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Abstract—Recently an increasing number of algorithms have
been proposed for rain streak removal. However, most existing
methods ignore the discrepancy in removing rain streaks from
background contents with different texture richness (frequencies).
They adopt a unified scheme to learn the final distribution of rain
streaks directly, thus sacrificing the representative accuracy of
rain information. To this end, this paper leverages the divide-and-
conquer strategy for rain streak removal by decomposing the
learning task into several subproblems according to the levels
(frequencies) of texture richness in background contents. Par-
ticularly, we construct a novel multi-level memory compensation
network (MLMCN) for rain streak removal. It achieves a promis-
ing solution by individually handling these subproblems under
the specific texture richness via several parallel subnetworks.
Each subnetwork takes as input a specific sub-sampled image,
sampled from the original rain ones via the Gaussian kernel,
to individually learn one of the sub-distributions of the rain
information. We thus produce a high-quality rain-free image
by subtracting the predicted rain information from multiple
subnetworks in turn. We experimentally show that our proposed
MLMCN outperforms the existing deraining methods in terms
of quantitative indicators, visual effects on several benchmark
datasets, and the high-level object detection task.

Index Terms—Rain streak removal, divide-and-conquer, back-
ground compensation, recurrent learning, residual learning.

I. INTRODUCTION

Images or videos captured in the rain weather condition
are contaminated by rain streaks, which cause significant
detrimental effects on image contents. Especially for many
common computer vision applications, such as human de-
tection [1], [2], object tracking and recognition [3], as well
as autonomous driving [4], they generally rely on clean
and credible inputs. The poor visual effect may lead to the
failure of those high-level vision tasks. Hence it is crucial to
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Fig. 1. An example demonstrates that a unified model cannot cope with
the restoration tasks under diverse levels of texture richness in background
contents. The results are obtained from DerainNet [13], DIDMDN [14], and
RESCAN [15]. The components in red, green and yellow boxes represent
background contents of different texture richness, respectively. These methods
have high consensus levels in removing rain streaks from smooth regions
(noted by the red box), but leave visible rain streaks in regions with more
details (noted by the green and yellow boxes).

restore a clear and credible image from its rain-contaminated
counterpart.

Past decades have made continuous progresses for deliver-
ing promising solutions on the rain streak removal task [5], [6],
[7]. Previous optimization-based methods [5], [8], [9] take cer-
tain physical characteristics of rain steaks into consideration,
e.g., photometric appearance [10], geometrical features [11],
and local structure correlations [12], and separate rain streaks
from the background images using some prior knowledge.
However, it is somewhat effective for these methods to learn
the complex distribution of rain information in real-world
scenarios with the constrained linear model.

Inspired by the recent success of deep learning on other low-
level vision tasks [16], [17], many works [18], [19], [20], [21]
take advantages of convolutional neural network (CNN) [22]
for the deraining task. For example, Fu et al. [13] pioneer
a deep-learning based network to remove rain streaks from
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background images with a three-layer CNN. Limited by the
number of the neurons, it produces inferior results. To promote
the representation of rain streaks, Zhang et al. [14] consider
the rain density, and construct an elaborate multi-task CNN
for joint rain density estimation and deraining. However, the
restoration performance is overwhelmingly dependent on the
detection accuracy of rain density. More recent works [23],
[24] employ encoder-decoder or pyramid frameworks to fully
exploit the multi-scale features to promote modeling capabili-
ty, and achieve considerable performance gains. However, the
proposed multi-scale fusion schemes in these works tend to
promote the deraining performance from the perspective of the
feature fusion and representation, but require great memory
and calculation cost. Moreover, separating rain streaks from
background is essentially a complex unmixing problem due to
the rain streaks acting on various texture richness levels and
heavy rain condition in particular. Albeit showing significant
superiority over traditional deraining algorithms [5], [12],
these methods [13], [24], [25] adopt a unified model to cover
all the scenarios (low-density or heavy rain conditions, simple
or detailed background contents), thus hindering the flexibility
and scalability for the refined representation. Taking Fig. 1
as a comparison example, these representative methods [13],
[14] show high consensus levels in removing rain streaks from
smooth regions (low-level texture richness), but with visible
rain streaks remained on detailed regions (high-level texture
richness). The phenomenon above can be explained as that the
difficulty of separating rain streaks from background contents
varies with the texture richness. Thus the natural question that
arises is how to effectively simulate the distribution of rain
streaks according to the specifical level of texture richness.

To solve such a complex issue, the divide-and-conquer
strategy [26], [27] provides a referential scheme. As the name
implies, it divides the original complex task into several sub-
problems, and then uses base algorithms to solve these sub-
problems individually [28]. Specifically, there are two methods
to complete this task. One is that smooth regions and textured
regions are processed separately for each rainy input. The
other one decomposes the learning task into multiple levels
which correspond to the image pyramid. In this study, we
apply the second scheme for rain streak removal to cope
with the diverse texture richness in background contents. We
sample the rain input through the Gaussian sampling kernel to
construct the rain image pyramid, where the sub-samples have
diverse levels (frequencies) of texture richness in background
contents and rain streaks. We therefore construct several
parallel subnetworks to learn the individual sub-distribution
of rain information in each pyramid level. The outcomes of
these subnetworks can be combined to yield a final solution
to the deraining task.

To further improve the performance, we construct a novel
memory compensation block (MCB) by incorporating recur-
rent calculation and residual learning to encode the global
feature correlations. Moreover, as the basic module in the
subnetwork, MCB can simultaneously represent rain streaks
and compensate background features through a residual mem-
ory module (RMM) and a background compensation module
(BCM). More precisely, the former is utilized to characterize

the rain information, where global texture correlations across
the spatial dimension can be fully exploited through the
recurrent processing mechanism. The latter is used to estimate
the error-removing image textures in RMM and learns the
compensated image details via the residual feedback. This
technique contributes more to the refined representation of rain
information while improving the fidelity of image textures.
For simplicity, these subnetworks share the same modules, but
allow for different depths to satisfy the learning tasks under
background contents with specific texture richness, resulting in
a novel multi-level memory compensation network (MLMCN)
for single image deraining.

