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Abstract— Label information plays an important role in a
supervised hyperspectral image classification problem. However,
current classification methods all ignore an important and
inevitable problem—Iabels may be corrupted and collecting clean
labels for training samples is difficult and often impractical.
Therefore, how to learn from the database with noisy labels is a
problem of great practical importance. In this paper, we study the
influence of label noise on hyperspectral image classification and
develop a random label propagation algorithm (RLPA) to cleanse
the label noise. The key idea of RLPA is to exploit knowledge
(e.g., the superpixel-based spectral-spatial constraints) from the
observed hyperspectral images and apply it to the process of label
propagation. Specifically, the RLPA first constructs a spectral-
spatial probability transform matrix (SSPTM) that simulta-
neously considers the spectral similarity and superpixel-based
spatial information. It then randomly chooses some training
samples as “clean” samples and sets the rest as unlabeled samples,
and propagates the label information from the “clean” samples
to the rest unlabeled samples with the SSPTM. By repeating the
random assignment (of ‘“‘clean” labeled samples and unlabeled
samples) and propagation, we can obtain multiple labels for each
training sample. Therefore, the final propagated label can be
calculated by a majority vote algorithm. Experimental studies
show that the RLPA can reduce the level of noisy label and
demonstrates the advantages of our proposed method over four
major classifiers with a significant margin—the gains in terms of
the average overall accuracy, average accuracy, and kappa are
impressive, e.g., 9.18%, 9.58 %, and 0.1043. The MATLAB source
code is available at https://github.com/junjun-jiang/RLPA.

Index Terms— Hyperspectral image classification, label prop-
agation, noisy label, superpixel segmentation.

I. INTRODUCTION
UE to the rapid development and proliferation of
hyperspectral remote sensing technology, hundreds of
narrow spectral wavelengths for each image pixel can be
easily acquired by spaceborne or airborne sensors, such as
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AVIRIS, HyMap, HYDICE, and Hyperion. This detailed
spectral reflectance signature makes accurately discriminating
materials of interest possible [1]-[3]. Because of the numerous
demands in ecological science, ecology management, preci-
sion agriculture, and military applications, a large number of
hyperspectral image classification algorithms have appeared
on the scene [4]-[7] by exploiting the spectral similarity
and spectral-spatial feature [8]-[11]. These methods can be
divided into two categories: supervised and unsupervised. The
former is generally based on clustering first and then manually
determining the classes. By incorporating the label informa-
tion, these supervised methods leverage powerful machine
learning algorithms to train a decision rule to predict the labels
of the testing pixels. In this paper, we mainly focus on the
supervised hyperspectral image classification techniques.

In the past decade, the remote sensing community has
introduced intensive works to establish an accurate hyper-
spectral image classifier. A number of supervised hyper-
spectral image classification methods have been proposed,
such as Bayesian models [12], neural networks [13], random
forest (RF) [14], [15], support vector machine (SVM) [16],
sparse representation classification [17], [18], extreme learning
machine (ELM) [19], [20], and their variants [21]. Benefiting
from elaborately established hyperspectral image databases,
these well-trained classifiers have achieved remarkably good
results in terms of classification accuracy.

However, actual hyperspectral image data inevitably contain
considerable noise [22]: feature noise and label noise. To deal
with the feature noise, which is caused by limited light in
individual bands, and atmospheric and instrumental factors,
many spectral feature noise-robust approaches have been pro-
posed [23]-[26]. Label noise has received less attention than
feature noise, however, it is pervasive due to the following
reasons: 1) when the information provided to an expert is
very limited or the land cover is highly complex, e.g., low
interclass and high intraclass variabilities, it is very easy
to cause mislabeling; 2) the low-cost, easy-to-get automatic
labeling systems or inexperienced personnel assessments are
less reliable [27]; 3) if multiple experts label the same image
at the same time, the labeling results may be inconsistent
between different experts [28]; and 4) information loss (due
to data encoding and decoding and data dissemination) will
also cause label noise.

Recently, the classification problem in the presence of
label noise is becoming increasingly important and many
label noise-robust classification algorithms have been proposed
[29]-[32]. These methods can be divided into two major
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Fig. 1. Schematic of the proposed RLPA-based label noise cleansing process. (Top dashed block) the procedure of SSPTM generation. (Bottom dashed

block) main steps of the RLPA.

categories: label noise-tolerant classification and label noise
cleansing. The former adopts the strategies of bagging and
boosting, or decision-tree-based ensemble techniques, while
the latter aims to filter the label noise by exploiting the prior
knowledge of the training samples. For more details about
the general classification problem with label noise, interested
reader is referred to [33] and the references therein. Generally
speaking, the label noise-tolerant classification model is often
designed for a specific classifier so that the algorithm lacks
universality. In contrast, as a preprocessing method, the label
noise cleansing method is more general and can be used for
any classifier, including the abovementioned noisy label robust
classification model. Therefore, this paper will focus on the
more universal noisy label cleansing approach.

Although considerable literature deals with the general
image classification, there is very little research work on
the classification of hyperspectral images under noisy labels
[22], [34]. However, in the actual classification of hyperspec-
tral images, this is a more urgent and unavoidable problem.
As reported by Pelletier et al.’s study [22], the noisy labels
will mislead the training procedure of the hyperspectral image
classification algorithm and severely decrease the classification
accuracy of land cover. Nevertheless, there is still relatively
little work specifically developed for hyperspectral image
classification when encountered with label noise. Therefore,
the hyperspectral image classification in the presence of noisy
labels is a problem that requires a solution.

