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Abstract—It is of great interest in exploiting texture information
for classification of hyperspectral imagery (HSI) at high spatial
resolution. In this paper, a classification paradigm to exploit rich
texture information of HSI is proposed. The proposed framework
employs local binary patterns (LBPs) to extract local image fea-
tures, such as edges, corners, and spots. Two levels of fusion (i.e.,
feature-level fusion and decision-level fusion) are applied to the
extracted LBP features along with global Gabor features and orig-
inal spectral features, where feature-level fusion involves concate-
nation of multiple features before the pattern classification process
while decision-level fusion performs on probability outputs of each
individual classification pipeline and soft-decision fusion rule is
adopted to merge results from the classifier ensemble. Moreover,
the efficient extreme learning machine with a very simple structure
is employed as the classifier. Experimental results on several HSI
data sets demonstrate that the proposed framework is superior to
some traditional alternatives.

Index Terms—Decision fusion, extreme learning machine
(ELM), Gabor filter, hyperspectral imagery (HSI), local binary
patterns (LBPs), pattern classification.

I. INTRODUCTION

W ITH the advance of sensor technology, hyperspectral
imagery (HSI) with high spatial resolution has been

continually becoming more available. In conventional HSI clas-
sification systems, classifiers [1]–[4] solely consider spectral
signatures while ignoring spatial information at neighboring lo-
cations. During the last decade, it is of great interest in exploit-
ing spatial features to improve HSI classification performance.
For example, composite kernels (CK) for combination of both
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spectral and spatial information were employed by a support
vector machine (SVM) classifier, referred to as SVM-CK [5].
Another model to incorporate spatial-context information is
Markov random field (MRF) [6], which was successfully ap-
plied in HSI. In [7], MRF was utilized as a postprocessing stage
based on a segmentation map obtained by a pixelwise SVM
classifier, namely, SVM-MRF. Similarly, MRF was combined
with Bayesian framework, such as Gaussian mixture model
(GMM) classifier and subspace multinomial logistic regression
(SubMLR), denoted as GMM-MRF [8] and SubMLR-MRF [9],
respectively.

In addition to the CK- or MRF-based framework, many re-
searchers have worked with other spatial features. For instance,
morphological profile (MP) generated by certain morphological
operators (e.g., opening and closing), which is widely used
for modeling structural information, was introduced in [10]. In
[11], a spectral–spatial preprocessing method was proposed for
noise-robust HSI classification by employing a multihypothesis
prediction strategy which was originally developed for com-
pressed sensing image reconstruction [12] and superresolution
[13]. In [14], an edge preserving filter was employed to smooth
a probability map produced by SVM while taking neighbor-
hood information into account. In [15], a multiple conditional
random field ensemble model, including gray-level cooccur-
rence matrix (GLCM), Gabor texture features, and gradient
orientation features, was proposed. Meanwhile, a multifeature
model, including GLCM, different MP, and urban complexity
index, was presented in [16]. Two-dimensional Gabor features
extracted from selected bands were investigated in [17], and a
patch alignment framework was introduced to linearly combine
multiple features (e.g., spectral, texture, shape, etc.) in [18].

Recently, local binary pattern (LBP) operator [19] has been
presented for rotation-invariant texture classification. LBP is a
simple yet efficient advanced operator to describe local spatial
pattern. In the original LBP, a texture feature is extracted on a
pixel level along with a local neighborhood. To be brief, the op-
erator labels the pixels of a local region by binary thresholding
with the center pixel value. It can be seen that the operator does
not make any assumption on the distribution of a local region.
LBP has also been introduced in remote sensing community.
In [20], LBP and local phase quantization were investigated for
texture characterization of land-cover classification of optical
remote sensing image data. In [21], LBP, histogram of oriented
gradient (HoG), and mean-variance descriptor were extracted
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in long-wave infrared imagery for anomaly detection. In [22],
LBP and HoG features were employed for tracking of ship
traffic in TerraSAR-X images. In [23], LBP features were
calculated on a single band chosen from an HSI cube for colon
biopsy classification.

In this paper, a texture-based classification paradigm is pro-
posed. It employs LBP and global Gabor filter in a set of se-
lected bands to produce a comprehensive description of spatial
texture information. To our best knowledge, [23] is currently
the only publication to employ LBP for HSI classification;
unfortunately, the work merely used a single spectral band
and purely viewed it as a gray-scale image while ignoring
the discriminative information in other spectral bands. In this
paper, the criterion of linear prediction error (LPE) [24], based
on band dissimilarity, is used for unsupervised band selection,
and LBP will be extracted from the selected bands. According
to the investigation in [24], its performance is better than
several popular band selection methods in the literature. Di-
mensionality reduction can also be achieved by a transform-
based method, such as principal component analysis (PCA);
the experimental results in [17] and [25] suggest that using se-
lected bands may offer a slightly better performance than using
principal components (PCs) because fine structures tend to be
present in minor PCs instead of major PCs. In this paper, band-
selection-based dimensionality reduction is adopted due to its
relative simplicity and overall robust performance, although
more advanced transform-based methods exist (e.g., maximum
orthogonal complements algorithm [26]).