In summary, the major contributions of this paper are
summarized as follows:

1) We propose a novel multi-level memory compensation
network (MLMCN) for rain streak removal following
the divide-and-conquer paradigm. We decompose the
learning task into several subproblems according to the
levels (frequencies) of texture richness in background
contents (the rain image pyramid), and accordingly
construct multiple parallel subnetworks to sovle these
subproblems individually.

2) We devise a novel memory compensation block (MCB)
for accurate rain information estimation and texture
preserving. It combines the recurrent calculation and
residual learning to fully exploit the global textural
correlations across spatial dimension for feature repre-
sentation. Meanwhile, a residual feedback mechanism is
used for a further refinement.

3) Apart from achieving the state-of-the-art deraining per-
formance in terms of the conventional quantitative met-
rics (e.g., PSNR and SSIM), our method also outper-
forms the current representative methods on joint image
deraining and object detection task.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the existing works related to our study, such
as image/video deraining and recurrent neural network (RNN).
We describe the proposed multi-level memory compensation
network (MLMCN) in detail in Section III. The experimental
results and discussions are given in Section IV. Finally, we
conclude this paper in Section V.

II. RELATED WORK

In the last few years, various learning-based approaches
have been widely applied for rain streak removal [29], [30],
[21], achieving a significant improvement in image quality. A
comprehensive review is beyond the scope of this work and
we discuss the most related ones in this section.

A. Single Image Deraining

Over the years, a growing number of studies [31], [32],
[33], [34] have been developed to promote the visibility and
readability of image contents captured under rain conditions,
including single-image-based and video-based methods [35],
[36], [37]. We focus on the single image rain removal within
this work since it is more challenging – only relying on limited
spatial information to separate rain streaks from the complex
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Fig. 2. Outline of the proposed multi-level memory compensation network (MLMCN). We set N to 3 as an example, corresponding to a three-level image
pyramid with different texture richness in background contents and rain streaks (please refer to the spectrum images, where the lower frequencies concentrate
on the center). We therefore divide the learning task into multiple subproblems according to the levels of texture richness (the number of the subsamples),
and construct several parallel subnetworks (Subnetwork1, Subnetwork2, Subnetwork3) to individually estimate the sub-distribution of rain information in each
pyramid level. The solutions of subnetworks (I∗R,1, I∗R,2, I∗R,3) can be combined to yield a final solution (I∗R).

background image. For the early shallow-learning based work-
s [12], [8], they usually produce results visually vulnerable
and inconsistent with real scenes using linear transformation
model and hand-crafted priors. With more powerful modeling
capabilities than shallow models, CNN-based algorithms grad-
ually emerge with promising performances in recent years.
For example, Fu et al. [13] firstly propose a shallow CNN
to estimate and remove rain streaks from rain-contaminated
images. Next, Yang et al. [19] present a multi-task deep
learning framework by combining dilated convolution and
recurrent learning strategy to simultaneously detect and elim-
inate the rain streaks. Moreover, Zhang et al. [38] learn a set
of generic sparsity-based and low-rank representation-based
convolutional filters for efficiently representing background
and rain streaks in an image. To bridge the gap of the
deraining performance between synthetic data and real-world
data, researchers [39], [40], [41] propose to construct new
paired rain image datasets by considering the visual effects
and naturalness. Although these aforementioned methods have
gained significant improvements over the conventional derain-
ing algorithms [12], they ignore the discrepancy of separating
rain streaks from background contents with different texture
richness. Overall, using a unified learning scheme to cover all
scenarios, complex textured regions in particular, inevitably
sacrifices the accuracy.

B. Recurrent Learning

Over the past few years, RNN and its variants [42] have
been widely applied to sequential tasks [43], [44], [45] due to
their powerful ability of processing historical information with

the recursive memory. By modeling the information flow of
context textures, RNN [46] is especially suitable for processing
strongly correlated information in time or spatial series. Hence,
it is useful to integrate recurrent learning into deraining models
for rain streak removal to fully exploit the global correlation of
features. For example, Qian et al. [32] inject visual attention
into both the generative and discriminative networks to guide
the network to focus on the rain-contaminated regions. In
particular, they use a convolutional LSTM unit to integrate the
features from preceding layers and generate the 2D attention
maps. Combining the recurrent calculation and squeeze-and-
excitation (SE) strategy, Li et al. [15] present a REcurrent SE
Context Aggregation Net (RESCAN) for rain streak removal in
a stage-wise manner. Moreover, the dilated convolutional layer
is also integrated to acquire more contextual information for
representing rain streaks accurately. Recently, Ren et al. [47]
propose a progressive recurrent network to take advantage
of recursive and recurrent computation for a better restora-
tion performance by repeatedly unfolding a shallow residual
network. Albeit achieving impressive results, these deraining
methods [32], [48] adopt a unified mapping model to cope
with all conditions and ignore the discrepancy in removing rain
streaks from background contents with different texture rich-
ness. Moreover, the repeated residual learning paradigm natu-
rally causes cumulative errors (removing background details),
thus producing over-smoothing deraining results. To overcome
these problems, we introduce the divide-and-conquer paradigm
for rain streak removal by decomposing the learning task into
several subproblems according to the level of texture richness
in background contents. We further construct a novel multi-
level memory compensation network (MLMCN), in which we
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achieve the promising solution by individually handling these
subproblems under the specific texture richness via several
parallel subnetworks.

III. PROPOSED METHOD

In this section, we present the multi-level memory com-
pensation network (MLMCN) in detail. Meanwhile, the base
modules in MLMCN are also described in this part, including
the memory compensation block (MCB) and its basic com-
ponents: residual memory module (RMM) and background
compensation module (BCM). As shown in Fig. 2, MLMCN
takes a group of sub-sampled rain images (rain image pyramid)
as inputs, and individually solves the restoration subproblems
regarding background contents with specific texture richness
through several parallel subnetworks.