In this paper, we propose to exploit the spectral—spatial
constraint-based knowledge to guide the cleansing of noisy
labels under the label propagation framework. In particular,
we develop a random label propagation algorithm (RLPA).
As shown in Fig. 1, it includes two steps: 1) spectral-
spatial probability transform matrix (SSPTM) generation and
2) random label propagation. At the first step, considering that
spatial information is very important for the similarity mea-
surement of different pixels [9], [10], [35], [36], we propose

a novel affinity graph construction method, which simulta-
neously considers the spectral similarity and the superpixel
segmentation-based spatial constraint. The SSPTM can be
generated through the constructed affinity graph. In the second
step, we randomly divide the training database to a labeled
subset (with “clean” labels) and an unlabeled subset (without
labels) and then perform the label propagation procedure on
the affinity graph to propagate the label information from
the labeled subset to the unlabeled subset. Since the process
of random assignment (of clean labeled samples and unla-
beled samples) and propagation can be executed multiple
times, the unlabeled subset will receive the multiple prop-
agated labels. By fusing the multiple labels of many label
propagation steps with a majority vote algorithm (MVA),
it can be expected to cleanse the label information. The
philosophy behind this is that the samples with real labels
dominate all training classes, and we can gradually propa-
gate the clean label information to the entire data set by
random splitting and propagation. The proposed method is
tested on three real hyperspectral image databases, namely,
the Indian Pines, University of Pavia, and Salinas Scene,
and compared with some existing approaches using overall
accuracy (OA), average accuracy (AA), and the kappa metrics.
It is shown that the proposed method outperforms these
methods in terms of objective metrics and visual classification
map.

The main contributions of this paper can be summarized as

follows.

1) We provide an effective solution for hyperspectral image
classification in the presence of noisy labels. It is very
general and can be seamlessly applied to the current
classifiers.

2) By exploiting the hyperspectral image prior, i.e.,
the superpixel-based spectral-spatial constraints, we
propose a novel probability transfer matrix generation
method, which can ensure label information of the
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Fig. 2. Influence of the label noise on the performance (in terms of OA of different classifiers) on the Indian Pines, University of Pavia, and Salinas Scene
databases.

same class propagate to each other and prevent the label
propagation of samples from different classes.

3) The proposed RLPA method is very effective in cleans-
ing the label noise. Through the preprocess of RLPA,
it can greatly improve the performance of the original
classifiers, especially when the label noise level is very
large.

This paper is organized as follows. In Section II, we present
the problem setup. Section III shows the influence of label
noise on the hyperspectral image classification performance.
In Section IV, the details of the proposed RLPA method are
given. Simulations and experiments are presented in Section V,
and Section VI concludes this paper.

II. PROBLEM FORMULATION

In this section, we formalize the foundational definitions
and setup of the noisy label hyperspectral image classification
problem. A hyperspectral image cube consists of hundreds
of nearly contiguous spectral bands, with high spectral reso-
Iution (5-10 mn), from the visible to infrared spectrum for
each image pixel. Given some labeled pixels in a hyper-
spectral image, the task of hyperspectral image classification
is to predict the labels of unseen pixels. Specifically, let
X ={x1,X2...,xy} € RP denote a database of pixels in a
D-dimensional input spectral space, and Y = {1,2,...,C}

denote a label set. The class labels of {xi,x»,...,xy} are
denoted as {y1, y2, ...,yn}. Mathematically, we use a matrix
Y € R¥XC to represent the label, where Y;; = 1 if x;

is labeled as j. In order to model the label noise process,
we additionally introduce another variable Y € RV*C that is
used to denote the noise observed label. Let p denote the label
noise level (also called error rate or noise rate [37]) specifying
the probability of one label being flipped to another, and thus,
pjk can be mathematically formalized as

pik=P(Yu=1|Y;=1), ¥ j#k, and j,ke{l,2,...,C}.
(1)

For example, when p = 0.3, it means that for a pixel x;,
whose label is j, there is a 30% probability to be labeled
as the other class k (k # j). To help make sense of this,
we give the pseudocodes of the noisy label generation process

Algorithm 1 Noisy Label Generation.

1: Input: The clean label matrix Y and the level of label
noise p.

: Output: The noisy label matrix Y.

. [N, C] = size(Y);

Y = Y;

: k=rand(N, 1);

:fori=1to N do

if k(i) < p then
p=£find(Y;. =1);
r = randperm(C);
r(p) =11 \\ [ ] 1is the null set.
Yr),, = 1;

end if

: end for

_ e
Rl A

in Algorithm 1. size(X) is a function that returns the sizes of
each dimension of array X, rand(N) is a function that returns
a random scalar drawn from the standard uniform distribution
on the open interval (0, 1), £ind(X) is a function that locates
all nonzero elements of an array X, and randperm(N) is
a function that returns a row vector containing a random
permutation of the integers from 1 to N inclusive.

In this paper, our main task it to predict the label of an
unseen pixel x;, with the training data X = [x1, X2, ...,Xy]
and the noisy label matrix Y.

II1. INFLUENCE OF LABEL NOISE ON HYPERSPECTRAL
IMAGE CLASSIFICATION

In this section, we examine the influence of label noise
on the hyperspectral image classification problem. As shown
in Fig. 2, we demonstrate the impact of label noise on four
different classifiers: nearest neighborhood (NN), SVM, RE,
and ELM. The noise level changes from 0 to 0.9 at an interval
of 0.1. In Fig. 2, we report the average OA over 10 runs
(more details about the experimental settings can be found in
Section V) as a function of the noise level. The noisy label-
based algorithm (NLA) represents the classification with the
noisy labels without cleansing. From these results, we can
draw the following four conclusions.
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Fig. 3. Distribution of a correct class at different levels of label noise p. First row: distribution of samples with true label 7 under different label noises p

for the University of Pavia database which has nine classes. Second row: distribution of samples with true label 5 under different levels of label noise p for

the Salinas Scene database which has 16 classes.

1) With the increase of the label noise level, the perfor-
mance of all classification methods is gradually declin-
ing. Meanwhile, we also notice that the impact of label
noise is not identical for all classifiers. Among these four
classifiers, RF and ELM are relatively robust to label
noise. When the label noise level is not large, these two
classifiers can obtain a better performance. In contrast,
the NN and SVM are much more sensitive to the label
noise level. The poor results of the NN and SVM can
be attributed to their reliance on the nearest samples and
support vectors.

