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Abstract—The performance of traditional face recognition
systems is sharply reduced when encounter with low-resolution
(LR) probe face image. To obtain much more detailed facial
features, some face super-resolution (SR) methods have been
proposed in the past decade. The basic idea of face image SR is to
generate a high-resolution (HR) face image from an LR one with
the help of a set of training examples. It aims at transcending
the limitations of optical imaging systems. In this paper, we
regard face image SR as an image interpolation problem for
domain specific images. A missing intensity interpolation method
based on smooth regression with local structure prior (LSP),
named SRLSP for short, is presented. In order to interpolate
the missing intensities in a target HR image, we assume that
face image patches at the same position share similar local
structures, and use smooth regression to learn the relationship
between LR pixels and missing HR pixels of one position-patch.
Performance comparison with the state-of-the-art SR algorithms
on two public face databases and some real-world images shows
the effectiveness of the proposed method for face image SR in
general. In addition, we conduct a face recognition experiment on
the Extended Yale-B face database based on the super-resolved
HR faces. Experimental results clearly validate the advantages
of our proposed SR method over the state-of-the-art SR methods
in face recognition application.

Index Terms—Smooth regression, Local structure prior, Face
image super-resolution, Face recognition, Low-resolutin.

I. INTRODUCTION

Images with high quality and high-resolution (HR), which
means that objects in the images are sharp and finely detailed,
have many applications in remote sensing [1], [2], [3], med-
ical diagnostic [4], intelligent surveillance [5], [6], [7], and
so on. An HR image can offer more details than its low-
resolution (LR) counterpart and these details may be critical
in many applications. However, due to the limitations on
generation, storage, and transmission of high-quality images,
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face images appear in an LR form in many cases, e.g.,
LR face images captured by surveillance cameras [8], [9].
Therefore, in order to gain more details, it is necessary to
infer an HR image from one or a series of LR images. This
technique is called super-resolution (SR) [10]. It is a very
active research area in computer vision and machine learning
since it offers the promise of overcoming some of the inherent
resolution limitations of low-cost electronic imaging systems
(e.g., cell phone cameras and surveillance cameras) and better
utilization of the growing capability of HR displays (e.g., HD
LCDs). Currently, image SR methods can be divided into three
categories: functional-interpolation methods, reconstruction-
based methods, and learning-based methods.

These three categories of image SR methods all have
their advantages and limitations: (i) the reconstruction fidelity
of functional-interpolation methods and reconstruction-based
methods are better than that of learning-based methods, while
the magnification ratio of functional-interpolation methods
and reconstruction-based methods is smaller than that of the
learning-based methods; (ii) compared with reconstruction-
based and learning-based methods, functional-interpolation
methods are more computationally efficient and they are
simple and easy to implement; (iii) functional-interpolation
methods and reconstruction-based methods mainly focus on
exploring prior information from internal example (i.e., input
LR image), while learning-based methods employ external
examples (i.e., a universal set of example images) as additional
information to predict missing (high-frequency) information
for HR images.

Motivation and Contributions. Combining advantages of
the above three categories of methods, in this paper we propose
a novel face image SR method, namely smooth regression with
local structure prior (SRLSP for short). On one hand, it adopts
reconstruction constraints to ensure consistency between the
reconstructed image and the input image; on the other hand, it
adaptively utilizes both external and internal examples for the
face image SR task. More specifically, it uses the statistical
properties (by smooth regression) of the facial images in
a training set as well as patch structure information (by
local structure prior (LSP)) of the input LR face image to
infer the missing HR pixel information. Fig. 1 presents the
schematic diagram of the proposed SRLSP algorithm. In the
training phase, we extract LR patches (illustrated as black
circles) and missing HR pixels (illustrated as white circles)
to form the training pairs. In the testing phase, we introduce a
smooth regression model to construct the relationship between
an LR patch and missing HR pixels with LSP. Thus, the
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Fig. 1. Schematic diagram of the proposed SRLSP approach. The black
circles are known LR pixels and the white circles are missing pixels to be
interpolated.

missing HR pixel information can be predicted by the learned
SRLSP model. The proposed method has the following distinct
features:

• Instead of learning a linear regression function for the
entire face, we choose to learn a smooth mapping for each
position-patch by introducing a weight matrix. Therefore,
the learned smooth regression can be tuned towards a
specific region (position-patch) of the input LR face
image.

• By exploiting the structure prior of human face, the
proposed method is able to obtain more reasonable and
reliable reconstruction results from external and internal
examples than these methods that learn statistical prop-
erties from an external training set only.

• Traditional local patch representation-based face SR
methods use strong regularization of “same representa-
tion” for learning. In our method, we relax the “same
representation” assumption to learn the regression rela-
tionship between LR and HR images, thus providing more
flexibility to the learned regression function.

• Since our proposed method is an interpolation-based
approach, it meets all the reconstruction constraints need-
ed to ensure the consistency between reconstructed HR
image and input LR image. Therefore, the reconstructed
results are credible.

A. Organization of This Paper

The rest of this paper is organized as follows. Section
II is the related work. Section III presents the proposed
SRLSP method. We detail the difference between the proposed
method and prior works in Section IV. Experimental results
and analysis are presented in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

In this section, we will review some related work on generic
and domain specific image SR and simultaneous face SR and
recognition methods.

Functional-interpolation methods apply a fixed polynomial
approximation model or adaptive-structure kernels on an input
LR image to estimate unknown pixels in an HR grid and obtain
a processed image [11], [12], [13]. However, in many cases,
the reconstructed images are unsatisfactory due to aliasing,
blocking and blurring artifacts.

On the other hand, reconstruction-based methods usually
use a set of consecutive LR frames of the same scene to
generate one or a sequence of HR images. Accurate image
registration is a crucial step to the success of reconstruction-
based SR methods [14], [15]. In addition, as reported in Lin et
al.’s work [16], under practical conditions, the magnification
factor of reconstruction-based methods is limited to no more
than two if denoising and registration are not good enough.