In the proposed scheme, feature-level fusion and decision-
level fusion are investigated on the extracted multiple features.
Feature-level fusion combines different feature vectors together
into a single feature vector. Decision-level fusion performs on
probability outputs of each individual classification pipeline
and combines the distinct decisions into a final one. The de-
cision fusion process can occur as either “hard” fusion (e.g.,
majority voting rule [27]) at the class-label level or “soft” fusion
(e.g., linear opinion pool or logarithm opinion pool (LOGP)
rule [28], [29]) at the probability level. In this paper, LOGP is
chosen because it is a weighted product of different probability
distributions and its decision from multiple classifiers is treated
independently in the fusion process.

Extreme learning machine (ELM) [30], [31] classifier is
employed to provide probability classification outputs using
the extracted features. The choice of ELM classifier is due
to its efficient computation and its even better classification
performance than SVM. ELM has a very simple structure: one
hidden layer and one linear output layer. Compared to tradi-
tional neural networks and SVM, ELM can be trained much
faster since its input weights are randomly generated and the
output weights are analytically computed with a least squares
solution. ELM for HSI classification is recently paid great
attention. In [32], kernel-based ELM was considered for land-
cover classification and provided comparable performance to
SVM. In [33], ELM was employed to obtain accurate thematic
maps of soybean crops in precision agriculture. Reference [34]
developed an automatic-solution-based differential evolution
to optimize the parameters of ELM. Furthermore, Bagging-
based ELM and AdaBoost-based ELM were introduced in [35].

It would be interesting to study its performance when using
multiple features (i.e., spectral bands, local spatial feature, and
global spatial feature) as presented in this work.

There are two primary contributions in this research. As
the first contribution, an effective texture feature extraction
approach that is more suitable to HSI is provided. Specifically,
an LPE-based band selection is first employed to find a set of
distinctive and informative bands; for each band, the LBP code
is computed for every pixel in the entire image to form an LBP
code image, and then for each local patch centered at a pixel of
interest, the LBP histogram is generated. The second contribu-
tion is in the effective fusion of extracted local LBP features,
global Gabor features, and original spectral features, wherein
LOGP plays a critical role in merging probability outputs of the
multiple texture and spectral features. It is worth mentioning
that a Gabor filter can be viewed as a global operator to capture
the global texture features (e.g., orientation and scale). On
the other hand, LBP applied to each pixel belongs to a local
operator that can characterize the local spatial textures such
as edges, corners, and knots. Therefore, Gabor features and
LBP represent texture information from different perspectives,
which is our motivation of combining them for classification
improvement.

The remainder of this paper is organized as follows.
Section II introduces spatial feature extraction using a Gabor
filter and an LBP operator. Section III briefly reviews the
SVM and ELM classifiers. Section IV provides a detailed
description of the proposed classification framework, including
band selection and two fusion strategies. Section V presents
the experimental results with three real hyperspectral data sets.
Finally, Section VI makes several concluding remarks.

II. GABOR FILTER AND LBP

A. Gabor Filter

A Gabor filter [36], [37] can be viewed as an orientation-
dependent bandpass filter, which is orientation-sensitive and
rotation-variant. In order to achieve rotation-invariance, a circu-
larly symmetric Gabor filter is commonly employed, in which
all directions for each pass band are considered. The magni-
tudes of each Gabor-filtered image reflect signal power in the
corresponding filter pass band and are used as Gabor features
[17], [18]. In a 2-D (a, b) coordinate system, a Gabor filter,
including a real component and an imaginary term, can be
represented as

Gδ,θ,ψ,σ,γ(a, b)= exp

(
−a′2+γ2b′2

2σ2

)
exp

(
j

(
2π

a′

δ
+ψ

))
(1)

where

a′ = a cos θ + b sin θ (2)

b′ = −a sin θ + b cos θ. (3)

Here, δ represents the wavelength of the sinusoidal factor, θ
represents the orientation separation angle (e.g., π/8, π/4, π/2,
etc.) of Gabor kernels, ψ is the phase offset, σ is the standard
derivation of the Gaussian envelope, and γ is the spatial aspect
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Fig. 1. Example of LBP binary thresholding. (a) Center pixel tc and its
eight circular neighbors {ti}7i=0 with radius r = 1. (b) 3 × 3 sample block.
(c) Binary labels of eight neighbors.

ratio (the default value is 0.5 in [36] and [37]) specifying the
ellipticity of the support of the Gabor function. ψ = 0 and
ψ = π/2 return the real and imaginary parts of the Gabor
filter, respectively. Parameter σ is determined by δ and spatial
frequency bandwidth bw as

σ =
δ

π

√
ln 2

2

2bw + 1

2bw − 1
. (4)