2) The University of Pavia and Salinas Scene databases
have the same number of training samples (e.g., 50),!
but the decline rate of OA on the University of Pavia
is significantly faster than that of the Salinas Scene
database. This is mainly because the number of classes
in the Salinas database is larger than that of the Uni-
versity of Pavia database (C = 16 versus C = 9).
With the same label noise level and the same number
of training samples, the more the classes are, the greater
the probability of choosing the correct samples is”. This
point is illustrated in Fig. 3. When the noise is not very
large, e.g., p < 0.7, the samples with true labels can
often dominate. In this case, a good classifier can also
get a satisfactory performance.

3) We also show the ideal case that we know the noisy label
samples and remove these training samples to obtain a
noiseless training subset. From the comparisons (please
refer to the same colors in each subfigure), we observe
that there is a considerable room of improvement for

n this analysis, we only paid attention to these two databases in order to
avoid the impact of different numbers of training sample. For the Indian Pines
database, we select 10% samples for each class and the number of training
samples is not the same as that in the two other databases.

2In this situation, for each class (after adding label noise), although the
ratio of samples with the corrected labels to samples with incorrectly labeled
sample is (1 — p/p), this will reduce to (1 — p/p/(C — 1)) when we consider
the ratio of samples with the corrected labels to samples labeled another class.
For example, when p = 0.5, C = 16, the ratio of samples with the corrected
labels to samples labeled another class is 15:1.

L Knowledge
Training Samples

Filter Cleaned Labels Classification

Noisy Labels

Fig. 4. Typical procedure of labels cleansing-based method for hyperspectral
image classification in the presence of label noise.

the strategy of label noise cleansing-based algorithms.
This also demonstrates the importance of preprocessing
based on label noise cleansing.

IV. PROPOSED METHOD
A. Overview of the Framework

To handle the label noise, there are two main kinds of
methods. The first class is to design a specific classifier
that is robust to the presence of label noise, while the other
obvious and tempting method is to improve the label quality
of training samples. Since the latter is intuitive and can be
applied to any of the subsequent classifiers, in this paper,
we mainly focus on how to improve and cleanse the labels.
The main steps are illustrated in Fig. 4. First, the prior
knowledge (e.g., neighborhood relationship or topology) is
extracted from the training set and used to regularize the filter
of label noise. Based on the cleaned labels, we can expect an
intermediate classification result.

The core idea of the proposed label cleansing approach is
to randomly remove the labels of some selected samples and
then apply the LPA to predict the labels of these selected (unla-
beled) samples according to a predefined SSPTM. The philos-
ophy behind this method is that the samples with the correct
labels account for the majority; therefore, we can gradually
propagate the clean label information to the entire samples by
random splitting and propagation. This is reasonable because
when the samples with wrong labels account for the majority,
we cannot obtain the clean label for the samples anyway. As
we know, traditional label propagation methods are sensitive to
noise. This is mainly because when the label contains noise
and there is no extra prior information, it is very hard for
these traditional methods to construct a reasonable probability
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transfer matrix. The label noise can not only be removed, but
it is also likely to be spread. Though our method is also label
propagation-based, we can take full advantage of the priori
knowledge of hyperspectral images, i.e., the superpixel-based
spectral-spatial constraint, to construct the SSPTM, which is
the key to this LPA. Based on the constructed SSPTM, we can
ensure that samples with the same classes can be propagated to
each other with a high probability, and samples with different
classes cannot be propagated.

Fig. 1 shows the schematic of the proposed method. In the
following, we will first introduce how to generate the prob-
ability transfer matrix with both the spectral and spatial
constraints. Then, we present the random label propagation
approach.

B. Construction of Spectral-Spatial Affinity Graph

The definition of the edge weights between the neighbors is
the key problem in constructing an affinity graph. To measure
the similarity between the pixels in a hyperspectral image,
the simplest way is to calculate the spectral difference through
Euclidean distance, spectral angle mapper, spectral correlation
mapper, or spectral information measure. However, these mea-
surements all ignore the rich spatial information contained in a
hyperspectral image, and the spectral similarity is often inac-
curate due to low interclass and high intraclass variabilities.

Our goal is to propagate label information only among
samples with the same category. However, the spectral
similarity-based affinity graph cannot prevent label prop-
agation of similar samples with different classes. In this
paper, we propose a spectral—spatial similarity measurement
approach. The basic assumption of our method is that the
hyperspectral image has many homogeneous regions and pix-
els from one homogeneous region are more likely to be the
same class. Therefore, when defining the edge weights of the
affinity graph, the spectral similarity as well as the spatial
constraint is taken into account at the same time.

1) Generation of Homogeneous Regions: As in many super-
pixel segmentation-based hyperspectral image classification
and restoration methods [38]-[41], we adopt entropy rate
superpixel segmentation (ESR) [42] due to its promising
performance in both efficiency and efficacy. Other state-of-
the-art methods, such as simple linear iterative clustering [43]
can also be used to replace the ERS. Especially, we first
obtain the first principal component (through principal com-
ponent analysis (PCA) [44]) of hyperspectral images, Iy,
capturing the major information of hyperspectral images.
This further reduces the computational cost for superpixel
segmentation. It should be noted that other state-of-the-art
methods, such as [45], can also be equally used to replace the
PCA. Then, we perform ESR on [y to obtain the superpixel
segmentation

T
=% st 2in2,=0, k#g @

k
where T denotes the number of superpixels and 2} is the

kth superpixel. The setting of 7 is an open and challenging
problem and is usually set experimentally. Following [46],
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Fig. 5. Plots of the NNLS according to the iterations of the RLPA (blue

line) under three different noise levels (p = 0.1, 0.2, 0.5). We also show the
initial number (red dashed line) of noisy label samples for comparison.

we also introduce an adaptive parameter setting scheme to
determine the value of 7' by exploiting the texture information.
Specifically, the Laplacian of Gaussian operator [47] is applied
to detect the image structure of the first principal component
of hyperspectral images. Then, we can measure the texture
complexity of hyperspectral images based on the detected edge
image. The more complex the texture of hyperspectral images,
the larger the number of superpixels, and vice versa. Therefore,
we define the number of superpixels as follows:

T =T Ny 3)

= 1Ibase N;

where Ny denotes the number of nonzero elements in the
detected edge image, N; is the size of Iy, i.e., the total
number of pixels in /7, and Tpase is a fixed number for all
hyperspectral images. In this way, the number of superpixels
T is set adaptively based on the spatial characteristics of
different hyperspectral images. In all our experiments, we set
Thase = 2000.