Recently, learning-based SR methods have received sub-
stantial attention. They assume that high-frequency details lost
in an LR image can be predicted from a training data set.
These methods can be broadly categorized into two major
classes based on their task: generic image SR [17], [18], [19],
[20], [21], [22], [23] and domain-specific image SR [24],
[25], [26], [27], [28], [29], [30], [31]. While generic SR
algorithms are developed for all kinds of images where the
priors are typically based on primitive image properties such
as edges and segments, domain-specific image SR algorithms
focus on specific classes of images such as faces, scenes,
and graphic artwork [10]. By utilizing the additional training
set, learning-based SR methods exhibit strong SR capability.
A comprehensive review of current advances in face image
SR is given in [5]. In this paper, we focus on the SR
problem of face images. In order to predict the high-frequency
information, domain-specific image SR algorithms aim to learn
the relationship between HR and LR images or coefficients
from a training set. Specifically, they can be further classified
into the two categories: global face based parameter estimation
methods and local patch-based restoration methods.

Global face based parameter estimation methods take a
face image as a whole and model it by some classical face
models, such as principal component analysis (PCA) [25],
[26], [32], locality preserving projections (LPP) [28], non-
negative matrix factorization (NMF) [33] and canonical cor-
relation analysis (CCA) [30]. These approaches are easy
to implement and their performances are reasonably good.
However, they often fail to recover the fine details of a face.

Local patch-based restoration methods are able to enhance
the representation ability of the training set by decompos-
ing an image into small patches. The target HR image can
be inferred implicitly coding (by representing the input LR
patches locally [34], [35], [8], [36], [37], collaboratively [38],
and sparsely [39], [33]) or explicitly regression [31], [40],
[41]. The implicitly coding based methods assume that image
patches from an LR image and their HR counterparts share
similar local geometry (manifold assumption [34]). Thus,
patches in HR space can be reconstructed as a weighted
average of local neighbors using the same weights as in
LR space. For example, Chang et al. developed a neighbor
embedding based super-resolution method by K-NN searching,
and it is improved by Jiang et al. [42] through introducing the
Tikhonov regularization. Ma et al. [38] proposed a position-
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patch based face image SR method that works by performing
collaboratively over all training face patches of the same po-
sition given an LR input patch. To improve the representation
ability, sparsity [39], [33], [43], [44] and locality [45], [8],
[36], [46] regularization terms have been incorporated into
the patch coding objective function. However, these implicitly
coding based methods may perform poorly when the manifold
assumption, which states that LR and HR image patches
share the same representation, is not satisfied due to “one-to-
many” mapping between LR and HR images in practice [47].
To mitigate this problem, our previously proposed locality-
constraint iterative neighbor embedding method explore the
local structure by both considering the LR patch and HR
patch manifolds instead of only considering one manifold
(i.e., LR patch manifold), giving rise to improved performance
compared with traditional neighbor embedding approaches. In
addition, these explicitly regression based methods directly
model the mapping function between LR and HR patch
pairs. For example, Huang et al. [31] proposed to model
the relationship between LR and HR images through linear
regression to achieve good results.

Simultaneous face SR and recognition. Recently, some
face image SR algorithms focused on the face recognition
task have been introduced [48], [49]. For example, Li et
al. [50] proposed coupled locality preserving mappings to
project LR and HR face images onto a unified feature space.
Based on the multi-manifold assumption, Jiang et al. [51] pro-
posed a coupled discriminant multi-manifold analysis method
for matching low-resolution face images. In order to simul-
taneously recognize and super-resolve LR faces, Hennings
Yeomans et al. [52] expressed constraints between LR and
HR images in a regularization formulation. Jian et al. [53]
proposed a simultaneous SR and recognition method based
on singular value decomposition (SVD). In [9], Yang et al.
suggested a joint face SR and recognition approach based on
sparse representation with a learned person-specific face super-
resolution model.

III. PROPOSED METHOD

A. The Image degradation Model

To comprehensively analyze the image SR reconstruction
problem, the first step is to formulate an observation model
that relates the original HR image to the observed LR image.
Concretely, let Ih and Il denote an HR and corresponding
LR facial images, respectively. The relationship between the
original HR image Ih and an LR observation Il can be
mathematically modeled by the following expression:

Il = DBIh + n, (1)

where B is a blurring filter for the HR image, D is a matrix
representing the decimation operator, and n is the additive
Gaussian white noise accounting for imaging sensor noise. In
this work, we only consider a special case of the model, in
which the blurring operator and the noise term are ignored.
Then, the image degradation model becomes

Il = DIh. (2)

After applying the decimation operator to an HR facial
image Ih, we can obtain its corresponding LR face image
Il.

B. Local Structure Prior (LSP)

Given an LR image observation Il, there are infinitely solu-
tions Ih satisfy Eq. (2). In other words, many HR face images
will produce the same LR face image after image degradation.
This is a “many-to-one” mapping between the HR and LR
images that cannot be inverted without additional constraints.
Mathematically, it is an ill-posed inverse problem and does not
have a unique solution [33]. To obtain a reasonable HR image
Ih, prior constraints such as smoothness, shape semantics [54],
and sparse representation [33], should be used.

In this paper, we assume that pixels falls into different
classes such as object edges with different orientations and
flat areas, and each class of pixels require specific treatment.
Particularly, for a class of highly structured objects, such as
human faces, although they are different from a global point of
view, there is a significant local similarity between two well-
aligned faces [55]. Therefore, we introduce a novel framework
that uses the local structure characteristic of facial images as
a constraint to construct the facial image interpolation model.

Human faces are highly structured. Upon cropping (to the
same size) and aligning (by the eye centers), patches at the
same position on all facial images will have same local
structure. The structure is characterized by the relationship
between LR pixels and missing HR pixels in a patch (x, y)

p1(x, y) = F(x,y)(p0(x, y)), (3)

where (x, y) indicates the patch position on a facial image,
p0(x, y) and p1(x, y) are pixel vectors. F(x,y) is the regression
function for patch (x, y). If the regression function of each
patch position is obtained, we can construct the HR facial
image by interpolating the missing pixels from the LR input
facial image.

