.93 65.01 60.42
Our method 77.94 65.6 60.45

[66], task-assistant CNN (TA-CNN) [67], CompACT [47],
Checkerboards+ [25], DeepParts [68], cross-modality transfer
CNN (CMT-CNN) [69], RPN-BF [48] and SAF R-CNN [55].
We find that S3D outperforms the other methods and achieves
the lowest average miss rate of 9.28%, which is significantly
better than the current state-of-the-art approaches.

KITTI dataset. The KITTI dataset [62] contains images
with stereo data available. There are 7,481 training images and
7,518 test images in the KITTI dataset [62], which are cap-
tured from an autonomous driving platform. The evaluations
have three levels of difficulty: easy, moderate and hard. The
evaluation setting is used to rank the competing methods in
the benchmark. The KITTI training set was split into training
and validation subsets, as used in [55], [70].

The evaluation metric of the KITTI [62] dataset for the
following experiments is the mean average precision (mAP)
[62]. The detection results and performance comparisons of the
proposed method with several state-of-the-art methods, such
as R-CNN [22], pAUCEnsT [66], FilteredICF [25], DeepParts
[68], CompACT-Deep [47], Regionlets [71] and SAF R-CNN
[55], are presented in Table II. As shown, the S3D model
achieves promising results, i.e., 77.08%, 61.12% and 55.09%
in terms of average precision (AP) on the easy, moderate
and hard subsets, respectively, which outperforms most of the
existing methods tested on this benchmark.

C. Ablation study

We conduct ablation experiments on the Caltech dataset [32]
in this subsection. These experiments investigate the effec-
tiveness of different components of S3D. The performances
achieved by different variants of the S3D and structure settings
are reported as follows.

Candidate region extraction. The first phase of pedestrian
detection is the selection of candidate regions. As mentioned
above, there are two types of methods for extracting candidate
regions: handcrafted sliding window methods, whose represen-
tative work is LDCF [24], and related deep learning methods,
whose representative works include selective search [52] and
RPN [27]. We have investigated in terms of candidate region
quality and evaluated recall rates with different IoU thresholds.
These three algorithms are currently the most representative
works. As shown in Figure 10, the modified RPN performs
better than the three leading methods.
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Fig. 10. Comparison of modified RPN and three existing methods on the
Caltech pedestrian dataset.

RPN makes full use of the robust feature expression ca-
pabilities of deep learning to extract candidate regions at the
convolutional layer. Candidate generator effectively correlates
the scales of the anchor and the pedestrian. The above exper-
iment has verified the effectiveness of our modification.

Feature selection. SSS can take advantage of the features of
various scales from the convolutional network and is flexible.
We analyzed the impact of different feature maps. Table III
shows the results of using different feature maps in S3D. In
the first experimental combination, Conv3 3 alone yields a
good average miss rate of 12.3%, showing the effects of higher
resolution features. In the second experiment, the combination
of Conv3 3 and Conv4 3 achieves the best average miss rate
of 11.5%. In the following experiment, Conv3 3, Conv4 3 and
Conv5 3 achieve satisfactory results of 9.28%. In a further
combination, the performance is unsatisfied. Our analysis
suggests that high-resolution features should provide good
performance. The combinations of Conv3 3, Conv4 3 and
Conv5 3 validate this analysis. Although Conv2 2 has high-
resolution features, it shows degraded performance because of
the weaker representation of shallower layers, which is the
main reason why the performance is less than satisfactory
when we add Conv 2 2 to the experiment.

The score scale curve descriptor consists of two parts: direct
score scale descriptor Com1 and indirect score descriptor
Com2. Both have auxiliary effects on the pedestrian detection
in this paper. The detailed effects are shown in Table IV.