2) Construction of Spectral-Spatial Regularized Probab-
ilistic Transition Matrix: Based on the segmentation result,
we can construct the affinity graph by putting an edge between
pixels within a homogeneous region and letting the edge
weights between pixels from different homogeneous region
being zero
exp (—“m(;g%’)z), Xi,X; € 2k

0, x; € Z; and xj € 2.

W, = “4)

Here, sim(x;, X;) denotes the spectral similarity of x; and x;.
In this paper, we use the Euclidean distance to measure their
similarity

sim(x;, X;) = [Ix; — Xj[l2 )
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Fig. 6. Quantitative classification results in terms of OA of four different methods (NLA, Bagging, iForest, and RLPA) with four different classifiers

(NN, SVM, RF, and ELM) on the Indian Pines (the first row), University of Pavia (the second row), and Salinas Scene (the third row). The average OAs of
four different methods on three databases with four different classifiers are NLA (OA = 73.93%), Bagging (OA = 73.20%), iForest (OA = 77.09%), and

RLPA (OA = 83.11%).

where ||-||, is the I, norm of a vector. In (4), the variance o
is calculated region adaptively through the mean variance of
all pixels in each homogeneous region

0.5
1
2
o=\ > ki —xl3 (6)
k X, Xj €2k
where | - | is the cardinality operator.

Upon acquiring the spectral-spatial regularized affinity
graph, the label information can be propagated between the
nodes through the connected edges. The larger the weight
between two nodes, the easier it becomes to travel. Therefore,
we can define a probability transition matrix T

Wij
N
Zk:l Wi

where T;; can be seen as the probability to jump from node
J to node i.

Tij=P(—1i)= @)

C. Random Label Propagation Through Spectral-Spatial
Neighborhoods

It is a very challenging problem to cleanse the label noise
from the original label space. However, as a hyperspectral
image, we can exploit the availableinformation about the

spectral-spatial knowledge to guide the labeling of adjacent
pixels. Specifically, to cleanse the noise of labels, we propose
an RLPA-based method. We randomly select some noisy train-
ing samples as “clean’ labeled samples and set the remaining
samples as unlabeled samples. The LPA is then used to
propagate the information from the “clean” labeled samples
to the unlabeled samples.

Concretely, we divide the training database X" to a labeled
subset X7 = {x1,X3,...,X;}, whose label matrix is denoted
as S?L = \?(:, 1 )y € R'™C and an unlabeled subset
Xu = {X1+1, X142, . . . ,Xn}, whose labels are discarded. [ is the
number of training samples that are selected for building up
the “clean” labeled subset, | = round(N*7#), where 7 denotes
the “clean” sample proportion in the total training samples and
round(a) is a function that rounds the elements of a to the
nearest integers. It should be noted that we set the first [ pixels
as the labeled subset and the rest as the unlabeled subset for
the convenience of expression. In our experiments, these two
subsets are randomly selected from the training database X.
Now, our task is to predict the labels Yy of unlabeled pixels
Xy based on the graph constructed by the superpixel-based
spectral-spatial affinity graph.

In the same manner as the LPA [48], in this paper,
we present to iteratively propagate the labels of the labeled
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(a) (b)

(d) ®

Fig. 7. RGB composite images and ground reference information of three
hyperspectral image databases. (a) Indian Pines. (b) University of Pavia.
(¢) Salinas Scene.

subset SN(L to the remaining unlabeled subset A7 based on the
spectral-spatial affinity graph. Let F =[f},f, ... fy] € RN*C
be the predicted label. At each propagation step, we expect
that each pixel absorbs a fraction of label information from
its neighbors within the homogeneous region on the spectral—
spatial constraint graph and retains some label information of
its initial label. Therefore, the label of x; at time ¢+ 1 becomes

=0 3 ~ )t ®)

X;,X; €2k

T;f; + (1

where 0 < o < 1 is a parameter that balancing the con-
tribution between the current label information and the label
information received from its neighbors, and yiLU is the ith
column of SN(LU = [SN(L; ?U]. It is worth noting that we set
the initial labels of these unlabeled samples as Yy =0.
Mathematically, (8) can also be rewritten as follows:

F = aTF + (1 —a)Yy. )
Following [49], we learn that (9) can be converged to an
optimal solution:

F* = Il_i)ngoF’ =1-a0)XI-=T)""Y.yp. (10)

F* can be seen as a function that assigns labels for each pixel

(1)

yi = argmax Fj;.
J

Since the initial label and unlabeled samples are generated
randomly, we can repeat the abovementioned process of ran-
dom assignment (of “clean” labeled samples and unlabeled
samples) and propagation, and obtain multiple labels for each
training sample. In particular, we can get different label
matrices ‘?le)j at the sth round, s = 1,2,..., S, where S is
the total number in iterations. We can then calculate the label
assignment matrix | S OONS S CONNN (O] according to (10).

Algorithm 2 RLPA-Based Label Noise Cleansing

1: Input: Training samples {xj,X2,...,Xy}, and the corre-
sponding labels {y1, y2, ...,yn}, parameters # and o.

2: Output: The cleaned labels {yf, y3,...,y%}.

3:for s =1to S do

4: rand(‘seed‘,s);
5. k= randperm(N);
6: | =round(N % 7n);

o (5) < . IxC.
7: Y6 —Y(,k(l.l))e]R ;
8: %I
o: YL<2, - [Y(Ls), v, .

N
10: =(1-—a)X-T)"'Y,;
11: fori=1to N do
12: yl(s) = arg maxF ©)
J

13:  end for
14: end for
15: forz—ltoNd({
16 yr=MVAG, v, )
17: end for

Thus, we obtain S labels for x;, y(l), y(z), e, y(S). The final
propagated label can be calculated by MVA [50].