To address the facial image interpolation problem using the
LSP, we divide the procedure into two steps. First, for each
patch, we learn the LSP characterized by F(x,y) with the help
of a set of LR and HR training face image patch pairs, {IiL}Ni=1

and {IiH}Ni=1, where N denotes the training set size. LR image
patches and the missing HR pixels are represented by two
sets, {pi0(x, y)}Ni=1 and {pi1(x, y)}Ni=1, 1 ≤ x ≤ u, 1 ≤ y ≤
v. u and v are the number of patches in row and column,
respectively. Next, we use the interpolation function F(x,y)

to interpolate an HR facial image ItH = {pt1(x, y)}, from an
LR input ItL = {pt0(x, y)}. Here, the subscript “t” isused to
distinguish the test sample from training samples.

C. Facial Image Interpolation via Smooth Regression with
Local Structure Prior (SRLSP)

The simplest way to define the regression function is using
linear regression as follows:

F(x,y)(P0(x, y)) = AT(x, y)P0(x, y), (4)

where where P0(x, y) denotes the LR pixel set P0(x, y) =
[p1o(x, y), p

2
o(x, y), ..., p

N
o (x, y)] at position (x, y), pio(x, y) is
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Fig. 2. (Best viewed in colors and magnification) The plots of weights
according to the squared Euclidean distances between a test sample and
different training samples.

the LR pixel vector of the i−th LR training sample at position
(x, y), AT is the linear mapping function corresponding to the
position (x, y), and T denotes the matrix transpose.

Although highly structured faces are very similar to each
other, slight nuances always exist in different human faces,
and F(x,y) is not strictly linear. Each sample may have its own
optimal F(x,y). Thus, we introduce a local linear regression
model and fit a different linear regression for each test sample
by weighting the training samples based on how close they
are to the test sample.

A common approach to implement local linear regression
is to take a window of a fixed width around the test sample
and include only the samples within the window. This is
essentially a simple 0/1 hard threshold weighting. It generally
works better to have the weights change more smoothly with
the distance, starting with large values and then gradually
approaching to zero. Now we have the smooth regression
model, which trains the relation between LR pixels (feature)
and missing HR pixels (outcome) at every patch position
(x, y) (note that for notational convenience we drop the patch
position term (x, y) from now on) as follows:

A∗ = min
A
F (A)

= min
A

N∑
i=1

wi(p
i
0)(p

i
1 −ATpi0)

=

∑N
i=1 wi(p

i
0)p

i
1∑N

j=1 wj(p
j
0)

. (5)

Our proposed smooth regression model can be seen as
the kernel version of linear regression, and the weights are
proportional to the kernels, wi(pi0) ∝ K(pi0, p

t
0). Without loss

of generality, we can take the constant of proportionality to
be 1. In this paper, we define the weights as the following:

w(pi0) =
1

(dist(pi0, p
t
0))

α , (6)

where dist(pi0, p
t
0) is the squared Euclidean distance between

pio and pjo and α is a smoothing parameter. From Eq. (6),
we see that the weights change smoothly with the distances.
wi determines how much each observation in the data set

influences the final parameter estimation. As can be seen from
Fig. 2, the samples that are most similar to the sample of
interest are given more weight than the samples that are most
dissimilar (i.e., when dist(pi0, p

t
0) is small, w(pi0) is large).

Specifically, when α is set to zero, wi is equal to one for all
training samples. Then the proposed method reduces to our
previous proposed method [55].

Following some matrix algebraic properties, Eq. (5) can be
rewritten in the following matrix form:

A∗ = min
A
F (A)

= min
A
||P1 −ATP0||W , (7)

where P1 denotes the missing HR pixel set P1 =
[p11, p

1
2, ..., p

N
1 ], and ||X||W is the weighted norm (||X||W =

tr(XWXT)). Here tr(·) is the trace (sum of the diagonal
elements) of a matrix. The weight matrix W is a diagonal
matrix that takes the form of

W =


1

(dist(p10,p
t
0))

α 0

. . .
0 1

(dist(pN0 ,p
t
0))

α

 . (8)

In order to make the mapping smooth, we add a regulariza-
tion term to Eq. (7). Thus, we have

A∗ = min
A
F (A)

= min
A
||P1 −ATP0||W + λ||A||2F , (9)

where ||A||2F is the Frobenius norm (||A||2F = tr(AAT)), and
λ is the regularization parameter that balances the contribution
of reconstruction error and the simplicity of the mapping
function A. In this paper, we set the regularization parameter λ
to 10−6 for all the experiments. From the definition of ||X||W
and ||A||2F , we can rewrite Eq. (9) as

A∗ = min
A
F (A)

= min
A

(P1 −ATP0)W (P1 −ATP0)
T + λAAT. (10)

Obviously, the objective function in Eq. (10) is convex with
respect to A. By taking the derivative of F (A) with respect
to A, we have (11).

By setting ∂F (A)
∂A = 0, we then have the following equation:

(P0WP0
T + λI)A = P1WP0

T. (12)

Here, the term P0WP0
T + λI is invertible (non-singular)

by choosing a proper λ. So the solution of Eq. (9) is:

A = (P0WP0
T + λI)−1P1WP0

T. (13)

With the mapping matrix A, we can project the observed
LR pixel vector pt0 onto A via ATpt0 to obtain the missing
HR pixel vector pt1. A face image is first decomposed into
smaller patches according to their positions. The patches are
processed in the raster-scan order, from left to right and top
to bottom. Then, the proposed smooth regression model is
applied to each LR patch to predict its missing HR pixels,
and the target HR patch can be connected according to the
pixel positions. Finally, following [34], [33], the compatibility
between adjacent patches is enforced by averaging pixel values
in the overlapping regions.
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∂F (A)

∂A
=
∂F (A)

∂A

{
(P1 −ATP0)W (P1 −ATP0)

T
+ λAAT

}
=
∂F (A)

∂A

{
P1WP1

T − P1WP0
TA−ATP0WP1

T +ATP0WP0
TA+ 2λAAT

}
= −2P1WP0

T + 2P0WP0
TA+ 2λA. (11)

IV. RELATION TO PRIOR WORK

Note that our proposed SRLSP method is similar to the
local linear transformation (LLT) based method proposed by
Huang et al.’s [31] and our previously proposed locality-
constrained representation (LcR) based method [36]. However,
there are essential differences among LLT [31], LcR [36] and
the proposed SRLSP method.