B. LBP

LBP [19] belongs to a gray-scale and rotation-invariant
texture operator. Given a center pixel (scalar value) tc, each
neighbor of a local region is assigned with a binary label, which
can be either “0” or “1,” depending on whether the center pixel
has a larger intensity value or not. The neighboring pixels are
from a set of equally spaced samples over a circle of radius r
centered at the center pixel. Radius r determines how far the
neighboring pixels can be located away from the center pixel.
Along with selected m neighbors {ti}m−1

i=0 , the LBP code for
the center pixel tc is given by

LBPm,r(tc) =

m−1∑
i=0

U(ti − tc)2
i (5)

where U(ti − tc) = 1 if ti > tc and U(ti − tc) = 0 if ti ≤ tc.
Fig. 1 illustrates an example of the binary thresholding process
of eight ((m, r) = (8, 1)) circular neighbors given the center
pixel tc. The LBP code is then calculated in a clockwise
direction, i.e., the binary label sequence “11001010” = 83.
Supposing that the coordinate of tc is (0, 0), each neighbor ti
has a coordinate of (r sin(2πi/m), r cos(2πi/m)). In practice,
parameter set (m, r) may change, such as (4, 1), (8, 2), etc.
The locations of circular neighbors that do not fall exactly on
image grids are estimated by bilinear interpolation [38]. The
output of the LBP operator in (5) indicates that the binary
labels in a neighborhood, represented as an m-bit binary num-
ber (including 2m distinct values), reflect texture orientation
and smoothness in a local region. After obtaining the LBP
code, an occurrence histogram, as a nonparametric statistical
estimate, is computed over a local patch. A binning procedure is
required to guarantee that the histogram features have the same
dimension.

C. Comparison of LBP and Gabor Filter

Given the aforementioned brief description of the Gabor filter
and LBP, it can be noticed that the former belongs to a global

Fig. 2. Example of LBP versus Gabor filter. (a) Input image. (b) LBP-
coded image (different intensities representing different codes). (c)–(f) Filtered
images obtained by the Gabor filter with different θ values. (a) Input image.
(b) LBP-coded image. (c) Gabor feature image, θ = 0. (d) Gabor feature
image, θ = π/4. (e) Gabor feature image, θ = π/2. (f) Gabor feature image,
θ = 3π/4.

operator while the latter is a local one. As a consequence, Gabor
features and LBP represent texture information from different
perspectives. Fig. 2 illustrates an example of comparison be-
tween LBP and Gabor features in a natural image (namely,
boat) of size 256 × 256. Fig. 2(b) shows the LBP-coded im-
age obtained using (5) with (m, r) = (8, 1), and Fig. 2(c)–(d)
illustrates the filtered images obtained by the Gabor filter with
different θ (i.e., 0, π/4, π/2, and 3π/4). In Fig. 2, the Gabor
features produced by the average magnitude response for each
Gabor-filtered image reflect the global signal power, while
the LBP-coded image is a better expression of detailed local
spatial features, such as edges, corners, and knots. Thus, it is
promising to apply the global Gabor filter as a supplement to
the local LBP operator that lacks the consideration of distant
pixel interactions, which is also the motivation of this work.

As we stated earlier, the Gabor filter can capture the global
texture information of an image, while LBP represents the
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local texture information. It is known that an HSI data usually
contains homogeneous regions where pixels fall into the same
class. Gabor features are able to reflect such global texture
information because the Gabor filter can effectively capture
the orientation and scale of physical structures in the scene.
Therefore, combining Gabor and LBP features can achieve
better classification performance than using only LBP features.

III. SVM AND ELM

A. SVM

SVM [3], [5] has been proved to be powerful in HSI classifi-
cation. The key idea behind a kernel version of SVM is to map
the data from its original input space into a high-dimensional
kernel-induced feature space where classes may become more
separable. For training samples {xi}ni=1 in R

d with class labels
yi ∈ {1,−1} and a nonlinear kernel mapping φ(·), an SVM [5]
separates binary classes by determining an optimal hyperplane
in the kernel-induced space by solving

min
ω,ξi,p

{
1

2
‖ω‖2 + ς

n∑
i=1

ξi

}
(6)

subject to the constraints

yi (〈φ(ω,xi)〉+ p) ≥ 1− ξi (7)

for ξi ≥ 0 and i = 1, . . . , n, where ω is normal to the optimal
decision hyperplane (i.e., 〈ω, φ(x)〉+ p = 0), n denotes the
number of samples, p is the bias term, ς is the regularization
parameter which controls the generalization capacity of SVM,
and ξi is the positive slack variable allowing us to accommodate
permitted errors appropriately. The aforementioned problem is
solved by maximizing its Lagrangian dual form

max
α

⎧⎨
⎩

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαiyiyjK(xi,xj)

⎫⎬
⎭ (8)

where α1, α2, . . . , αn are nonzero Lagrange multipliers con-
strained to 0 ≤ αi ≤ ς , and Σiαiyi = 0, for i = 1, . . . , n. Some
commonly implemented kernel functions include the polyno-
mial kernel and the RBF kernel. In this paper, RBF is consid-
ered, which is represented as