Because we fully considered the spatial information of
hyperspectral images in the process of propagation, we can
expect that these propagated label results are better than
the original noisy labels in the sense of the proportion that
noisy label samples is decreasing (as the number of iterations
increase). We illustrate this point in Fig. 5, which plots the
number of noisy label samples (NNLS) according to the
iterations of the proposed RLPA under three different noise
levels. With the increase of iteration, the NNLS becomes
less and less. The red dashed line shows the initial NNLS.
Obviously, after a certain number of iterations, the NNLS is
significantly reduced. In our experiments, we fix the value of
S to 100.

Algorithm 2 shows the entire process of our proposed
RLPA-based label cleansing method. MVA represents the
majority vote algorithm that returns the majority of a sequence
of elements.

V. EXPERIMENTS

In this section, we describe how we set up the experiments.
First, we introduce the three hyperspectral image databases
used in our experiments. Then, we show the comparison of
our results with four other methods. Subsequently, we demon-
strate the effectiveness of our proposed SSPTM. Finally,
we assess the influence of parameter settings. We intend to
release our codes to the research community to reproduce our
experimental results and learn more details of our proposed
method from them.

A. Database

In order to evaluate the proposed RLPA method, we use
three publicly available hyperspectral image databases.>

3 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes.
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TABLE I

NUMBER OF SAMPLES IN THE INDIAN PINES, UNIVERSITY OF PAVIA, AND SALINAS SCENE IMAGES. THE BACKGROUND
COLOR Is USED TO DISTINGUISH DIFFERENT CLASSES

Indian Pines “ University of Pavia H Salinas Scene ]
Class Names [ Numbers [| Class Names | Numbers || Class Names [ Numbers |
46
1428
830 Bitumen 1976
237 Bricks
483 Fallow_smooth 2678
Stubble

l
l

Grass-pasture
Grass-trees 730
28
478
20
972
2455
593
205
1265
386
93
10249

Total Number 42776 Total Number

Total Number

TABLE 11
OA, AA, AND KAPPA PERFORMANCE OF FOUR DIFFERENT METHODS WITH FOUR DIFFERENT CLASSIFIERS ON THE INDIAN PINES DATABASE

OA [%] AA [%] Kappa
NLA Bagging iForest RLPA NLA Bagging iForest RLPA NLA  Bagging iForest RLPA
NN 7324 73.01 7434 79.30 69.55 6932 69.50 72.63 0.6966 0.6941  0.7085 0.7635
SVM 8421 8356 83.73 88.60 6137 61.17 6428 7456 0.8176 0.8101 0.8122 0.8695

p  Classifier

01 RF 80.29 79.64  79.11 79.72 68.37 67.09  66.68 66.26 0.7734 0.7656  0.7597 0.7665
ELM 91.35 90.84 90.11 91.66 8492 8426 82.53 83.31 0.9012 0.8954 0.8869 0.9047
NN 6524 65.04  73.08 78.88 62.73 6249  66.14 7232 0.6086 0.6063  0.6925 0.7587
02 SVM 7716 7642 7796 88.01 5493  S1.11 62.78  74.67 0.7340 0.7269  0.7444 0.8627
RF 78.41 78.09  74.03 79.46 6737 6645  61.26 66.12 0.7518 0.7476  0.7006 0.7635
ELM 88.65 8348 8330 91.31 8226 82.06 7344 83.23 0.8704 0.8684 0.8082 0.9006
NN 57.46 5721 7095 78.02 5428 5398 61.75 7031 0.5247 0.5219  0.6688 0.7491
03 SVM 71.10  69.68  76.82 87.03 46.58 4134 5829 71.18 0.6603 0.6462 0.7315 0.8514
RF 7595 7628  72.54 79.13 64.40 64.09 5852 6555 0.7243 0.7276  0.6837 0.7598
ELM 8641 8582 81.51 90.59 7728 76.66 _ 68.72 80.94 0.8447 0.8378  0.7878 0.8925
NN 49.76 4957  68.71 76.73 4782 4753  60.12 69.66 0.4421 0.4400 0.6426 0.7348
04 SVM 65.04 61.72  73.01 8586 39.00 32,61 5725 7121 0.5851 0.5468  0.6867 0.8381
RF 7243 7352 69.59 7879 61.06 61.56 5691 65.61 0.6844 0.6965 0.6494 0.7562
ELM 8293 8249 7691 89.62 7253 71.83  64.61 80.63 0.8050 0.8000 0.7345 0.8815
NN 40.56 4051  64.64 7291 40.06 39.89 5539 6531 0.3458 0.3454  0.5967 0.6923
05 SVM 6191 5450 6896 82.16 3580 2658 5336 64.02 0.5469 0.4538  0.6388 0.7952

RF 66.68 6846  66.08 76.75 57.04 5829 5339 6347 0.6212 0.6403  0.6096 0.7329
ELM 7694 76.82 7243 87.07 67.74 67.54 5894 76.69 0.7373 0.7359  0.6826 0.8522

TABLE III
OA, AA, AND KAPPA PERFORMANCE OF FOUR DIFFERENT METHODS WITH FOUR DIFFERENT CLASSIFIERS ON THE UNIVERSITY OF PAVIA DATABASE