The key insights of our work lie in the LSP and the
smooth weighting. LLT [31] and LcR [36] both learn the
relationship between the LR and HR training patches, whereas
our proposed SRLSP method takes into consideration the LSP
of human face and learns the relationship between the LR
patch and the missing HR pixels (instead of the whole HR
patch as in [31]). In other words, we utilize the external
and internal prior for the face image SR task simultaneously.
To learn the relationship, LcR uses implicit coding based
technology with the manifold assumption that the LR and HR
image patches share the same representation, while LLT [31]
and our proposed SRLSP method directly construct the re-
gression model and avoid utilizing the strong regularization of
“same representation” for learning. Instead of learning a linear
regression relationship for each position patch in LLT [31], our
proposed SRLSP method fits a different linear regression for
each test sample by weighting the training samples based on
how close they are to the test sample, i.e., by replacing the 1-
0 hard thresholding weighting with a smooth weighting based
on the distance.

V. EXPERIMENTAL RESULTS

In this section, we describe the details of the extensive
experiments performed to evaluate the effectiveness of the
proposed method for face image SR. We compare our method
with several state-of-the-art algorithms and use peak signal-to-
noise ratio (PSNR) and structure similarity (SSIM) index [56]
to evaluate the performance of different methods on the FEI
face database [57], which will be introduced in the following
subsection. In addition, we also demonstrate some objective
results of different methods. In order to further verify the
superiority of SRLSP over other methods, we repeat the
experiments on another public face database, namely the CAS-
PEAL-R1 face database [58], and analyze the influence of
parameter settings, training set size, and the magnification
factor. To testify the effectiveness of our proposed method,
we also conduct an experiment on some real-world images
from CMU+MIT face database and test the face recognition
performance of super-resolved HR faces.

Fig. 3. The performance (PSNR and SSIM) of the proposed method using
various values of patch size on the FEI face database.

A. Database Description and Parameter Settings

The first database used in our paper is the FEI face database,
which consists of 400 facial images. All the images are
cropped to 120×100 pixels to form the HR training faces.
The people in the database are mainly 19 to 40 years old with
distinct appearances, e.g., hairstyles and adornments. The LR
images are formed by down-sampling (by a factor of 2) the
corresponding HR images, resulting in LR face images of the
size 60×50 pixels. In our experiments, we randomly select 360
images to train the proposed smooth regression model, leaving
the remaining 40 images for testing. So all the test images
are absent in the training set. As for the proposed method,
there are only two parameters, patch size and the smoothing
parameter α, that need to be set (note that the overlap between
neighbor pathes is set according to the patch size in our
experiments, i.e., overlap= patch size-2). Fig. 3 shows the
average PSNRs and SSIMs of all the 40 test faces using
different values of patch size. Based on the performance, we
can conclude that small size image patches cannot capture the
structure information of a face image, while large size image
patches are difficult to model. When the HR image patch size
is set to 7×7 pixels and the corresponding LR image patch is
4×4 pixels, the optimal performance can be achieved. As for
the smoothing parameter α, we experimentally set it to 1.2.
For details about the setting of α, please refer to the following
subsection.

B. Effectiveness of Smooth Weighting

To validate the effectiveness of the proposed smooth re-
gression model for face image SR, we compare two differ-
ent weighting methods including simple 0/1 hard threshold
weighting and smooth weighting. The former selects K-
nearest-neighbors (K-NN) to construct the linear regression
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Fig. 4. The average PSNR and SSIM results versus the number of nearest
neighbors K for the simple 0/1 hard threshold weighting based regression
method on the FEI face database. The best performance is achieved at K
= 100 (PSNR = 38.80 dB and SSIM = 0.9814). It is worth noting that
the input LR patch is 4×4 pixels (16-dimentional feature vector), and the
large performance drop and instability around neighbor number = 16 can be
explained by overfitting of the linear least squares solution to the input LR
patch image.

model with, while the latter weights the training samples
smoothly according to the distances.

Fig. 4 and Fig. 5 show the PSNR and SSIM results varying
with different neighbor number K for the 0/1 hard threshold
weighting based regression method and different α for our
proposed smooth regression method, respectively. As shown,
the parameters K and α have influence on the performance
of the respective method. When K = 360 or α = 0, the
weight matrix is an identity matrix, i.e., wi = 1 for all
training samples. Under this condition, the simple 0/1 hard
threshold weighting based regression method and the proposed
smooth regression method both reduce to the traditional linear
regression algorithm, whose performance (PSNR = 38.57 dB
and SSIM = 0.9808) is marginally worse than that of the
0/1 hard threshold weighting based regression method and
our proposed smooth regression method. From Fig. 4 and
Fig. 5, when compared with the 0/1 hard threshold weighting
based method, the smooth regression based method is better,
e.g., 0.31 dB and 0.0008 improvement in terms of PSNR and
SSIM, respectively. This demonstrates the effectiveness of our
proposed smooth weighting strategy for face image SR.

C. Comparison Results on the FEI Face Database

In order to evaluate the superiority of the proposed method,
we compare our method with several state-of-the-art algo-
rithms including three functional interpolation based meth-
ods (i.e., Bicubic interpolation, Li et al.’s new edge-directed
interpolation (NEDI) method [11] and Zhang et al.’s soft-
decision adaptive interpolation (SAI) method [12]), and eight
learning-based methods of which three are general image SR
methods (i.e., Chang et al.’s neighbor embedding (NE) based
method [38], He et al.’s Gaussian process regression (GPR)
based method [59], and Timofte et al.’s anchored neighbor-
hood regression (ANR) based method [20]) and the remaining
five specially focus on face image SR (i.e., Wang et al.’s
Eigen-transformation (EigTran) based method [25], Huang et
al.’s local linear transformation (LLT) based method [31], Ma
et al.’s least square representation (LSR) based method [38],
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Fig. 5. The objective performance (PSNR and SSIM) with various values
of α on the FEI face database. The best performance is achieved at α = 1.2
(PSNR = 39.11 dB and SSIM = 0.9822). In order to see more clearly, we
amplify the lines in the red dashed boxes and show them on the lower right
of each subfigure.