K(xi,xj) = exp

(
−‖xi − xj‖2

2σ′2

)
(9)

where σ′ is a width parameter. Finally, the decision function is
represented as

f(x) = sgn

(
n∑

i=1

yiαiK(xi,x) + p

)
. (10)

B. ELM

ELM [30], [31] is a neural network with only one hidden
layer and one linear output layer. The weights between the
input and the hidden layers are randomly assigned, and the

weights of the output layer are computed using a least squares
method. Therefore, the computational cost is much lower than
any other neural-network-based methods. For C classes, let the
class labels be defined as yk ∈ {1,−1} (1 ≤ k ≤ C). Thus, a
constructed row vector y = [y1, . . . , yk, . . . , yC ] indicates the
class to which a sample belongs. For example, if yk = 1 and
the other elements in y are −1, then the sample belongs to the
kth class. Thus, the training samples and corresponding labels
are represented as {xi,yi}ni=1, where xi ∈ R

d and yi ∈ R
C ,

the output function of an ELM with L hidden nodes can be
expressed as

fL(xi) =
L∑

j=1

βjh(wj · xi + bj) = yi, i = 1, . . . , n (11)

where h(·) is a nonlinear activation function (e.g., sigmoid
function), βj ∈ R

C denotes the weight vector connecting the
jth hidden node to the output nodes, wj ∈ R

d denotes the
weight vector connecting the jth hidden node to the input
nodes, and bj is the bias of the jth hidden node. The term
wj · xi denotes the inner product of wj and xi. If a value of
1 is padded to xi to make it a (d+ 1)-dimensional vector, then
the bias can be considered as an element of the weight vector,
which is also randomly assigned. For n equations, (11) can be
written as

Hβ = Y (12)

where Y = [y1;y2; . . . ;yn] ∈ R
n×C , β = [β1;β2; . . . ;βn] ∈

R
L×C , and H is the hidden layer output matrix of the neural

network expressed as

H=

⎡
⎢⎣
h(x1)

...
h(xn)

⎤
⎥⎦=

⎡
⎢⎣
h(w1 · x1+b1) · · · h(wL · x1+bL)

...
. . .

...
h(w1 · xn+b1) · · · h(wL · xn+bL)

⎤
⎥⎦.
(13)

In (13), h(xi) = [h(w1 · xi + b1), . . . , h(wL · xi + bL)] is the
output of the hidden nodes in response to the input xi, which
maps the data from d-dimensional input space to L-dimensional
feature space. In most cases, the number of hidden neurons is
much smaller than the number of training samples, i.e., L 	 n,
the least squares solution of (12) described in [39] can be used

β′ = H†Y (14)

where H† is the Moore–Penrose generalized inverse of matrix
H and H† = HT (HHT )−1. For better stability and general-
ization, a positive value 1/ρ is normally added to each diagonal
element of HHT . As a result, the output function of the ELM
classifier is expressed as

fL(xi) = h(xi)β = h(xi)H
T

(
I

ρ
+HHT

)−1

Y. (15)

In ELM, the feature mapping h(xi) is assumed to be known.
Recently, kernel-based ELM [31] has been proposed by ex-
tending explicit activation functions in ELM to implicit map-
ping functions, which have exhibited a better generalization
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capability. If the feature mapping is unknown, a kernel matrix
of ELM can be considered as

ΩELM = HHT : ΩELMi,j
= h(xi) · h(xj)=K(xi,xj). (16)

Hence, the output function of KELM is given by

fL(xi) =

⎡
⎢⎣
K(xi,x1)

...
K(xi,xn)

⎤
⎥⎦
T (

I

ρ
+ΩELM

)−1

Y. (17)

The input data label is finally determined according to the index
of the output node with the largest value. In the experiments, the
kernel version of ELM is implemented.

Compared to the standard SVM, which needs to solve a large
constrained optimization problem, the training of ELM has only
one analytical step. In the experiments, it will be demonstrated
that ELM can provide a classification accuracy that is similar to
or even better than that of SVM.

IV. PROPOSED CLASSIFICATION FRAMEWORK

A. Band Selection

Hyperspectral images consist of a large number of spec-
tral bands, but many of which contain redundant information.
Band selection, such as LPE [24], reduces the dimensionality
by selecting a subset of spectral bands with distinctive and
informative features. Linear projections, such as PCA, can also
transform the high-dimensional data into a lower dimensional
subspace. In our previous study [17], [25], we investigated both
LPE and PCA for spatial-feature-based hyperspectral image
classification and found that the classification performance of
LPE was superior to that of PCA. The reason may be that fine
spatial structures tend to be present in minor PCs rather than in
major PCs. Thus, band selection (i.e., LPE) is employed in this
research.