OA [%] AA[%] Kappa
NLA Bagging iForest RLPA NLA Bagging iForest RLPA NLA  Bagging iForest RLPA
NN 7324 73.01 74.34  79.30 69.55  69.32 69.50  72.63 0.6044 0.6019  0.6137 0.6628
SVM 8421 83.56 83.73  88.60 6137 61.17 6428 74.56 0.8120 0.8014 0.7839 0.8718

p  Classifier

“UURE 5020 79.64 7941 7972 6837 67.09 6668 6626 06702 0.6657 06540 06755
ELM 9135 9084 9011 91.66  84.92 84.26 8253 8331  0.8494 0.8472 0.8174 0.8700
NN 6524 6504 73.08 7888 6273 6249 6614 7232 05401 05409 0.6165 0.6461
02 SYM 7706 7642 7796 8801 5493 SLIl 6278 7467 08312 07958 06968 0.8431
RF 7841 7809 7403 7946 6737 6645 6126 66.12  0.6528 0.6543 0.6117 0.6782
ELM  88.65 88.48 83.30 9131 8226 82.06 _73.44 8323  0.8259 0.8218 0.7102 0.8589
NN 5746 5721 7095 7802 5428 5398 6175 7031 04606 04614 05919 0.6146
03 SYM  7LI0 69.68 7682 8703 4658 4134 5829 7LIS 07383 0.6780 06744 08376
RF 7595 7628 7254 79.13 6440 6409 5852 6555  0.6184 0.6191 05839 0.6597
ELM 8641 8582 8151 90.59 7728 76.66 _68.72 80.94  0.7806 0.7796 _0.6699 _0.8366
NN 4976 4957 6871 7673 4782 47.53  60.12 69.66  0.3907 0.3896 0.5626 0.5716
04 SYM 6504 6172 7301 8586 3900 3261 5725 7121 07132 06165 06375 07892
RF 7243 7352 6959 7879  61.06 6156 5691 6561 05675 0.5816 05551 0.6350
ELM 8293 8249 7691 89.62 7253 71.83 6461 8063  0.7335 0.7319 0.6358 0.8019
NN 4056 4051 6464 7291 4006 39.89 5539 6531 03051 03054 05215 0.5054
05 SYM 6191 5450 6896 8216 3580 2658 5336 6402 05309 02953 05939 07209
RF 6668 6846 6608 7675  57.04 5829 5339 6347 04850 04963 05265 05714
ELM 7694 7682 7243 87.07 6774 67.54 5894 7669 _ 0.6570 0.6590 05917 0.7349
1) The first hyperspectral image database is the Indian Pine, The scene is 145 x 145 pixels with 20-m spatial res-
covering the agricultural fields with regular geometry, olution and 220 bands in the 0.4-2.45-m region. In this

was acquired by the AVIRIS sensor in June 1992. paper, 20 low SNR bands are removed and a total
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TABLE IV
OA, AA, AND KAPPA PERFORMANCE OF FOUR DIFFERENT METHODS WITH FOUR DIFFERENT CLASSIFIERS ON THE SALINAS SCENE DATABASE

. OA [%] AA [%] Kappa

p  Classifier N ; N A - -
NLA Bagging iForest RLPA NLA Bagging iForest RLPA NLA  Bagging iForest RLPA
NN 78.07  77.94 85.10 86.45 8395 83.94 91.72  93.01 0.7579 0.7564  0.8350 0.8497
0.1 SVM 8444 8742 88.22 9143 91.74  93.09 93.14 9545 0.8272  0.8598  0.8694 0.9047
RF 86.97 87.14 86.71  88.09 92.18 9243 92.33 9327 0.8553 0.8572  0.8526 0.8677
ELM 92.69  92.57 90.54 92.96 96.31  96.24 95.20 96.58 0.9186 09173 0.8949 0.9216
NN 70.22  70.01 8493 85.89 75.12  74.96 91.33 9276 0.6721 0.6698  0.8331 0.8436
02 SVM 85.87  87.58 88.24 91.13 9130  92.59 93.16 9520 0.8415 0.8614 0.8694 0.9013
RF 85.54  86.06 8598 87.82 90.54  90.95 91.66 93.12 0.8395 0.8453  0.8445 0.8648
ELM 9227  92.10 89.63 92.82 9592  95.82 94.59 96.49 0.9139 09121 0.8848 0.9201
NN 60.85  60.60 84.08 84.79 6544 6521 90.26 92.14 0.5710 0.5685 0.8237 0.8318
03 SVM 76.62 7473 8599 90091 89.47  83.08 91.48 95.12 0.7437 0.7214  0.8445 0.8989
RF 82.59  83.61 84.69 87.12 87.52  88.61 90.34 92.78 0.8070 0.8182  0.8301 0.8571
ELM 91.34 9133 88.22 92.56 95.07 _ 95.10 93.52  96.31 0.9036 0.9035  0.8692 0.9172
NN 5399 53.54 83.72 83.27 57.83 5742 8991 91.28 0.4958 0.4911 0.8197 0.8150
0.4 SVM 77.52  79.24 84.79  90.08 8598 8548 90.52 9437 0.7525 0.7692  0.8313 0.8897
RF 79.03  80.42 8427 86.47 83.62 85.28 90.01 92.54 0.7675 0.7829  0.8256 0.8500
ELM 90.44  90.33 86.89 92.03 94.17  94.15 92.69 96.10 0.8936  0.8924 0.8545 0.9114
NN 4486  44.55 82.89 80.79 47.17  47.00 88.53 89.22 0.3978 0.3945  0.8104 0.7879
05 SVM 75.03  75.08 84.52 89.28 7597 73.22 89.54 94.45 0.7206 0.7206  0.8281 0.8808
RF 73.19  75.05 83.25 85.20 77.06  79.53 88.62  91.50 0.7034 0.7238  0.8143 0.8360
ELM 89.39  89.03 86.39 91.55 9326 93.10 91.70 95.67 0.8819 0.8779  0.8490 0.9061

Fig. 8. Classification maps of four different methods (each row represents different methods) with four different classifiers (each column represents different
classifiers) on the Indian Pines database when (a) p = 0.1 and (b) p = 0.5. From the first row to the last row: LNA, Bagging, iForest, and RLPA, from the
first column to the last column: NN, SVM, RF, and ELM. Please zoomed-in view on the electronic version to see a more obvious contrast.

2)

TABLE V

AVERAGE PERFORMANCE IN TERMS OF OA, AA, AND KAPPA
OF NLA, BAGGING, IFOREST, AND RLPA.

Methods OA [%] | AA [%] | Kappa
NLA 73.93 73.26 0.6951
Bagging 73.20 71.94 0.6865
iForest 77.09 78.04 0.7293
RLPA 83.11 82.84 0.7994

of 200 bands are used for classification. This database
contains 16 different land-cover types, and approxi-
mately 10249 labeled pixels are from the ground-truth
map. Fig. 7(a) shows an infrared color composite image,
and Fig. 7(d) shows the ground reference data.