Yang et al.’s sparse coding (SC) based method [33], and our
previously proposed locality-constrained representation (LcR)
based method [36] and locality-constrained iterative neighbor
embedding (LINE) based method [37]). In this subsection, we
show the subjective and objective results of the comparison
methods and the proposed method. Table I tabulates the
average results of different methods. In this table, SRLSP (α
= 0) denotes the proposed SRLSP method with α = 0, which
is our preliminary work reported in [55].

For the Bicubic interpolation method, we use the Bicubic
function in Matlab. We take the source code of NEDI [11]
and SAI [12] from their webpages1, and use the default
parameter settings. These three methods all explore the prior
information of the internal example (i.e., the input LR image),
such as the smooth constraint, edge prior and the non-local
prior. However, the prior information learned from the general
images without considering the facial structure may be not
suitable for human faces. Therefore, the performance of these
interpolation methods is considerably lower than the other
methods.

We also report the results of three state-of-the-art learning-
based SR methods. For NE [34] and ANR [20], we modify
the original source code2 to make them appropriate for face
images. Specifically, we use the idea of neighbor embedding
and anchored neighborhood regression to learn the relationship
between the LR and HR patches for each position. The
neighborhood number for NE [34] and ANR [20] is set to 75
and 200 respectively. For all these local patch based methods,
the HR patch size is set to 12×12 pixels with an overlap of
8 pixels and the corresponding LR patch is 6×6 pixels with
an overlap of 4 pixels unless otherwise stated. For GPR [59],
we directly use the source code3 from the author’s personal
homepage to carry out SR. NE [34] and ANR [20] have better
performance than GPR [59]. We can conclude from the above

1http://www.csee.wvu.edu/ xinl/code/nedi.zip
http://www.ece.mcmaster.ca/ xwu/executables/ARInterpolation.rar

2http://www.jdl.ac.cn/user/hchang/doc/code.rar
http://www.vision.ee.ethz.ch/t̃imofter/software/SR NE ANR.zip

3http://www.eie.polyu.edu.hk/ wcsiu/softmodule/4/GPR v1.1.zip
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TABLE I
PSNR (DB) AND SSIM COMPARISON OF DIFFERENT METHODS

ON THE FEI FACE DATABASE.

Methods PSNR  SSIM 

Bicubic  32.44 0.9444 

 

 

NEDI 28.58 0.8655 

SAI 27.70 0.8607 

NE 38.02 0.9758 

GPR 31.34 0.9161 

ANR 38.06 0.9786 

 EigTran 29.30 0.8127 

 LLT 38.02 0.9784 

LSR 38.02 0.9784 

SC 37.95 0.9780 

LcR 38.23 0.9783 

 

 

 

LINE 38.33 0.9783 

 SRLSP ( 0  ) 38.57 0.9808 

SRLSP  39.11 0.9822 

Improvement 0.78 0.0038 

 

results that learning from external examples (the LR and HR
training pairs) is much more effective than learning from the
internal example (the input LR image).

In addition, six recently proposed SR methods that specif-
ically designed for human face images are also employed as
comparison baselines. For Wang et al.’s EigTran method [25],
we let the variance accumulation contribution rate of PCA
be 99.9%. In Yang et al.’s SC based method [36], we set
error tolerance to 1.0. As for our previous proposed LcR [36],
we set the locality-constraint parameter to 0.04. Wang et al.’s
method [25] is a global face method, and its representation
ability is very limited, especially when the observed face
image is very different from the training samples or when
the size of the training samples is small. The coding-based
methods, such as LSR [38], SC [33] and LcR [36], can achieve
relatively good results by assuming that the LR and HR patch
manifolds share similar local structure. However, due to the
“one-to-many” mapping between the LR and HR images,
the assumption may not hold in practice. LINE method [37]
simultaneously explores the structure of LR and HR patch
manifolds and obtains better results. Instead of using the
strong regularization of “same representation” for learning,
LLT [31] and SRLSP both aim at constructing the regression
relationship between the LR and HR patch pairs to achieve
better SR performance. The performance gain of SRLSP over
LLT [31] is substantial due to: (i) LLT [31] assumes that
each data point provides equally precise information and treats
all the training samples equally, while SRLSP assigns less
weight to the less precise measurements and more weight
to more precise measurements, which can yield the most
accurate parameter estimates possible; (ii) LLT [31] learns
the relationship between the LR and HR patch pairs, while
SRLSP incorporates the LPS as an additional constraint. In
other words, SRLSP deeply exploits the facial structure prior
whereas LLT [31] only considers the statistical properties. To
prove this point, we list the results of SRLSP when α is set

Fig. 6. One group of face images that were reconstructed from the FEI
face database by different methods. From left-to-right and top-to-bottom are
the super-resolved results of Bicubic interpolation, super-resolved results of
NEDI [11], SAI [12], NE [34], GPR [59], ANR [20], EigTran [25], LLT [31],
LSR [38], SC [33], LcR [36], LINE [37], and the proposed SRLSP, an finally
the ground truth HR face image. The first two rows are the super-resolved
results and the last two rows are the corresponding reconstruction error maps.
(Note that the effect is more pronounced if the figure of the electronic version
is zoomed, same as Fig. 7.)

to 0. The only difference between the SRLSP (α = 0) and
LLT [31] is that the former incorporates the LPS and LLT [31]
does not.