A. Architecture and Model Optimization

An observed rain image Irain can be roughly decomposed
into the clean background image Iclean and its corresponding
residual rain information IR using the following formula

IR = Irain − Iclean. (1)

Our goal is to train an effective and robust model to simulate
the rain distribution I∗R, similar to the real pattern IR. We
then obtain the resulting high-quality rain-free image Iderain
by subtracting I∗R from the rainy input Irain.

As mentioned before, we adopt the divide-and-conquer
strategy for rain streak removal by decomposing the learning
task into N subproblems (N is set to 3 in the example
of Fig. 2.) based on the levels of texture richness in the
background contents (the layers of rain image pyramid).
More specifically, given a rainy image with the size of
W × H × C, we define an initial Gaussian kernel first,
such as [[1/k, 0, 0], [0, 1/k, 0], [0, 0, 1/k]], where k denotes the
amplification factor. And then, the Gaussian kernel serves as
the convolution kernel to sample the input image with the
special stride k, returning a low-resolution image with the size
of W/k ×H/k ×C. Thus we generate multiple sub-sampled
images from the original rainy input via different k values,
which contain the same image contents but with different
texture richness. To solve these subproblems independently,
our proposed MLMCN employs N parallel subnetworks, each
taking one sub-sampled image as input to learn the sub-
distribution of rain information under the specific texture rich-
ness. For convenience, these subnetworks have the same struc-
ture but with different depths of background compensation
module (BCM) to tackle the restoration tasks with different
texture richness. Therefore, for simplicity, we use subnetwork3
as a representative example to present the framework in detail.
As shown in Fig. 2, subnetwork3 can be roughly decomposed
into three parts: initial feature extraction, rain information
modeling, and residual rain image reconstruction. In particular,
except the subnetwork3 taking the raw rain image as input,
other subnetworks adopt the sub-sampled rain images as input.
Motivated by [49], we adopt one initial convolutional layer to

Stage1 Stage3Stage2Rain Input Rain Label

Fig. 3. The investigation of the cumulative residual rain images from multiple
subnetworks. By subtracting the clean background image Iclean from its
contaminated input Irain, we obtain the real rain label IR. Stage1 denotes
the rain information (I∗R,1) estimated from subnetwork1. By cumulating the
results of subnetwork1 and subnetwork2, we obtain the cumulated residual
rain image (I∗R,1, I∗R,2) in Stage2. The result in Stage3 refers to the final
regressed residual rain image (I∗R) cumulated via three subnetworks.

extract the shallow features Fini from the rain input Irain in
the first part. This process can be formulated as

Fini = Hini(Irain), (2)

where Hini(·) denotes the initial convolutional function used
to obtain the initial estimation of rain information and project
the input from image space into feature space. Then, Fini is
transmitted into the memory compensation block (MCB) for
a deep representation of rain streaks. The feature extraction in
the first MCB can be described as

FMCB,1 = HMCB,1(Fini), (3)

where FMCB,1 denotes the rain information extracted via
HMCB,1(·) in the first MCB.

A deeper model constructed with the skip or dense connec-
tions can improve the representation of image contents [49],
[50]. Therefore, we construct a deep CNN for a fine rep-
resentation of rain streaks by stacking M MCBs with skip
connections, where information can be effectively propagated
among layers and memory stages during training. Thus the
final MCB benefits from the multi-scale outputs of previous
blocks, and generates the high-level rain features FMCB,M .
Following that, FMCB,M along with the shallow features Fini

are concatenated to obtain the fused features via a transition
layer, and then projected into the image space to regress the
residual rain information I∗R,3 in the current texture richness
level. The aforementioned procedures in subnetwork3 are
described as follows

I∗R,3 = HR(HC(FMCB,M , Fini)), (4)

where HC(·) and HR(·) denote the functions of concatenation
operation and rain image reconstruction, respectively.

Inspired by [51], there are additional sub-pixel magnifi-
cation layers HSP (·) for the remaining N − 1 subnetworks
(subnetwork1 and subnetwork2 in Fig. 2), which learn an array
of upscaling filters to upscale the final LR feature maps into
the HR output layer via a rearrangement operation. Thus the
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Fig. 4. The pipeline of the constructed residual dense memory framework and the proposed memory compensation block (MCB). The component in the red
box denotes a single MCB, including a residual memory module (RMM) and a background compensation module (BCM) which are used to estimate and
rectify the rain model respectively. By combining the recursive memory with the residual learning strategy, we form a novel residual dense memory framework
for rain information estimation.

reconstruction modules in other subnetworks are represented
as

I∗R,j = HR(HSP (HC(FMCB,M , Fini))), 1 ≤ j<N. (5)

Finally, the entire restoration procedure for rain image in Fig. 2
can be defined as

Iderain = Irain − I∗R, I
∗
R =

N∑
j=1

I∗R,j . (6)

In Eq. (6), I∗R denotes the predicted residual rain image
cumulated via N subnetworks. I∗R,j refers to the jth element
in I∗R, estimated by subnetworkj . Thus we generate the rain-
free result Iderain by subtracting I∗R from the rain image
Irain. We can approach the optimal solution to real rain streak
distribution by individually dealing with all subproblems via
multiple parallel subnetworks. Fig. 3 exhibits the predicted
residual rain images cumulated by multiple subnetworks.