Robust classifier. The next phase of pedestrian detec-
tion is to classify the extracted candidate regions from the
above phase. More importantly, modified RPN as a detector
achieves an average miss rate of 14.9%. We set up different
combinations by testing the current popular classifier with
the modified RPN. These results are compared in Table V.
Modified RPN+SSS+RF is better than all combinations. For
fair comparisons, we use the same set of modified RPN for all
methods in this section. R-CNN [22] was reported earlier. All
pedestrian candidate regions are extracted from the modified

TABLE III
COMPARISONS OF DIFFERENT FEATURES IN THE S3D MODEL ON THE

CALTECH DATASET. THESE METHODS ARE BASED ON VGG-16, AND THE
OTHER STRUCTURE SETTINGS ARE THE SAME. MISS RATE (%) IS USED TO

EVALUATE THE PERFORMANCES OF DIFFERENT COMBINATIONS.

Conv2 2 Conv3 3 Conv4 3 Conv5 3 Miss Rate√
15.7√
12.3√
12.6√
18.2√ √
12.9√ √
11.5√ √
13.6√ √ √
9.34√ √ √
9.28√ √ √ √
9.56

TABLE IV
DIFFERENT SCORE SCALE CURVE DESCRIPTORS

Score scale curve descriptor Average Miss Rate (%)
Com1 9.57
Com2 9.43

Com1+Com2 9.28

RPN discussed above. It has an average miss rate of 13.1% and
is better than modified RPN alone. The Fast R-CNN classifier
with the same set of the modified RPN provided worse results.
The small-scale features are caused by the pooling in the
network. Therefore, the last pooling is discarded in the settings
below. This paper takes full advantage of the relationships of
the different scales. The modified RPN+SSS+RF combination
achieves an average miss rate of 9.28%.

TABLE V
MISS RATES OF DIFFERENT COMBINATIONS. ALL METHODS ARE BASED

ON VGG-16 AND THE SAME SET OF RPN.

Methods Average Miss Rate (%)
Modified RPN stand alone 14.9

Modified RPN+R-CNN 13.1
Modified RPN+Fast R-CNN 16.2

Modified RPN+RF 9.60
Modified RPN+SSS+RF 9.28

Time efficiency. Table VI compares the running times on
the Caltech dataset. Our method is faster than current popular
methods such as LDCF [24], CCF [35], CompACT-Deep [47]
and RPN+BF [48]. To ensure fairness, in this subsection, we
report the time using data published in the public literature.
The times of LDCF and CCF were reported in [35], and
that of CompactACT-Deep was reported in [47]. The time of
RPN+BF was reported in [48]. S3D achieves a satisfactory
speed.

Comparison on Caltech-new. Zhang et al [72] manually
sanitized the Caltech training annotations and improved the
training set alignment quality. Aiming for a more complete
evaluation, they extended the evaluation FPPI range from
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TABLE VI
COMPARISONS OF RUNNING TIME ON THE CALTECH SET.

Methods hardware time /img (s)
LDCF CPU 0.6
CCF Titan Z GPU 13

CompACT-deep Tesla K40 GPU 0.5
RPN+BF Tesla K40 GPU 0.5

Our method Titan X GPU 0.42
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Fig. 11. Quantitative evaluation results (miss rate versus false positives per
image) on the Caltech-small dataset. Performance in the legend is evaluated
in terms of the average miss rate.

traditional [10−2; 100] to [10−4; 100], and they denoted
MR−2 and MR−4 as the corresponding average miss rates.
In this section, the new annotations are used and evaluated on
the S3D method proposed in this paper.

Table VII shows the results on the Caltech-new pedestrian
dataset [72]. In the case of the original annotations, S3D has
an average miss rate of 9.28%. In the case of the corrected
annotations, S3D has an MR−2 of 7.2% and MR−4 of 16.7%,
which are better than those of the previous methods.

Comparison on pedestrians (height smaller than 80
pixels). Although pedestrian scales vary, negative impact
on performance mainly results from small-scale pedestrians.

TABLE VII
COMPARISONS ON THE CALTECH-NEW SET.