Fig. 6 shows one group of examples of the reconstructed re-
sults and the reconstruction error maps using different methods
(for more results, please refer to the supplementary material).
In each group of images, the top-left is the input LR face,
the bottom-right is the ground truth HR face, and the rest are
the reconstructed HR faces based on twelve different methods.
From these results, we see that the reconstructed HR faces of
Bicubic interpolation are very smooth and miss many facial
details, e.g., edges and corners. Wang et al.’s method [25] is
not able to recover a clear face and the reconstructed HR faces
have obvious ghosting effects. Yang et al.’s method [33] cannot
fully recover the detailed features leading to the reconstructed
HR face images having some artifacts. Compared with other
methods, our method can generate better results both in global
faces and fine details, especially in face contour and eyes
(please refer to the yellow boxes in Fig. 6).

Simulation experiments demonstrate that our approach is
able to generate HR face images with visually satisfactory
global face appearance and local detailed features. The recon-
structed faces are much more similar to the ground truth HR
faces. We attribute this superiority of our method over other
methods to the introduction of LSP and the smooth regression
model.

D. Experiments on the CAS-PEAL-R1 Face Database

In addition to the FEI face database, we also conduct
experiments on the CAS-PEAL-R1 face database [36] which
contains 30871 images of 1040 subjects. We only use the
neutral expression and normal illumination faces of each
subject from the frontal subset in the experiments. In all the
1040 frontal face images, we randomly select 1000 images
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TABLE II
PSNR (DB) AND SSIM COMPARISON OF DIFFERENT METHODS

ON THE CAS-PEAL-R1 FACE DATABASE.

Methods PSNR SSIM 

Bicubic 28.56 0.9332 

NEDI 24.87 0.8460 

SAI 24.22 0.8429 

NE 33.93 0.9720 

GPR 27.58 0.9022 

ANR 33.89 0.9724 

EigTran 28.46 0.8395 

LLT 33.66 0.9716 

LSR 33.67 0.9715 

SC 33.84 0.9713 

LcR 34.03 0.9730 

LINE 34.15 0.9733 

SRLSP ( 0  ) 33.93 0.9737 

SRLSP 34.61 0.9761 

Improvement 0.46 0.0024 

 

for training and leave the other 40 images for testing. All the
images are aligned by five manually selected feature points and
are cropped to 128×112 pixels through automatic alignment
method [60] and robust feature matching technology [61].
Similarly, none of the test subjects are present in the training
images. The LR images are formed as described in Section
V.A, thus the size of LR face images are 64×56 pixels.
We set the values of all the parameters of SRLSP equal to
those mentioned in Section V.B except for the smoothness
parameter α, which is determined by carefully tuning. We
choose α = 1.5 which results in the best performance of
our method (more details about setting the parameter α on
the CAS-PEAL-R1 face database can be found in Section
V.E). For the comparison algorithms, we experimentally set the
parameters to obtain the best performance. Specifically, as for
NEDI [11], SAI [12], and GPR [59], we directly use the source
codes and the parameter settings therein. The neighborhood
number for NE [34] and ANR [20] is set to 75 and 200,
respectively. For Wang et al.’s global face method [25], we let
the variance accumulation contribution rate of PCA be 99.9%.
In Yang et al.’s SC method [33], we set error tolerance to 1.0.
As for our previous proposed LcR [36], we set the locality-
constraint parameter to 0.1. The iteration number is set to 5 and
the locality parameter is set to 1e-5 in [37]. In the following,
we show comparison results in terms of visual quality and
objective metrics (PSNR and SSIM indexes).

1) Subjective and objective results comparison: Table II
tabulates the average PSNR and SSIM results of different
methods. Fig. 7 presents the visual comparison of different
methods (for more results, please refer to the supplementary
material). SRLSP generates the best visual results (see the eyes
and face contours). We can also draw the same conclusion that:
(i) domain-specific image SR methods are better than generic
image SR methods; (ii) smooth weighting and LSP are critical
for the face image SR problem.

Fig. 7. One group of face images that were reconstructed from the CAS-
PEAL-R1 face database by different methods. Visual comparison results on
the CAS-PEAL-R1 face database.
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Fig. 8. (Best viewed in color and at magnification) The PSNR and SSIM
improvement of SRLSP over seven comparison methods with different training
sizes on the CAS-PEAL-R1 face database.

2) Effects of the training set size on the CAS-PEAL-R1 face
database: The above experimental results on the CAS-PEAL-
R1 face database show that the smoothness regularization
and the LSP are very effective in regularizing the ill-posed
face image SR problem. In the experiments, we fix the
training set size to be 1000. Intuitively, the larger training set
should possess more representation power and thus may yield
more accurate approximation at the expense of increasing the
running time.

To further verify the effectiveness the proposed smooth
regularization and the LSP, here we evaluate the effect of
dictionary size on face image SR. We randomly select four
training subsets of size 100, 200, 400 and 700, and use
them to perform SR on the same 40 input LR face images
described in Section V.D. In Fig. 8, we show the PSNR
and SSIM improvements of SRLSP over eight comparison
methods according to different training set sizes on the CAS-
PEAL-R1 face database (note that the Bicubic interpolation,
NEDI [11], SAI [12], and GPR [59] are independent of the
training set, thus they are not considered here.). We can see
from Fig. 8 that SRLSP consistently performs better than the
comparison methods. The improvements of SRLSP over the
other methods are more obvious as the training set size gets
smaller. This effect is particularly noticeable in term of SSIM
index as shown in the right figure of Fig. 8. This makes smooth
regression an effective method under the condition of small
training sample size.
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training size = 700Fig. 9. The objective performance in terms of PSNR (first row) and SSIM (second row) according to different values of α on the CAS-PEAL-R1 face
database with various training sizes, i.e., training size = 1000, 700, 400 and 100. The maximum PSNR or SSIM values are achieved at 1.5, 1.4, 1.2, 0.9 and
0.6 (indicated by the red lines), respectively.