In order to obtain the estimation I∗R of real rain streaks
distribution and generate the corresponding high-quality rain-
free image Iderain from the rain input Irain, we use a robust
loss function [52] for training. In particular, we adopt the
holistic label (noted as the examples IR in Fig. 2) to constrain
these three subnetworks in order to generate the residual rain
image I∗R that is consistent with the rain label IR. The loss
function in our method is formulated as

Lderain =
√
(IR − I∗R)

2 + ε2. (7)

In Eq. (7), we empirically set the penalty coefficient ε as 10−3.
To further improve the restoration quality, we introduce

the perceptual loss to enforce the consistency of textures and
luminance between Iderain and Iclean, producing results more
faithful to the ground truth. The perceptual loss function is
defined as

Lper =
√

(Fclean,i − Fderain,i)2 + ε2, (8)

where Fderain,i and Fclean,i refer to the extracted features
from the predicted rain-free image and the ground truth by
VGG19 [53], respectively. Finally, the total objective function
is given by

L = λ× Lper + Lderain. (9)

We use the weight parameter λ to balance the loss terms. It is
empirically set to 0.05 to guide the rain-free image generation
in global appearance and high-level feature representation.

B. Memory Compensation Block

We hereby present the memory compensation block (MCB)
in detail. Our idea of designing this module is to promote
the estimation accuracy of rain information while keeping
the image fidelity. As shown in Fig. 4, we combine the
recurrent calculation and residual learning, and propose a
novel memory compensation block (MCB) to simulate the
rain streak distribution. MCB is composed of a residual
memory module (RMM) and a background compensation
module (BCM). The former is applied to represent the rain
information via the global residual learning, and the latter is
designed to rectify the estimated rain streak model from RMM
by learning the remaining background details as compensation.
This feedback scheme allows the network to simultaneously
model rain streaks and compensate background features. These
procedures above in the ith MCB are formally expressed as

FRMM,i = HRMM (FMCB,i−1),

FBCM,i = HBCM (FRMM,i),

Frain,i = FRMM,i − FBCM,i,

FMCB,i = Frain,i + FMCB,i−1.

(10)

FRMM,i denotes the estimated rain information via HRMM (·)
in RMM. In order to stabilize training and improve the fidelity
of background textures, we adopt BCM to estimate the remain-
ing background features in RMM, leading to the compensated
components FBCM,i. Thus we can produce the rectified rain
information Frain,i and obtain the output FMCB,i of the
current MCB by adding its input FMCB,i−1 in a pixel-wise
manner.

Thanks to the powerful capability of dense networks [15],
[50] on feature extraction and representation, we construct the
subnetworks with the residual dense architecture as shown in
Fig. 4. By stacking MCBs in a cascaded manner via short
and long skip connections, the information can be propagated
among layers and memory stages, thereby helping the gradient
descent and optimization.
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Fig. 5. The pipeline of the proposed residual memory module (RMM).
By integrating ConvLSTM into the residual block, we construct the residual
memory module to exploit the long-range spatial interdependence.

1) Residual Memory Module: RNN-based methods have
recently achieved impressive performance in capturing long-
range interdependence from sequential samples [54], [55].
Thus, researchers incorporate recurrent computation into im-
age processing tasks to exploit the textural correlations across
spatial series [47].

To achieve the similar goal, we construct a novel residual
memory module (RMM) to exploit the global rain information
(e.g., similar appearance and patterns across spatial resolution)
based on ConvLSTM. As shown in Fig. 5, the proposed RMM
is essentially a residual ConvLSTM unit, including a Con-
vLSTM and two convolutional layers. The feature extraction
procedures in RMM can be formulated as

Xt = Hcat(Irain, X), (11)

it = σ (Wxi ⊗Xt +Whi ⊗Ht−1 +Wci ◦ Ct−1 + bi) ,

ft = σ (Wxf ⊗Xt +Whf ⊗Ht−1 +Wcf ◦ Ct−1 + bf ) ,

Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ⊗Xt +Whc ⊗Ht−1 + bc) ,

ot = σ (Wxo ⊗Xt +Who ⊗Ht−1 +WcoCt + bo) ,

Ht = ot ◦ tanh (Ct)
(12)

FRMM = Hres(ot) +Xt. (13)

In Eq. (11), Hcat(·) denotes the transition layer, which takes
the preceding rain estimation information along with the rain
image Irain as input in a concatenated manner. It is practical
and effective to perform the re-extraction of raw rain input
Irain at different stages to obtain the fused features Xt [47].
Then given the input Xt in Eq (12), we recurrently revise
the estimation of the rain streak distribution in current RMM
with the collaboration of the gate units (the input gate it, the
forget gate ft, and the output gate ot), the cell body Ct, and
the hidden state in the tth state via Hadamard product (◦) and
convolution operation (⊗). W and b are the weight parameters
and bias. The estimated rain information ot and the updated
cell Ct can be determined by the preceding features Xt and
the previous hidden states Ht−1.

2) Background Compensation Module: Although previous
deraining methods [15], [25] have significantly improved the
restoration performance over the traditional approaches [6],
they tend to generate over-smoothing results. Specifically, they
mistakenly remove the background details while wiping out
the rain streaks from rain-contaminated images, thus causing
the loss of high-frequency information.

We construct a background compensation module (BCM)
to estimate the error-removing background details and rectify

N：Feature Channel F：Filter Size S：Stride

Pixel-wise SummationConv: N64F3S1 Skip Connection

Residual Unit

Downsample UpsampleFRMM FBCM

Stride Convolution

Deconvolution

Rain Model from RMM

Compensated Features from BCM

Background Compensation Module

Fig. 6. The pipeline of the proposed background compensation module
(BCM). We can effectively estimate the error-removing image details and
return the compensated features through the successive residual dense frame-
work. Besides, the up-down structure can greatly alleviate the computation
burden.

the estimated rainy model with compensated components to
promote image texture fidelity. As shown in Fig. 6, our
proposed BCM consists of G residual units along with a
group of skip connections, thus allowing the network to share
the feature maps among layers and different units. Given the
predicted rain streak distribution FRMM by RMM, we first
adopt a strided convolutional layer to extract features and
project them onto the LR space to reduce computation and
memory footprint by using the following formulation:

Fdown = Hdown(FRMM ). (14)

Then the output Fdown,i is transmitted to the residual units for
a deep extraction to learn the compensated components. The
aforementioned procedure can be expressed as

FBCM = Hup(Hres,G(Fdown)), (15)

where Hres,G(·) denote the feature extraction functions of G
residual units for estimating the lost high-frequency details.
We then apply a deconvolutional layer Hup(·) to integrate
these features and project them into the original resolution
space to generate the compensated components FBCM .