LPE [24] is a simple while efficient band selection method
based on band similarity measurement. Assume that there
are two initial bands B1 and B2. For every other band B,
an approximation can be expressed as B′ = a0 + a1B1 +
a2B2, where a0, a1, a2 are the parameters to minimize the
LPE: e = ‖B −B′‖2. Let the parameter vector be a =
[a1, a2, a3]

T . A least squares solution is employed to obtain
a = (XT

B1B2
XB1B2

)
−1
XT

B1B2
xB , where XB1B2

is an N × 3
matrix whose first column is with all 1s, second column is the
B1-band, and third column is the B2-band. Here, N is the total
number of pixels, and xB is the B-spectral band. The band
that produces the maximum error e is considered as the most
dissimilar band to B1 and B2, and it will be selected. Then,
using these three bands, a fourth band can be found via the
similar strategy and so on. More implementation details can be
found in [24].

B. Spatial Feature Extraction

After band selection, the LBP feature extraction process or
Gabor filtering is applied to each selected band image. Fig. 3
illustrates the implementation of LBP feature extraction. The

Fig. 3. Implementation of LBP feature extraction.

Fig. 4. Flowchart of the proposed classification framework. (a) Feature-level
fusion. (b) Decision-level fusion.

TABLE I
CLASS LABELS AND TRAIN-TEST DISTRIBUTION OF SAMPLES

FOR THE UNIVERSITY OF PAVIA DATA SET

input image is from the 63th band of the University of Pavia
data to be introduced in Section V. In Fig. 3, the LBP code is
first calculated for the entire image to form an LBP image, and
the LBP features are then generated for the pixel of interest in
its corresponding local LBP image patch. Note that patch size
is a user-defined parameter, and classification performance with
various patch sizes will be examined in Section V.

C. Feature-Level Fusion

In this paper, the most common feature-level fusion is first
employed in the proposed classification framework, as shown
in Fig. 4(a). Each feature reflects various properties and has
its special meaning, such as the Gabor feature provides spatial
localization and orientation selectivity, the LBP feature reveals
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TABLE II
CLASS LABELS AND TRAIN-TEST DISTRIBUTION

OF SAMPLES FOR THE INDIAN PINES DATA SET

TABLE III
CLASS LABELS AND TRAIN-TEST DISTRIBUTION

OF SAMPLES FOR THE SALINAS DATA SET

the local image texture (e.g., edges, corners, etc.), and the spec-
tral feature represents the correlation among bands. For various
classification tasks, these features have their own advantages
and disadvantages, and it is difficult to determine which one
is always optimal [16]. Thus, it is straightforward to stack
multiple features into a composite one. In this fusion strategy,
feature normalization before feature stacking is a necessary
preprocessing step to modify the scale of feature values. A
simple treatment is to perform a linear transformation on these
data and preserves the relationships among the values. For
instance, a min–max technique maps all of the values into the
range of [0, 1].

Here, three aforementioned features, i.e., LBP features (local
texture), Gabor features (global texture), and selected bands
(spectral features), and their combinations, such as LBP fea-
tures + Gabor features + spectral features, LBP features +
spectral features, Gabor features + spectral features, etc., will
be discussed. Note that there are at least two potential dis-
advantages of feature-level fusion: 1) multiple feature sets to
be stacked may be incompatible, which causes the induced
feature space to be highly nonlinear, and 2) the induced feature

Fig. 5. LBP-ELM using the University of Pavia data: classification perfor-
mance versus different patch sizes and numbers of selected bands.

TABLE IV
CLASSIFICATION ACCURACY (IN PERCENT) OF LBP-ELM WITH

DIFFERENT PARAMETERS (m, r) OF THE LBP OPERATOR

USING THE UNIVERSITY OF PAVIA DATA

TABLE V
OPTIMAL PARAMETERS OF THE LBP OPERATOR AND GABOR FILTER

FOR THE ELM CLASSIFIER USING THREE EXPERIMENTAL DATA

space has a much larger dimensionality, which may deteriorate
classification accuracy and processing efficiency.

D. Decision-Level Fusion

Different from feature-level fusion, decision-level fusion
[27], [29] is to merge results from a classifier ensemble of mul-
tiple features as shown in Fig. 4(b). This mechanism combines
distinct classification results into a final decision, improving
the accuracy of a single classifier that uses a certain type of
features.