3) Effects of the smoothing parameter α on the CAS-
PEAL-R1 Face Database: Smooth regression is an important
component in SRLSP. In the following, we provide a deep
analysis about the influence of the smoothing parameter α
which controls the smooth regression process. In Fig. 9, we
show the PSNR and SSIM according to different values of
α on the CAS-PEAL-R1face database with various training
sizes, i.e., training size = 1000, 700, 400 and 100. The
maximum PSNR or SSIM values are achieved at α > 0,
which implies that the smooth constraint is essential for
regression. In addition, we also find that the optimal value
of α becomes smaller with the decrease of the training set
size. This phenomenon could be explained as follows: when
the training set size is large, the training samples exhibit rich
diversity. In order to fit the observation, it is easy to find
several similar samples to model the observation. By setting
a large α, several neighbor samples can be chosen by giving
large weights to these neighbor samples. In contrast, when
the training set size is small, we may have to use as many
as possible training samples to fit the observation rather than
selecting only a few neighbor samples. In this case, we can set
a relatively small α to gather as many samples as possible to fit
the observation. This shows the characteristics of a learning-
based system which requires a certain amount of similarity
between test and training samples [24].

E. SR Results of Very Low-resolution Faces

In the above experiments, the down-sampling factor is set
to 2 for our proposed method is essentially an interpolation-
based method. Like many interpolation based methods [11],
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HR Output 
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Output 
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Intermediate 
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SRLSP 
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Fig. 10. 8X magnification framework of the proposed method.

[62], our method can only amplify the input LR face image
by a factor of 2 each time. To test the effectiveness of our
method when the input faces is very low-resolution, e.g.,
8×7 pixels (corresponding to 16X magnification) and 16×14
pixels (corresponding to 8X magnification), we conduct some
experiments to super-resolve the input LR face by stepwise
interpolation. Fig. 10 is an example of 8X magnification
framework of the proposed method, and we super-resolve
the input LR face by three SRLSP based interpolations. We
compare our method with Bicubic interpolation and one global
face SR method (EirTran [25]) and one position-patch based
representation method (LcR [36]). Note that we randomly
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(a) 

(b) 

Fig. 11. Visual SR Results of Very Low-Resolution faces: (a) 8X mag-
nification results. (b) 16X magnification results. For each subfigure, from
left to right, there are the LR input faces, super-resolved faces by Bicubic
interpolation, EirTran [25] and our method, and the last column is the original
HR faces.

choose 400 images from the CAS-PEAL-R1 face database
as the training set and the 40 test images are the same with
Section V-D. For our method, the patch size, overlap and
parameter α are set to the same with experiments above.
Fig. 11 (a) and Fig. 11 (b) visually compare the different
reconstructions on three test images by a magnification of 8
and 16 respectively. Bicubic interpolation can’t work anymore.
Results of EirTran [25] are similar to the mean face and
are not be trusted. LcR [36] and the proposed method can
produce reasonable HR faces but may also lose some detailed
features (see Fig. 11 (b)). The average PSNRs and SSIMs of
all 40 test faces obtained using different methods are shown
in Table III. In terms of objective quality, we can see that the
proposed method results in larger PSNR and SSIM values.
This is mainly due to the proposed method simultaneously
integrating external and internal examples, the structure prior
of human face, and reconstruction constraints, which helps to
better pose the obtained SR solution and produce more faithful
SR recovery.

F. SR with Real-world Images

In order to further support the effectiveness of our proposed
face SR method, we conduct some experiments on real-
world images from CMU+MIT face database [63] as shown
in Fig. 12 (a). Fig. 12 (b) is the extracted and aligned LR

TABLE III
PSNR (DB) AND SSIM RESULTS OF VERY LOW-RESOLUTION FACES. THE

INPUT LR FACE IS 16×14 PIXELS OR 8×7 PIXELS.

Methods 
16×14 pixels (8X) 8×7 pixels (16X) 

PSNR SSIM PSNR SSIM 

Bicubic 17.11 0.5068 14.05 0.3776 

EigTran 19.15 0.6196 17.75 0.5954 

LcR 23.02 0.7947 19.29 0.6690 

SRLSP  23.51 0.8190 19.90 0.7148 

 

TABLE IV
FACE RECOGNITION ACCURACY (%) ASSOCIATED WITH DIFFERENT SR

METHODS.

Methods 
Classifier 

NNC SRC 

HR 75.52 90.17 

Bicubic 72.56 87.36 

ANR 72.70 89.03 

EigTran 73.43 88.82 

LcR 73.62 89.13 

SRLSP  74.62 89.65 

 

faces. Fig. 12 (c)-(e) are the reconstructed HR faces by three
representation methods, Bicubic interpolation, LcR [36], and
our method, respectively. We can see that our approach is
able to produce very reasonable results even though the test
images are drastically different from the training samples
(here we use the training faces from the FEI face database).
The images reconstructed with Bicubic interpolation are too
smooth (see the face contours, nose and eyes) compared with
our method. The super-resolved face by LcR has an obvious
“ghost effect” and is dissimilar to the input. When compared
with the results on the standard face database, our super-
resolved results with real-word images are much more worse.
This is mainly because the actual imaging process (such as
motion and defocus blur, low light, mixed noise [64], [65], and
so on) is much more complex than the simple down-sampling.
In addition, as one interpolation based method, the noise in
input faces may also be maintained in the outputs.

G. Effect of SR on Face Recognition

Although it is logical to believe that super-resolved HR face
images should be beneficial to the following face recognition
task, recently, there are still doubts whether the reconstruction
results measured by PSNR and root mean square error (RMSE)
translate to improve face recognition. In [66], Xu et al.
investigated the problem of how much face SR can improve
face recognition. They reached the conclusion that when the
resolution of the input LR faces is larger than 32×32 pixels,
the super-resolved HR face images can be better recognized
than the LR face images; however, when the input faces have
very low dimension (e.g., 8×8 pixels), some of the face SR
approaches do not work properly.
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(b) 

(c) 

(d) 

(e) 

(a) 

Fig. 12. Super-resolved results with some real-world images from CMU+MIT
face database.