IV. EXPERIMENTS AND DISCUSSIONS

This section evaluates the restoration performance of our
proposed MLMCN qualitatively and quantitatively, including
ablation studies on basic modules and comparison experiments
with current top-performing deraining methods.

A. Implementation Details

1) Comparison Methods: The performance of the proposed
MLMCN method is compared against several representative
deraining methods on both synthetic and real-world datasets,
including the previous deep-learning based methods (Derain-
Net [13] and JORDER [19]), the high-performance deraining
approaches (RESCAN [15] and DIDMDN [14], as well as
more recent deraining methods (UMRL [25], SEMI [56] and
PreNet [47]). For the sake of fairness, we retrain these models
on the unified dataset with publicly available codes provided
by authors except for JORDER [19]. We directly use the
pre-trained model in [19] for testing due to the lack of
public training codes. In particular, we retrain and evaluate
UMRL [25] without adopting the cycle spinning strategy
for fairness since other comparison methods do not use this
procedure.
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2) Data Collection: In this study, we collect about 13712
clean/rain image pairs with different rain conditions from [57],
[30], [6] to construct a mixed dataset for training our network
as well as other competing methods for a fair comparison since
there is no unified training datasets for all competing methods.
For example, JORDER [19] uses 1254 pairs for training
while UMRL follows [14] and uses 12700 images for train-
ing. Meanwhile, several widely used synthetic rain dataset-
s, including Test100 [57], Rain100H and Rain100L [19],
Test1200 [14], and Test2800 [30], are used for evaluation,
which are of diverse contents, intensities, and scales of rain
streaks.

3) Experimental Setup: In our baseline MLMCN, the
restoration task is decomposed into N subproblems (N is
empirically set to 3 in this work to balance the restoration
performance and efficiency) corresponding to the level of
texture richness in background contents (the level of the rain
image pyramid). In particular, the depths M of MCB in these
three subnetworks are set to 3, 5, and 8, respectively, in
order to cope with the restoration tasks with different texture
richness in background contents. In addition, the number G of
the residual units in BCM is empirically set to 3 by considering
both the deraining performance and efficiency. For the training
samples, before packing them into our proposed model, we
coarsely crop them into small image patches with a size of
96× 96 pixels without overlapping to obtain the sample pairs
(about 137,000 image pairs). We set the batch size to 8, and
the learning rate is initialized as 5×10−4 and reduced by half
every 20000 steps till 1 × 10−5. After 50 epochs less than
850K iterations on the training dataset, we obtain the optimal
solution of our baseline MLMCN with the above settings. The
implementation is based on an NVIDIA Titan Xp GPU and
an Intel I7-8700 CPU.

4) Evaluation Criteria: The widely used evaluation met-
rics, including Peak Signal to Noise Ratio (PSNR), Feature
Similarity (FSIM) [58], Structural Similarity (SSIM) [59]),
and Perceptual Similarity (PSIM) [60], are utilized to eval-
uate the restoration performance of our proposed MLMCN
and other top-performing deraining methods on synthetic
images. Moreover, we introduce two additional reference-
free quantitative indicators, Naturalness Image Quality Evalu-
ator (NIQE) [61] and Spatial-Spectral Entropy-based Quality
(SSEQ) index [62], as well as the precision of down-stream
object detection task to comprehensively validate the deraining
performance on real-world scenarios.

B. Ablation Study

1) Validation of RMM and BCM: Since our proposed
MLMCN integrates the residual memory module (RMM)
and background compensation module (BCM) into a unified
framework and constructs the memory compensation block
(MCB), we carry out ablation studies to validate the con-
tributions of individual components to the final deraining
performance. Based on our final model MLMCN, we de-
sign another two comparison models, MLMCNw/o BCM and
MLMCNw/o RMM , by simply removing the basic modules
RMM and BCM respectively while keeping similar computa-

MLMCNw/o BCM MLMCNMLMCNw/o RMMRain Image Ground Truth

24.64/0.822 26.15/0.84924.89/0.83617.37/0.659 PSNR/SSIM

26.78/0.797 28.13/0.82926.90/0.81617.42/0.528 PSNR/SSIM

Fig. 7. Evaluation results of two basic modules (RMM and BCM) on
Test1200 dataset. MLMCNw/o RMM and MLMCNw/o BCM denote the
comparison models by removing RMM and BCM respectively from our
baseline MLMCN while keeping the similar parameters and computational
complexity. In particular, taking the samples in the first row as an example,
we can conclude that by combining residual recurrent learning and back-
ground compensation strategy, the complete MLMCN model exhibits better
restoration performance in terms of less rain streaks and clearer background
textures. Please zoom in to see more details.

TABLE I
EVALUATION OF THE BASIC MODULES RMM AND BCM ON TEST1200

DATASET. MLMCNw/o BCM AND MLMCNw/o RMM DENOTE THE
COMPARISON MODELS BY REMOVING RMM AND BCM RESPECTIVELY

FROM MLMCN WHILE KEEPING THE SIMILAR COMPUTATIONAL
COMPLEXITY AND PARAMETER SIZE.

Model Rain Image MLMCNw/o BCM MLMCNw/o RMM MLMCN

PSNR 22.15 30.27 30.43 30.86
SSIM 0.732 0.898 0.900 0.901
FSIM 0.881 0.948 0.949 0.949

Par.(Million) – 6.008 6.005 6.001

tional complexity and parameter size with MLMCN. For a fair
comparison, we maintain the same settings during training.