The objective here is to utilize the information of each type
of features, compute the probability outputs by ELM, and then
combine them with the soft LOGP for final decision. Since
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TABLE VI
OVERALL CLASSIFICATION ACCURACY (IN PERCENT) AND KAPPA COEFFICIENT (κ)

OF DIFFERENT TECHNIQUES FOR THE UNIVERSITY OF PAVIA DATA

TABLE VII
OVERALL CLASSIFICATION ACCURACY (IN PERCENT) AND KAPPA COEFFICIENT (κ) OF DIFFERENT TECHNIQUES FOR THE INDIAN PINES DATA

TABLE VIII
OVERALL CLASSIFICATION ACCURACY (IN PERCENT) AND KAPPA COEFFICIENT (κ) OF DIFFERENT TECHNIQUES FOR THE SALINAS DATA

the output function [i.e., (11)] of ELM estimates the accuracy
of the predicted label and reflects the classifier confidence,
the conditional class probability from the decision function is

attempted to achieve. As noted by Platt [40], the probability
should be higher for a larger output of the decision func-
tion. Platt’s empirical analysis using scaling functions of the
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following form is adopted

pq(yk|x) =
1

1 + exp (AkfL(x) +Bk)
(18)

where pq(yk|x) means the conditional class probability of the
qth classifier, fL(x) is the output decision function of each
ELM, and (Ak, Bk) are parameters estimated for ELM in class
k (1 ≤ k ≤ C). The parameters Ak and Bk are found by
minimization of the cross-entropy error over the validation data.
Note that Ak is negative.

In the proposed framework, LOGP [28], [29] uses the condi-
tional class probabilities to estimate a global membership func-
tion P(yk|x)—a weighted product of these output probabilities.
The final class label y is given according to

y = arg max
k=1,...,C

P(yk|x) (19)

where the global membership function is

P(yk|x) =
Q∏

q=1

pq(yk|x)αq (20)

or

logP(yk|x) =
Q∑

q=1

αqpq(yk|x) (21)

with {αq}Qq=1 being the classifier weights uniformly distributed
over all of the classifiers and Q being the number of pipelines
(classifiers) in Fig. 4(b).

V. EXPERIMENTS

A. Experimental Data

The first experimental data set was collected by the Reflective
Optics System Imaging Spectrometer sensor. The image scene,
with a spatial coverage of 610 × 340 pixels covering the city of
Pavia, Italy, was collected under the HySens project managed
by DLR (the German Aerospace Agency) [41]. The data set has
103 spectral bands prior to water-band removal. It has a spectral
coverage from 0.43- to 0.86-μm and a spatial resolution of
1.3 m. Approximately 42 776 labeled pixels with nine classes
are from the ground truth map. More detailed information of
the number of training and testing samples is summarized in
Table I.

The second data employed were acquired using National
Aeronautics and Space Administration’s Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) sensor and was
collected over northwest Indiana’s Indian Pine test site in
June 1992.1 The image represents a classification scenario with
145 × 145 pixels and 220 bands in 0.4- to 2.45-μm region of
visible and infrared spectrum with a spatial resolution of 20 m.
The scenario contains two-thirds agriculture and one-third for-
est. In this paper, a total of 202 bands are used after removal
of water absorption bands. There are 16 different land-cover

1https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html

TABLE IX
STATISTICAL SIGNIFICANCE FROM THE STANDARDIZED MCNEMAR’S

TEST ABOUT THE DIFFERENCE BETWEEN METHODS

classes, but not all are mutually exclusive in the designated
ground truth map. The number of training and testing samples
is shown in Table II.

The third data were also collected by the AVIRIS sensor,
capturing an area over Salinas Valley, CA, USA, with a spatial
resolution of 3.7 m. The image comprises 512 × 217 pixels
with 204 bands after 20 water absorption bands are removed.
It mainly contains vegetables, bare soils, and vineyard fields.2

There are also 16 different classes, and the number of training
and testing samples is listed in Table III.

B. Parameter Tuning

In the proposed classification framework, some parameters,
such as the number of selected bands of LPE [24], bw of Gabor
filter, (m, r) of the LBP operator, and Gaussian kernel of ELM,
are important; moreover, the patch size of the LBP operator
affects the number of spatial LBP codes as shown in Fig. 3.
Here, a fivefold cross validation based on available training
samples is considered to tune the Gaussian kernel of ELM.3

For either feature or decision-level fusion presented in
Section IV, the optimal parameters of the LBP features fol-
lowed by ELM (namely, LBP-ELM) need to be estimated first.
Take the University of Pavia data for example, (m, r) is fixed
to be (8, 1), and then the impacts from different patch sizes and
numbers of selected bands are investigated as shown in Fig. 5.
Cross validation strategy is employed for tuning these parame-
ters. It can be seen that the accuracy tends to be maximum with
7 or more selected bands and with 21 × 21 patch size. Note
that, for each selected band, the dimensionality (i.e., number
of bins) of the LBP features is m(m− 1) + 3 mentioned in
[19] and [42]. Therefore, more selected bands will increase the
dimensionality of the LBP features and computational com-
plexity. The influence of parameter set (m, r) is then studied. In
LBP, radius r defines the region for selecting circular neighbors,
and m determines the dimensionality of the LBP histogram.

2http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes

3http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
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Fig. 6. Thematic maps resulting from classification for the University of Pavia data set with nine classes. (a) Pseudocolor image. (b) Ground truth map.
(c) SVM: 80.01%. (d) ELM: 79.40%. (e) Gabor-SVM: 87.37%. (f) LBP-SVM: 89.54%. (g) FF-SVM: 96.61%. (h) DF-SVM: 97.85%. (i) Gabor-ELM: 90.37%.
(j) LBP-ELM: 89.49%. (k) FF-ELM: 98.11%. (l) DF-ELM: 99.25%.