In order to evaluate the effect of our proposed face SR
method on the subsequent face recognition task, we con-
duct a face recognition experiment using the super-resolved
faces from different SR methods. As in many face recog-
nition methods [67], [68], [69], in this paper we conduct
the face recognition experiment on the Extended Yale-B face
database [70], which contains 2414 frontal images of 38
subjects under various lighting conditions. All the face images
are manually aligned and cropped to 128×128 pixels, with
256 gray levels per pixel. We randomly select one fifth of
the data (491 images) for training, and leave the rest (1923
images) for testing. Note that all the 1923 test images are
down-sampled to 64×64 pixels. We employ five representative
face SR methods mentioned above (i.e., Bicubic interpolation,
ANR [20], EigTran [25], LcR [36] and our proposed SRLSP)
to super-resolve the test images to HR level with 128×128
pixels. We utilize two popular classification algorithms, i.e.,
nearest neighbor classifier (NNC) and sparse representation
classifier (SRC) [67], to query the identity of the super-
resolved HR face image.

Table IV shows the recognition accuracies associated with
different SR methods. In addition, the performance of directly
comparing HR version of probe images against HR gallery
images is given as a baseline for comparison, and is denoted
by bold “HR”. From the recognition rates we learn that the
HR face images reconstructed by our proposed method lead to

a better recognition result compared with the other methods.
Our recognition rate is very close to the ideal case HR,
which indicates the effectiveness of the proposed face SR
method on the subsequent face recognition task. We attribute
this superiority of SRLSP to its ability to maintain the input
information (inherited by the interpolation method) and to
learn high-frequency information from the training samples.

H. Discussion

1) General prior vs. domain-specific prior: Prior informa-
tion learned from the face training samples is much more
effective than information learned from the general training
samples (such as houses, plants, animals, etc.). Bicubic in-
terpolation, NEDI [11], SAI [12] and GPR [59] are general
image SR methods designed for general images, and the re-
maining methods (EigTran [25], LLT [31], LSR [38], SC [33],
LcR [36]) are approaches that learn prior information from
face training samples. The performance of the former is much
worse than that of the latter.

2) Global vs. local modeling: Position-patch based meth-
ods are better than global face methods. Wang et al’s global
EigTran [25] can capture the global structure of face by
modeling the entire face image as a whole through PCA de-
composition; however, it will also result in low reconstruction
precision and unsatisfactory results around the facial contour.
By decomposing a complete face image into smaller patches
according to the positions, the position-patch based models
have higher reconstruction precision than the global model.

3) Why smooth weighting?: The smooth weighting strategy
is important for modeling the relationship between the LR
and HR training set. This can be justified by our previously
proposed LcR [36] and our proposed SRLSP method. LcR [36]
utilizes the smooth weighting strategy for patch representation
and gives different freedom (i.e., by weighting the training
samples based on how close they are to the test sample) to
the training samples, while SRLSP penalizes the regression
measurement by a weight that changes more smoothly with
the distance. Note that NE [34] and ANR [20] also con-
sider neighborhood information, and these two methods are
essentially the simple 0/1 hard threshold weighting. SRLSP
(α=0) does not take the smooth weighting into consideration,
and its performance is worse than that of SRLSP. This also
demonstrates the advantage of the smooth weighting strategy.

4) Face structure prior is very important: In addition to
incorporating the smooth weighting strategy, which can be
viewed as statistical properties learned from the training set,
exploiting the structure information is also crucial to the face
image SR problem. As a highly structured object, human faces
have a significant local similarity with each other. Therefore,
structure information can be used to guide the reconstruction
of face images leading to more plausible and reliable recon-
struction results. This is demonstrated by LLT [31] and SRLSP
(α=0). By exploiting the structure information, SRLSP (α=0)
is better than LLT [31].

5) Computational complexity: Generally speaking,
learning- or example-based image SR methods can be roughly
divided into two categories: regression-based methods and
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coding-based methods. The former can learn and save the
mapping functions off-line. Therefore, we can expect faster
image SR reconstruction than with the coding-based methods,
which need complex coding strategies, e.g., sparse coding, for
each input LR patch. Our proposed regression method is data
driven. In other words, the learned mapping functions depend
on the input data, e.g., the Euclidean distance between the
input LR patch and the dictionary atoms. Thus, the mapping
functions vary according to the observation LR patch, and we
cannot learn and save the mapping functions off-line. It will
take some time to calculate the Euclidean distance between
the input LR patch and the dictionary atoms and the mapping
function. In particular, in the Windows platform with Matlab
7.14 (R2012a) on an Intel Core i3 CPU with 3.20 GHz and
4G memory PC, the average CPU time for each test image
is around 6.9 seconds. However, thanks to the independence
of the reconstruction of each target HR patch, we can easily
accelerate our method via parallel computation.

VI. CONCLUSION

In this paper, we have proposed a novel approach for effi-
cient and effective facial image interpolation method, namely
smooth regression with local structure prior (SRLSP). It com-
bines the advantages of three different class of methods, i.e.,
interpolation based methods, reconstruction based methods
and learning-based methods, thus leading to promising SR
reconstruction results. The developed SRLSP method divides
each face image into small image patches, and then learns the
relationship between the LR image patch and the missing HR
pixel information, which can be regarded as a local structure
prior (LSP). This LSP is then used to predict the missing HR
pixel information of the LR observation patch. Experimental
results on the FEI face database and the CAS-PEAL-R1
face database demonstrated the effectiveness of the proposed
approach. Moreover, face recognition results also validate the
advantages of our proposed SR method over the state-of-the-
art SR methods in a face recognition application scenario.

However, there are several problems that need to be inves-
tigated in the future: Note that the overlap patch mapping and
reconstruction is time consuming, which hinders our method in
certain practical applications, e.g., real time face recognition
and 3D face synthesis. Thanks to the independence of the
reconstruction of each target HR patch, we can accelerate the
algorithm via parallel computation [71], [72], [73]. In this
article, we have focused on developing a frontal face image SR
method. However, when the LR observation face is in the wild,
i.e., arbitrary pose, various skin colors, and extreme ambient
illumination, how can we super-resolve face image in the wild
is another open question.
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