Quantitative results are tabulated in Table I. From
these scores, we can observe that the complete MLMCN
method shows great superiority over its incomplete versions
(MLMCNw/o BCM and MLMCNw/o RMM ), surpassing them
by 0.59dB and 0.43dB on PSNR, respectively. We may
attribute these advantages to the effective complementary
of these two basic modules, which enable the network to
represent rain streaks and compensate background features
simultaneously. Visual comparison results are shown in Fig. 7.
As expected, MLMCN shows better restoration performance,
mainly reflecting on visual results with more credible and
clear image details than that of MLMCNw/o BCM and
MLMCNw/o RMM . Although MLMCNw/o BCM can take
advantage of the global information, it still fails to recover
credible image textures due to the lack of error compensation,
leading to the blurry visual effect. As for MLMCNw/o RMM ,
visible rain streaks are observed because of the limited model-
ing capacity. In summary, the elaborate framework contributes
more to the restoration performance, which provides positive
clues for subsequent high-level computer vision tasks.

2) Validation of Divide-and-Conquer Strategy: As shown
in Fig. 1, the difficulties of removing rain streaks from
background image vary with the texture richness. Therefore,
we introduce a novel layer-wise learning paradigm (i.e., us-
ing the divide-and-conquer strategy), which decomposes the
learning task into multiple subproblems and solves them
individually. As such, we construct a new multi-level memory
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MLMCNN1 MLMCNN3MLMCNN2Rain Image Ground Truth

Fig. 8. The investigation results of the divide-and-conquer strategy on
Test1200 dataset. MLMCNN1 denotes the deraining model only including
subnetwork3 in Fig. 2, similar to the single-level restoration scheme in previ-
ous works [13], [14]. MLMCNN2 and MLMCNN3 refer to the comparison
models with two and three subnetworks, respectively. Taking the samples in
the first row as an example, we can see that these three deraining models have
high consensus levels in removing rain streaks from smooth regions (noted
as the green box). But MLMCNN3 demonstrates better restoration quality on
the detailed regions (noted as the red box) by generating results with clearer
and more credible image textures.

compensation network (MLMCN) for rain streaks removal,
which contains N subnetworks (subnetwork1, subnetwork2,
· · · , subnetworkN ) to individually separate rain streaks from
the sub-sampled rain images of specific texture richness. In
this subsection, we investigate the influence of the divide-and-
conquer strategy on the deraining performance. Conceptually,
a large N means that the learning task can be divided into more
subproblems to refine the representation of rain information.
However, we set N to no more than 3 for the consideration
of balance between efficiency and performance.

When N is set to 1, we obtain the first comparison model
MLMCNN1, which only has one subnetwork (noted as the
subnetwork3 in Fig. 2), similar to the single-level restoration
scheme in previous works [13], [14]. Through a sub-sampled
operation on the raw rain image Irain with Gaussian kernel
by the scale of 2, we can obtain the input of subnetwork2,
which has the same image contents with Irain but different
texture richness. By combining subnetwork2 and subnetwork3,
we obtain the second comparison model MLMCNN2, which
performs the restoration task by considering two-level texture
richness in background contents. Based on MLMCNN2, we
construct our baseline MLMCN by adding an additional
branch subnetwork1, which takes the sub-sampled image with
the factor of 4 as input. Table II presents the comparison results
on Test1200 dataset, including the widely used objective
indicators (PSNR, SSIM, etc.), runtime, and model parameter
size. It is obvious that our baseline MLMCN using the divide-
and-conquer strategy gains the best scores over the other two
comparison models with acceptable model parameter size and
runtime. The visual comparison results in Fig. 8 reveal that
removing the rain streaks from background contents in a
stage-wise manner produces better restoration results, enjoying
clearer image contents and richer details. These results further
demonstrate the effectiveness of the divide-and-conquer strat-
egy in removing rain streaks.

3) Validation of Model Depth M: The difficulty of re-
moving rain streaks from contaminated background image
increases with the texture richness. As mentioned before, our
proposed MLMCN consists of three subnetworks to inde-

TABLE II
EVALUATION OF THE NUMBER OF SUBNETWORKS (N ) ON TEST1200
DATASET. WE ALSO REPORT COMPARISON RESULTS OF THE AVERAGE

INFERENCE TIME AND MODEL PARAMETERS ON TEST SAMPLES WITH THE
SIZE OF 512× 512.

Model MLMCNN1 MLMCNN2 MLMCN

PSNR 30.46 30.68 30.86
SSIM 0.9012 0.9019 0.9042
FSIM 0.9489 0.9491 0.9496
PSIM 0.9989 0.9989 0.9990

Runtime (s) 0.41 0.50 0.54
Par. (Million) 2.731 4.614 6.001

TABLE III
INVESTIGATIONS OF THE DEPTH M IN THREE SUBNETWORKS ON

TEST1200 DATASET. MLMCNa,b,c DENOTES THE COMPARISON MODEL
WITH THE BLOCK DEPTHS OF THREE SUBNETWORKS SET TO a, b AND c,

RESPECTIVELY.

Index PSNR SSIM FSIM PSIM

MLMCN3,5,8 30.86 0.9042 0.9496 0.9990
MLMCN5,5,5 30.58 0.9013 0.9491 0.9990
MLMCN3,8,5 30.64 0.9021 0.9493 0.9990
MLMCN8,3,5 30.34 0.8963 0.9485 0.9989
MLMCN8,5,3 30.12 0.8917 0.9436 0.9983

pendently accomplish the restoration subtasks by removing
rain streaks from background images with the specific texture
richness. These subnetworks have the same architecture but
different depths M of MCB to cope with different learning
tasks. For example, it is enough to set M to 3 in subnetwork1

to separate rain streaks from smooth image contents (low-
level texture richness). However, a larger depth is necessary
for subnetwork3 for complex texture regions (high-level tex-
ture richness). In our final model, the depths M in three
subnetworks are set to 3, 5, and 8, respectively, denoted by
MLMCN3,5,8. To investigate the effect of model depth M
on the restoration performance, we construct four comparison
models, namely MLMCNa,b,c, corresponding to the depth M
of [3,8,5], [8,3,5], [8,5,3] and [5,5,5] for these three subnet-
works while keeping similar amount of model parameters. The
evaluation results are tabulated in Table III. When applying the
unified depth for three subnetworks or reducing the depth of
subnetwork3, the performance decreases sharply (please refer
to the evaluated scores of MLMCN3,5,8, MLMCN5,5,5 and
MLMCN8,5,3). The reason might be that it is redundant for
subnetwork1 with a larger depth to separate rain streaks from
background contents with low-level texture richness. However,
there is a limited representative capability for subnetwork3 to
recover clear texture details from heavily rain-contaminated
image regions with a shallow depth. Therefore, the depths of
MCB in three subnetworks are set to 3, 5, and 8 to meet the
restoration tasks under different texture richness.