The second hyperspectral image database is the Univer-
sity of Pavia, covering an urban area with some buildings
and large meadows, which contains a spatial coverage of

3)

610 x 340 pixels and is collected by the ROSIS sensor
under the HySens project managed by DLR (the German
Aerospace Agency). It generates 115 spectral bands of
which 12 noisy and water-bands are removed. It has
a spectral coverage from 0.43-0.86 um and a spatial
resolution of 1.3 m. Approximately 42776 labeled pixels
with nine classes are from the ground-truth map, details
of which are provided in Table I. Fig. 7(b) shows an
infrared color composite image, and Fig. 7(e) shows the
ground reference data.

The third hyperspectral image database is the Salinas
Scene, capturing an area over Salinas Valley, CA, USA,
was collected by the 224-band AVIRIS sensor over
Salinas Valley, CA, USA. It generates 512 x 217 pixels
and 204 bands over 0.4-2.5 xm with a spatial resolution
of 3.7 m, of which 20 water absorption bands are
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Fig. 9. Classification maps of four different method (each row represents different methods) with four different classifiers (each column represents different
classifiers) on the University of Pavia database when (a) p = 0.1 and (b) p = 0.5. From the first row to the last row: LNA, Bagging, iForest, and RLPA,

from the first column to the last column: NN, SVM, RF, and ELM.

removed before classification. In this image, there are
approximately 54 129 labeled pixels with 16 classes
sampled from the ground-truth map, details of which
are provided in Table I. Fig. 7(c) shows an infrared
color composite image, and Fig. 7(f) shows the ground
reference data.

For the three databases, the training and testing samples
are randomly selected from the available ground-truth maps.
The class-specific numbers of the labeled samples are shown
in Table I. For the Indian Pines database, 10% of the samples
are randomly selected for training, and the rest is used for
testing. As for the other databases, i.e., University of Pavia
and Salinas Scene, we randomly choose 50 samples from each
class to build the training set, leaving the remaining samples
from the testing set.

As discussed previously, we add random noise to the labels
of training samples with the level of p. In other words,
each label in the training set will flip to another with the
probability of p. In our experiments, we only show the
comparison results of different methods with p < 0.5. That is,
given a labeled training database, we assume that more than

half of the labels are correct, because the label information
is provided by an expert and the labels are not random.
Therefore, there are reasons to make such an assumption.
Specifically, in our experiments, we test the typical cases,
where p = 0.1,0.2,0.3,0.4,0.5.

B. Result Comparison

To demonstrate the effectiveness of the proposed method,
we test our proposed framework with four widely used clas-
sifiers in the field of hyperspectral image calcification, which
are NN [51], SVM [16], RF [14], [15], and ELM [19], [20].
Since there is no specific noisy label classification algorithm
for hyperspectral images, we carefully design and adjust some
label noise-robust general classification methods to adapt our
framework. In particular, the four comparison methods used
in our experiments are the following.

1) Noisy Label-Based Algorithm: We directly use the train-
ing samples and their corresponding noisy labels to train
the classification models using the abovementioned four
classifiers.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: HYPERSPECTRAL IMAGE CLASSIFICATION IN THE PRESENCE OF NOISY LABELS 11

(@)

(b)

Fig. 10. Classification maps of four different methods (each row represents different methods) with four different classifiers (each column represents different
classifiers) on the Salinas Scene database when (a) p = 0.1 and (b) p = 0.5. From the first row to the last row: LNA, Bagging, iForest, and RLPA, from the
first column to the last column: NN, SVM, RF, and ELM.

2)

3)

Bagging-Based Classification (Bagging) [52]: The
approach of [52] first produces different training subsets
by resampling (70% of training samples are selected
each time) and then fuses the classification results of
different training subsets.

Isolation Forest (iForest) [53]: This is an anomaly detec-
tion algorithm, and we apply it to detect the noisy label
samples. In particular, in the training phase, it constructs
many isolation trees using subsamples of the given
training samples. In the evaluation phase, the isolation
trees can be used to calculate the score for each sample

to determine the anomaly points. Finally, these samples
will be removed when their anomaly scores exceed the
predefined threshold.

4) RLPA: The proposed random label propagation-based
label noise cleansing method operates by repeating the
random assignment and label propagation and fusing the
label information by different iterations.

The NLA can be seen as a baseline, and bagging-based
method [52] is a classification ensemble strategy that has been
proven to be robust to label noise [54]. iForest [53] can be
regarded as label cleansing processing as our proposed method
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in the sense that the goals of these methods are to remove the
samples with noisy labels. In our experiments, we carefully
tuned the parameters of the four classifiers to achieve the best
performance under different comparison methods. Specifically,
set all parameters to a larger range, and the reported results
of different comparison methods with different classifiers are
the best when setting appropriate values for the parameters.

Generally speaking, the OA, AA, and the kappa coefficient
can be used to measure the performance of different classifica-
tion results. In Tables II-IV, we report the OA, AA, and kappa
scores of four different methods with four different classifiers
on the Indian Pines, University of Pavia, and Salinas Scene
databases. The average OA, AA, and kappa of LNA, Bagging,
iForest, and RLPA for all cases are reported in Table V.
To make the comparison more intuitive, we plot their OA
performance in Fig. 6.* In the legend of each subfigure,
we also give the average OA of all five noise levels of different
methods. From these results, we can draw the following
conclusions.

1) When compared with using the original training samples
with label noise (i.e., the NLA method), the Bagging
method cannot boost the performance. This indicates
that resampling the training samples cannot improve
the performance of the algorithm in the presence of
noisy labels. Moreover, the strategy of resampling
will result in decreasing the total amount of training
samples so that the classification performance may also
be degraded, e.g., the performance of Bagging is even
worse than NLA.

2) The performance of iForest (the cyan lines) is a classifier
and database-dependent. Specifically, it performs well
on the NN for all three databases, but it may be even
worse than the NLA and Bagging methods. From
the average result, iForest can gain more than three
percentages when compared with NLA. It should be
noted that as an anomaly detection algorithm, iForest
has a bottleneck that it can only detect the noise
samples, but it cannot cleanse its label.