Table IV shows the classification accuracies of LBP-ELM with
different (m, r) values. The accuracy tends to be stable when
m is 8 or larger and insensitive to various r values. Due to the
fact that spatially adjacent pixels probably belong to the same
material, the radius r of the LBP operator should be kept small.
Dim represents the dimensionality of the LBP features per band
that is nearly the square of m; Cost (in seconds) indicates the
computational time of LBP-ELM for different m values. Both
Dim and Cost increase when m becomes greater. Based on the
aforementioned observation, (m, r) = (8, 2) is considered to be
optimal in terms of classification accuracy and computational
complexity. Similar tuning experiments using the Indian Pines
data and Salinas data are performed, and relevant results are
obtained. For the Gabor filter, a detailed discussion on its
parameter tuning can be found in [17]. Here, choices of the
number of selected bands and spatial frequency bandwidth
bw are further evaluated for the ELM classifier. The optimal
parameters for LBP and Gabor are summarized in Table V.

C. Classification Results

The performance of the proposed classification methods is
shown in Tables VI–VIII for the three experimental data with
different features and feature combinations, where FF-ELM

indicates feature-level fusion based ELM using Gabor features,
LBP features, and spectral feature concatenation, and DF-ELM
indicates decision-level fusion based ELM that merges the
probability outputs from a classifier ensemble of these three
types of features.

From the results of each individual classifier, with LBP fea-
tures, the performance is much better than that with the original
spectral signatures only; for example, in Table VI, LBP-SVM
offers over 9% higher accuracy than Spec-SVM, and LBP-
ELM yields 10% higher accuracy than Spec-ELM. Moreover,
LBP-feature-based classification methods (i.e., LBP-SVM and
LBP-ELM) achieve much higher classification accuracies than
Gabor-feature-based methods (i.e., Gabor-SVM and Gabor-
ELM) for all three experimental data except LBP-ELM for the
University of Pavia data. This clearly demonstrates that LBP
is a highly discriminative spatial operator. We also include the
experimental results of SVM-MRF [7] as comparison. SVM-
MRF belongs to classification postprocessing strategy by a
refinement of the labeling in a classified map in order to en-
hance its initial accuracy, which is different from the proposed
scheme. From the results, SVM-MRF is superior to Spec-
SVM but inferior to LBP-SVM. In particular, for classes with
small sample size (e.g., Oats), SVM-MRF even deteriorates the
classification accuracy from using original spectral bands only.
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Fig. 7. Thematic maps resulting from classification for the Indian Pines data set with 16 classes. (a) Pseudocolor image. (b) Ground truth map.
(c) SVM: 75.14%. (d) ELM: 73.72%. (e) Gabor-SVM: 86.82%. (f) LBP-SVM: 90.63%. (g) FF-SVM: 91.21%. (h) DF-SVM: 92.21%. (i) Gabor-ELM: 88.18%.
(j) LBP-ELM: 92.03%. (k) FF-ELM: 92.93%. (l) DF-ELM: 93.58%.

Fig. 8. Thematic maps resulting from classification for the Salinas data set with 16 classes. (a) Pseudocolor image. (b) Ground truth map. (c) SVM: 89.48%.
(d) ELM: 90.33%. (e) Gabor-SVM: 91.93%. (f) LBP-SVM: 97.53%. (g) FF-SVM: 98.29%. (h) DF-SVM: 98.67%. (i) Gabor-ELM: 94.16%. (j) LBP-ELM:
98.26%. (k) FF-ELM: 99.12%. (l) DF-ELM: 99.63%.
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Fig. 9. Classification performance of Spec-ELM and DF-ELM with different numbers of training sample sizes for three experimental data. (a) University of
Pavia. (b) Salinas. (c) Indian Pines.

As for feature combination, LBP features are found to
be more compatible with spectral features than Gabor fea-
tures. Specifically, by feature-level fusion of Gabor and spec-
tral features (i.e., Gabor-Spec-SVM and Gabor-Spec-ELM),
classification accuracy is only increased a little or even de-
creased as compared with that of using Gabor features only
(i.e., Gabor-SVM and Gabor-ELM). For example, in Table VI,
Gabor-SVM has an overall classification accuracy of 87.37%
for the University of Pavia data. However, the accuracy of
Gabor-Spec-SVM is decreased to 86.56%. On the other hand,
the classification accuracy of LBP-Spec-SVM is a little higher
than LBP-SVM. Gabor-Spec-ELM offers only 1.4% higher
accuracy than Gabor-ELM, while LBP-Spec-ELM has about
8% higher accuracy than LBP-ELM.