C. Comparison with State-of-the-art Methods

1) Synthesized Data: To further evaluate the deraining
performance of our proposed MLMCN method, we conduct
comparison experiments on several synthesized rainy dataset-
s, including Rain100H [19], Rain100L [19], Test100 [57],
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TABLE IV
COMPARISON RESULTS OF AVERAGE PSNR, SSIM AS WELL AS FSIM ON RAIN100H AND RAIN100L DATASETS. SINCE THESE TWO DATASETS ARE
ADOPTED AS THE TRAINING SAMPLES IN [19], JORDER [19] IS NOT CONSIDERED FOR COMPARISON. MLMCNw SSIM DENOTES OUR DERAINING

MODEL TRAINED WITH SSIM LOSS.

Methods DerainNet [13] RESCAN [15] DIDMDN [14] UMRL [25] SEMI [56] PreNet [47] MLMCN (Ours) MLMCNw SSIM (Ours)

Dataset Rain100H/Rain100L

PSNR 14.92/27.03 26.36/29.80 17.35/25.23 26.01/29.18 16.56/25.03 26.77/32.44 26.43/29.86 27.32/31.25
SSIM 0.592/0.884 0.786/0.881 0.524/0.741 0.832/0.923 0.486/0.842 0.858/0.950 0.815/0.907 0.840/0.925
FSIM 0.755/0.904 0.864/0.919 0.726/0.861 0.876/0.940 0.692/0.893 0.890/0.956 0.866/0.923 0.892/0.938

TABLE V
THE COMPARISON RESULTS OF AVERAGE PSNR, SSIM AS WELL AS FSIM ON TEST100, TEST2800 AND TEST1200 DATASETS. MLMCNw SSIM

DENOTES OUR DERAINING MODEL TRAINED WITH SSIM LOSS.

Methods DerainNet [13] JORDER [19] RESCAN [15] DIDMDN [14] UMRL [25] SEMI [56] PreNet [47] MLMCN (Ours) MLMCNw SSIM (Ours)

Dataset Test100/Test2800/Test1200

PSNR 22.77/24.31/23.38 22.40/26.47/26.84 25.00/31.29/30.51 22.56/28.13/29.65 24.41/29.97/30.55 22.35/24.43/26.05 24.81/31.75/31.36 24.98/31.49/30.86 25.65/32.15/31.38
SSIM 0.810/0.861/0.835 0.798/0.851/0.840 0.835/0.904/0.882 0.818/0.867/0.901 0.829/0.905/0.910 0.788/0.782/0.822 0.851/0.916/0.911 0.850/0.916/0.904 0.867/0.920/0.911
FSIM 0.884/0.930/0.924 0.883/0.909/0.901 0.909/0.952/0.944 0.899/0.943/0.950 0.910/0.955/0.955 0.887/0.897/0.917 0.916/0.956/0.955 0.916/0.957/0.949 0.922/0.959/0.955

Test2800 [30], and Test1200 [14]. Qualitative results are
presented in Tables IV and V. In Table V, it is obvious that
our proposed MLMCN with SSIM loss (MLMCNw SSIM )
achieves significant improvements over other state-of-the-art
methods on three synthetic datasets. For Test1200 dataset,
MLMCN improves 7.49dB and 4.03dB on PSNR than
the early deep-learning based methods DerainNet [13] and
JORDER [19], respectively. When compared with RES-
CAN [15] and DIDMDN [14], MLMCN also outperforms
these representative deraining methods, surpassing them by a
large margin among all evaluation indexes. Furthermore, when
compared with more recent deraining methods UMRL [25],
SEMI [56] and PreNet [47], our proposed method is still
very competitive in terms of PSNR. Meanwhile, Table IV
gives the results under heavy and low-density rain conditions.
The results indicate that these algorithms have high consensus
levels for restoration tasks under low-density rain conditions.
However, only our proposed MLMCN and PreNet still give
impressive scores under complex heavy rain scenarios.

Visual comparison results on these synthetic rain datasets
in Fig. 9, 10 and 11 show that previous CNN-based methods,
such as DerainNet [13] and DIDMDN [14], exhibit poor
restoration performance – generating results with visible rain
streaks. In particular, these methods generate obvious artifacts
in the rain-contaminated regions. The obvious performance
decreasing may result from the error estimation of rain infor-
mation due to the limited modeling capability. As for the semi-
supervision method, SEMI fails to remove the rain streaks
because there are great uncertainty and difficulty in training
the model by adding a relatively hard constraint between both
synthetic and real rainy image domains in a single network.
Our proposed MLMCN method can produce results with
cleaner and clearer texture details over the competing methods.

We further compare our MLMCN model with a representa-
tive multi-scale deraining method (DDC [23]) and a pyramid-
based deraining algorithm (LPNet [63]) on several synthetic
rain datasets. These two methods are also retrained with the
unified dataset used in our study. Quantitative results of PSNR
and SSIM are provided in Table VI. Our method is still

DIDMDN RESCANDerainNetRain Image

SEMI UMRL MLMCN (Ours) Ground Truth

DIDMDN RESCANDerainNetRain Image

SEMI UMRL MLMCN (Ours) Ground Truth

Fig. 9. Restoration results on the Test100 dataset containing samples of
different densities and directions.

competitive when compared with both the multi-scale based
and pyramid-based deraining approaches.