3) The proposed RLPA method (the red lines) can
obtain a better performance (especially when the
noise level is large) than all comparison methods in
almost all situations. The improvement also depends
on the classifier, e.g., the gain of RLPA over NLA
can reach 10% for the NN and SVM classifiers and
will reduce to 3% for the RF and ELM classifiers.
Nevertheless, the gains in terms of the average OA,
AA, and kappa of our proposed RLPA method over
the NLA are still very impressive, e.g., 9.18%, 9.58%,
and 0.1043.

To further demonstrate the classification results of different
methods, in Figs. 8-10, we show the visual results in terms
of the classification map on two noise levels (p = 0.1 and
p = 0.5) for the three databases. For each subfigure, each
row represents different methods and each column represents
different classifiers. Specifically, LNA, Bagging, iForest, and

4Since these three measurements of OA, AA, and kappa are consistent with
each other, we only plot the results in terms of OA in all our experiments.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

1 1 1

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2
— RLPA with SSPTM — RLPA with SSPTM

RLPA with SPTM — RLPAwith SPTM

0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

() (®) (©

Fig. 11.  Classification accuracy statistics using the RLPA with/without
spatial constraint on the three databases. The horizontal axis represents the OA
scores, while the vertical axis marks the percentage of larger value than the
score marked on the horizontal axis. (a) Indian Pines. (b) University of Pavia.
(¢) Salinas.
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Fig. 12.  Visualizations of the probability transfer matrices of (a) SPTM
and (b) SSPTM. Note that we rescale the intensity values of the matrix for
observation.

RLPA are from the first row to the last row, and NN,
SVM, RF, and ELM are from the first column to the last
column. When compared with LNA, Bagging, and iForest,
the proposed RLPA with an ELM classifier achieves the
best performance. However, the classification maps of the
RLPA may result in a salt-and-pepper effect especially in
the smooth regions, whose pixels should be the same class.
This is mainly because the RLPA is essentially a pixelwise
method, and the neighbor pixels may produce inconsistent
classification results. To alleviate this problem, the approach of
incorporating spatial constraint to fuse the classification result
of RLPA can be expected to obtain the satisfying results.

C. Effectiveness of SSPTM

To verify the effectiveness of the proposed spectral—spatial
probability transform matrix generation method, we compare
it to the baseline that the similarity between two pixels
is only calculated by their spectral difference. To compare
the results of SSPTM-based method and spectral probability
transform matrix-based method (SPTM), in Fig. 11, we report
the statistical curves of OA scores of four comparison methods
with four classifiers, i.e., a vector containing 20 elements,
whose values are the OA of different situations. It shows a
considerable quantitative advantage of SSPTM compared with
SPTM.

To further analyze the effectiveness of introducing the spa-
tial constraint, in Fig. 12, we show the probability transform
matrices with/without a spatial constraint. The two matrices
are generated on the University of Pavia database that includes
9 classes and 50 training samples per class. From the results,
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Fig. 13. Classification result in terms of average OA on the three databases
with an ELM classifier under p = 0.3 according to different values of
o and 5, whose values vary from 0.1 to 0.975.

we observe that the SSPTM is a sparse and highly diagonaliza-
tion matrix, and the SPTM is a dense and nondiagonal matrix.
That is to say, the SSPTM does make sense for recovering the
hidden structure of data and guarantees the label propagation
only within the same class. In contrast to SPTM which has
many edges between samples with different labels (please refer
to the nondiagonal blocks), it may wrongly propagate the label
information.

D. Parameter Analysis

From the framework of RLPA, we learn that there are
two parameters determining the performance of the proposed
method: 1) the parameter # denoting the ‘“clean” sample
proportion in the total training samples and 2) the parame-
ter a used to balance the contribution between the current
label information and the label information received from
its neighbors. In this paper, we empirically set their values
by grid search. Fig. 13 shows the influence of these two
parameters on the classification performance in terms of OA.
It should be noted that we only give the average results of the
RLPA on the three databases with an ELM classifier under
p = 0.3. In fact, we can obtain the similar conclusions
in other situations. From the results, we observe that too
small values of 7 or & may be inappropriate. This indicates
that “clean” labeled samples play an important role in label
propagation. If too few “clean” labeled samples are selected
(n is small), the label information will be insufficient for the
subsequent effective label propagation process. At the same
time, as the value of # becomes larger, the performance also
starts to deteriorate. This is mainly because too large value of
n will make the label propagation meaningless in the sense
that a very few samples need to absorb label information
from its neighbors. In our experiments, we fix # to 0.7.
Similarly, the value of a cannot be set too large or too small.
A too small value of a implies that the final labels are com-
pletely determined by the selected “clean” labeled samples.
At the same time, a too large value of a will make it very
difficult to absorb label information from the labeled samples.
In our experiments, we fix a to 0.9.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study a very important but pervasive
problem in practice—hyperspectral image classification in the
presence of noisy labels. The existing classifiers assume,
without exception, that the label of a sample is completely
clean. However, due to the lack of information, the subjec-
tivity of human judgment or human mistakes, label noise
inevitably exists in the generated hyperspectral image data.
Such noisy labels will mislead the classifier training and
severely decrease the classification performance. Therefore,
in this paper, we develop a label noise cleansing algorithm
based on the RLPA. The RLPA can incorporate the spectral—
spatial prior to guide the propagation process of label infor-
mation. Extensive experiments on three public databases are
presented to verify the effectiveness of our proposed approach,
and the experimental results demonstrate much improvement
over the approach of directly using the noisy samples.

In this paper, we simply use random noise to generate
noisy labels. For all classes, they have the same percentage
of samples with label noise. However, in real conditions,
label noise may be sample-dependent, class-dependent, or even
adversarial. For example, when the mislabeled pixels come
from the edge of the region or are similar to one another,
such noise will be more difficult to handle. Therefore, how to
deal with real label noise will be our future work.
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