Comparing feature-level fusion with decision-level fusion
(i.e., FF-based methods and DF-based methods), DF-based
methods yield superior performance than FF-based methods
in all three experimental data. This is because feature-level
fusion based methods may not be able to take advantage of
the discriminative power of each individual features. As stated
earlier, feature-level fusion has potential disadvantages, such
as incompatibility of multiple feature sets and much larger
dimensionality. Furthermore, from Tables VI–VIII, ELM gen-
erally has a better performance than SVM. Therefore, ELM-
based classification methods turn out to be very effective
for HSI classification under the small sample size condition.
The standardized McNemar’s test [2] is employed to verify
the statistical significance in accuracy improvement of the
proposed methods. As listed in Table IX, the Z values of
the McNemar’s test larger than 1.96 and 2.58 mean that two
results are statistically different at the 95% and 99% confidence
levels, respectively. The sign of Z indicates whether classifier 1
statistically outperforms classifier 2 (Z > 0) or vice versa. It
further confirms performance improvement from the proposed
classification framework with multiple features, ELM, and de-
cision fusion.

Comparing LBP-Spec-ELM and FF-ELM, the latter out-
performs the former for the University of Pavia data and
Salinas data (also according to the Z values). However, for
the Indian Pines data, the improvement is not statistically
significant. From the tables, quantitative improvement from FF-
ELM (which means LBP features + Gabor features + spectral
features with ELM classifier) is not very large, compared to

LBP-Spec-ELM, and the same phenomenon is for FF-SVM
and LBP-Spec-SVM. This means that, if spatial features from
LBP have been considered, then adding Gabor features may not
be very critical (but performance is not degraded). However,
if comparing Gabor-ELM with FF-ELM (or Gabor-SVM with
FF-SVM), the improvement is always very significant. This
means that local spatial features presented in LBP are more im-
portant. As a consequence, we believe that the overall excellent
classification performance of the proposed framework is mainly
due to the use of LBP and ELM.

Figs. 6–8 provide the classification maps of the aforemen-
tioned classifiers. These maps are consistent with the results
shown in Tables VI–VIII. Maps generated from classification
using spatial features (e.g., Gabor or LBP) are less noisy and
more accurate than those from using spectral features. More-
over, LBP-based methods yield cleaner and smoother maps
than Gabor-based methods. For example, the classification map
of LBP-SVM [Fig. 8(f)] is more accurate than the map of
Gabor-SVM [Fig. 8(e)]. The misclassification of Gabor-SVM
mostly occurred between the class of vinyard untrained and
the class of grapes untrained. This is probably because Gabor
features are global ones that could not well capture local
structures. The classification map of LBP-SVM exhibits spatial
smoothness within every labeled class area.

Fig. 9 shows the influence of different training sample sizes.
For the Indian Pines data, the training size is changed from 1/10
to 1/6 (note that 1/10 is the ratio of the number of training
samples to the total labeled data), while for the University of
Pavia data and the Salinas data, the training sample size is
changed from 10 samples per class to 30 samples. It is obvious
that the classification performance of DF-ELM is consistently
much better than that of Spec-ELM. When ten samples per class
are used for training, DF-ELM even reaches 94% accuracy for
the Salinas data. Therefore, the conclusion is that classification
accuracy can be greatly improved by integrating two comple-
mentary features, i.e., global Gabor features and local LBP
features.

Finally, the computational complexity of the aforementioned
classification methods is reported in Table X. All experi-
ments were carried out using MATLAB on an Intel Core
2 Duo CPU machine with 4 GB of RAM. It should be noted
that SVM is implemented in the libsvm package which uses
MEX function to call C program in MATLAB, while ELM is
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TABLE X
EXECUTION TIME (IN SECONDS) IN THE THREE

EXPERIMENTAL DATA SETS

implemented purely in MATLAB. The computational cost of
texture-feature-based methods is higher than spectral-feature-
based methods due to the fact that they carry the burden of tex-
ture feature extraction. It is worth mentioning that extractions of
Gabor features and LBP features are performed independently
on each selected band, which means that the feature extraction
procedure can potentially go parallel. Thus, the speed of texture
feature extraction can be further improved.

VI. CONCLUSION

In this paper, a framework based on LBP has been proposed
to extract local image features for classification of HSI. Specif-
ically, LBP was implemented to a subset of original bands
selected by the LPE method. Two types of fusion levels (i.e.,
feature and decision levels) were investigated on the extracted
LBP features along with the Gabor features and the selected
spectral bands. A soft-decision fusion process of ELM utilizing
LOGP was also proposed to merge the probability outputs of
multiple texture and spectral features. The experimental results
have demonstrated that local LBP representations are effective
in HSI spatial feature extraction, as they encode the information
of image texture configuration while providing local structure
patterns. Moreover, the decision-level fusion of kernel ELM can
provide effective classification and is superior to SVM-based
methods. Currently, feature-level fusion simply concatenates a
pair of different features (i.e., Gabor features, LBP features, and
spectral features) in the feature space. In our future work, more
sophisticated feature selection approaches will be investigated.
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