TABLE VI
THE COMPARISON RESULTS OF AVERAGE PSNR AND SSIM ON TEST1200

AND TEST100 DATASETS. MLMCNw SSIM DENOTES OUR DERAINING
MODEL TRAINED WITH ADDITIONAL SSIM LOSS.

Methods DDC [23] LPNet [63] MLMCN (Ours) MLMCNw SSIM (Ours)

Dataset Test100/Test1200

PSNR 23.47/28.65 23.39/25.00 24.98/30.86 25.65/31.38
SSIM 0.806/0.854 0.743/0.782 0.850/0.904 0.867/0.911

2) Real-world Data: To better verify the generalization
capability of our MLMCN algorithm, we conduct experiments
on real-world rain images provided by [14], [19]. The images
are diverse in contents, intensities and scales. Since the ground
truth is unavailable for these test samples, we introduce
NIQE [61] and SSEQ [62] to distinguish from pixel-based
evaluation fashion. Smaller scores of SSEQ and NIQE indicate
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DIDMDN SEMIRESCANDerainNet UMRL PreNet MLMCN (Ours)Rain Image Ground Truth

Fig. 10. Restoration results on the Rain100H and Rain100L datasets containing rain streaks with different directions and densities.

DIDMDN SEMIRESCANDerainNet UMRL PreNet MLMCN (Ours)Rain Image Ground Truth

Fig. 11. The restoration examples on the Test1200 dataset, varying in different orientations and scales of rain streaks.

DerainNet

RESCAN

DIDMDNJORDER

SEMI UMRL MLMCN (Ours)

Rain Image

Fig. 12. Restoration results on real-world scenarios, demonstrating the fidelity of image details.

TABLE VII
EVALUATION RESULTS OF AVERAGE NIQE AND SSEQ ON 127 REAL-WORLD SCENARIOS. THESE TWO METRICS CAN EFFECTIVELY MEASURE THE

RESTORATION QUALITY WITHOUT REFERENCE. A LOWER VALUE OF NIQE AND SSEQ INDICATES A HIGHER QUALITY IMAGE.

Methods DerainNet [13] JORDER [19] RESCAN [15] DIDMDN [14] UMRL [25] SEMI [56] PreNet [47] MLMCN (Ours)

NIQE 4.078 4.414 3.852 3.929 3.984 4.262 3.835 3.918
SSEQ 30.53 34.82 30.09 32.42 29.48 29.35 29.61 29.19
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RESCANDIDMDNJORDER SEMI UMRL MLMCN (Ours)Rain Image PreNet

Fig. 13. Deraining results on real-world rainy images under different rain conditions for restoration performance comparison.

RESCANDIDMDNDerainNet SEMI UMRL MLMCN (Ours)Rain Image PreNet

Fig. 14. Examples of joint image deraining and object detection tasks on real-world scenarios.

better perceptual quality and clearer image. The qualitative
results are listed in Table VII. Again, our proposed MLMCN
has the lowest SSEQ value on 127 real-world rain samples,
surpassing the top-performing deraining methods (UMRL [25]
and PreNet [47]) by a large margin. For NIQE index, MLMCN
obtains the third-best score. Moreover, we conduct compar-
ison experiments on real-world rain images to demonstrate
restoration performance in terms of image fidelity. The visual
comparison results are shown in Fig. 12. Only our proposed
MLMCN recovers the clear and distinguishable hand con-
tour while removing the main rain streaks. Other competing
methods generate results with more artifacts and tend to blur
the image. The ability to recover the detailed contents further
validates the efficacy of the MCB structure. In another group
of real-world samples, as shown in Fig. 13, MLMCN arguably
exhibits the best visual performance by generating results

with more and clearer image details but fewer rain streaks.
Overall, the substantial improvements both on visual quality
and evaluation indicators on real-world scenarios further verify
the effectiveness of our proposed method.

D. Evaluation via Downstream Vision Task

Removing rain streaks from the image under complex
rain conditions while recovering credible textural details is
meaningful for many high-level vision applications such as
object detection and pedestrian recognition. This motivates us
to investigate the effect of deraining performance on object
detection accuracy based on the popular object detection algo-
rithms (e.g., YOLOv4 [64]). By using our proposed MLMCN
and several representative deraining methods, the restoration
procedures are directly applied to these rainy images to gener-
ate the predicted rain-free outputs. We then apply the publicly

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on February 06,2021 at 20:05:25 UTC from IEEE Xplore.  Restrictions apply. 



1932-4553 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2021.3052648, IEEE Journal
of Selected Topics in Signal Processing

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. XX, JULY 2020 12

available pre-trained models of YOLOv4 for the detection task.
Visual comparison results and the corresponding detection
precision on two scenarios are shown in Fig. 14. It is evident
that rain streaks can greatly degrade the detection accuracy
by missing targets and producing a low detection precision.
When compared with other deraining models, the deraining
results generated by MLMCN facilitate better object detec-
tion performance. We attribute the considerable performance
improvements of both deraining and down-stream object de-
tection to the effective global spatial feature representation
and background compensation strategy, which leads to more
faithful recovery of textural details.

V. CONCLUSIONS

In this paper, we propose a novel multi-level memory com-
pensation network (MLMCN) for rain streak removal using
the divide-and-conquer strategy. Specifically, it decomposes
the learning task into multiple subproblems according to the
diverse levels of texture richness in background contents
(the layer of rain image pyramid). MLMCN contains several
parallel subnetworks, which are designed to independently
learn the sub-distribution of rain information in sub-samples
with specific texture richness. We integrate the recurrent calcu-
lation and residual learning to fully exploit the global textual
information and design a novel memory compensation block
(MCB) for rain streak representation. Meanwhile, to improve
the fidelity of background details, we introduce feedback
representation in MCB by learning the compensated features
of background details to refine the estimation of rain streaks.
Experimental results on several rain datasets and the joint
deraining and object detection task validate the superiority of
our method over the existing state-of-the-art approaches.
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