Methods MR−2 (%) MR−4 (%)
SCF+AlexNet 29.7 47.4
ACF+Caltech+ 27.6 41.9
DeepCascade+ 26.2 44.6

LDCF 23.7 38.3
TA-CNN 18.8 34.3
DeepParts 12.9 25.2
MS-CNN 9.5 23.5

CompACT-Deep 9.2 18.6
Our method 7.2 16.7

TABLE VIII
COMPARISON EXPERIMENT ON PEDESTRIANS (HEIGHT SMALLER THAN 80

PIXELS)

Methods
MR (%)

(Without SSS)
MR (%)

(With SSS)
MOCO 85.17 80.56

MultiFtr+Motion 84.22 79.73
ChnFtrs 81.63 72.68

ACF+SOt 76.35 70.47
MT-DPM 74.05 69.42

MT-DPM-Context 71.93 68.34
TA-CNN 71.68 66.78
RPN+BF 64.12 62.69

CompACT-Deep 63.63 61.39
SAF R-CNN 62.57 58.83

TLL 60.79 57.42
MS-CNN 60.51 56.34

TFTS 41.85 40.93

Compared with previous research, this paper has three advan-
tages. (1) We sampled a variety of pedestrian samples, which is
more consistent with real circumstances. (2) The relationship
among different scales is simultaneously considered by curve
fitting. The score scale curve can be separated into positive
and negative curves by mapping it onto a scale score space
rather than using the response score as the final evaluation,
which achieves a balance between missed detections and false
detections. (3) This method can be applied to any detector. We
supplemented the comparison experiments on small-scale par-
tition (height smaller than 80 pixels) according to the division
in the Caltech pedestrian dataset. The comparisons are shown
in Table VIII, where these similar methods has been improved
on our approach (S3D). These methods make predictions on
several discrete scale features map. The relationship among
different scales has modeled in S3D. The experimental results
verify the effectiveness of the S3D model in this paper.

Comparison on Caltech-small. Most pedestrians are not
observed at a small scale in the Caltech pedestrian dataset.
However, small-scale pedestrians are very common in surveil-
lance video of practical applications, such as criminal inves-
tigation and automatic driving. To simulate the small-scale
scenarios, we resized the images to a quarter of the original
scale, with heights and widths of half the original resolution.
The results are shown in Figure 11. We can see that most
comparison algorithms suffer declines in the situation of small
scales pedestrian, and the performances of these methods
dropped considerably. Several studies of pedestrian detection
have sought optimization with regard to scale, such as MS-
CNN, SAF R-CNN and S3D, as proposed in this paper. S3D
involved more scale changes and identified optimized scales
per the changes. The S3D model in this paper (25.53%) can
be seen to outperform the top two best methods, MS-CNN
[56] (43.19%) and SAF R-CNN [55] (31.86%), by a margin
of over 6.33%. The maximum score is selected and matched
with a fixed threshold. This discriminant method leads to more
missed detection, especially in the case of a large number
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of small-scale pedestrians. Pedestrians can be distinguished
at various scale levels according to their locations on the
discriminant surface rather than relying on a separate score.
Our method achieved promising results and outperformed most
of the existing methods evaluated under this condition.

Therefore, we believe our proposed method provides an
effective solution to the limitations of the existing approaches
and provides useful insights for researchers and practitioners
in this field. Pedestrian detection scores are affected by differ-
ent factors, such as occlusion, deformation and illumination
changes. However, the proposed SSS in this paper does not
affected by the above various factors. More precisely, the
change of the score comes solely from the varying scale since
we only change the scale factor in the score calculation. These
factors will not affect the change rule of SSS. Therefore, the
proposed SSS learning method of this paper is still feasible
given the existence of other interference factors.

Comparing the results shown in Figure 12 on the ETH,
INRIA, Caltech and KITTI datasets, it shows that the S3D
method is suitable for pedestrian detection at various scales.
The experimental results illustrate that the traditional model
has a significant loss in terms of performance when the scales
of the images are decreased and demonstrate the effectiveness
of the proposed method.

V. CONCLUSION

This paper raises a new issue which is pedestrian detection
at various scales and that has not been investigated previously
to the best of our knowledge. A discrimination method based
on a single threshold is inappropriate. A discrimination method
based on variable thresholds is only minimally effective, and
it includes missed detections and false positives. S3D has
learned a discriminant surface to address this problem. We
used the change rule of scores and scales to learn a score scale
curve. The score scale curve can be separated into positive and
negative curves by mapping it onto SSS rather than using the
response score as the final evaluation. In the future, we will
try to convert it to a multi-task learning framework, which is
more suitable for this variable scale.
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