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Noise Robust Face Image Super-Resolution
Through Smooth Sparse Representation
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Abstract—Face image super-resolution has attracted much
attention in recent years. Many algorithms have been pro-
posed. Among them, sparse representation (SR)-based face image
super-resolution approaches are able to achieve competitive
performance. However, these SR-based approaches only per-
form well under the condition that the input is noiseless or
has small noise. When the input is corrupted by large noise,
the reconstruction weights (or coefficients) of the input low-
resolution (LR) patches using SR-based approaches will be
seriously unstable, thus leading to poor reconstruction results.
To this end, in this paper, we propose a novel SR-based face
image super-resolution approach that incorporates smooth pri-
ors to enforce similar training patches having similar sparse
coding coefficients. Specifically, we introduce the fused least
absolute shrinkage and selection operator-based smooth con-
straint and locality-based smooth constraint to the least squares
representation-based patch representation in order to obtain sta-
ble reconstruction weights, especially when the noise level of the
input LR image is high. Experiments are carried out on the
benchmark FEI face database and CMU+MIT face database.
Visual and quantitative comparisons show that the proposed face
image super-resolution method yields superior reconstruction
results when the input LR face image is contaminated by strong
noise.

Index Terms—Face image, fused least absolute shrinkage
and selection operator (LASSO), smoothness constraint, sparse
representation (SR), super-resolution.

I. INTRODUCTION

W ITH the deepening of urbanization process, urban
security issues become more and more serious in

major cities of many countries around the world. In order
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to maintain social stability, city surveillance camera system
(e.g., closed circuit television system) has been established
in most cities. Although the city surveillance camera network
is expanding gradually, the role it can play is often limited.
Actually, the surveillance cameras are normally installed to
cover a large field of view and the captured images are of
low-resolution (LR) and low-quality. The interested persons of
perpetrators and potential eyewitnesses are often in the form
of a few pixels and lack of detailed features, which may not be
helpful for image analysis and recognition [1], [2]. Therefore,
how to transcend the limitations of surveillance camera system
and reconstruct a high-resolution (HR) and high-quality face
from an LR surveillance image is a problem that is exigent to
be solved.

Super-resolution reconstruction is of great importance for
vision applications, and numerous algorithms have been pro-
posed in recent years. Generally speaking, they can be catego-
rized based on their tasks, i.e., generic image super-resolution
with self-similarity prior [3]–[7], sparsity prior [8]–[10], opti-
cal flow prior [11] or gradient prior [12], and domain-specific
image super-resolution focus on specific classes of images
such as faces [13]–[16] and text images [2], [17], [18]. In this
paper, we mainly focus on face image super-resolution (also
called face hallucination), which refers to inducing an HR face
image from an LR face image by learning the relationship
between the HR and LR training pairs, and thus providing
more facial details for the following face synthesis and anal-
ysis [19], [20]. It is a hot research topic in image processing
and computer vision [13]. Baker and Kanade [21] proposed
“face hallucination” to infer the HR face image from an input
LR one based on a parent structure with the assistance of LR
and HR training samples. Rather than using the whole or parts
of a face, the super-resolution is established based on train-
ing images (pixel by pixel) using Gaussian, Laplacian, and
feature pyramids. Since the introduction of this paper, a num-
ber of different methods and models have been introduced for
estimating the image information lost in the image degrada-
tion process [22], [23]. Liu et al. [24] described a two-step
approach integrating a global parametric Gaussian model and
a local nonparametric Markov random field (MRF) model.
The first step is to learn a global linear model to construct
the relationship between HR face images and the correspond-
ing smoothed and down-sampled LR ones. The second step is
to model the residue between an original HR image and the
reconstructed HR image by a nonparametric MRF model.

Following [21] and [24], progress has been made in esti-
mating an HR face image from a single LR face image with a

2168-2267 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:junjun0595@163.com
mailto:ysjxw@hotmail.com
mailto:jyma2010@gmail.com
mailto:chenchen870713@gmail.com
mailto:wangzwhu@whu.edu.cn
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

training set of HR and LR image pairs. They usually construct
the target HR face either globally using holistic face image or
locally using patches.

Global face-based super-resolution methods utilize differ-
ent face representation models such as principal component
analysis (PCA) [25], kernel PCA [26], canonical correlation
analysis (CCA) [27], locality preserving projections [28], and
non-negative matrix factorization [8], to model an input LR
face image using a linear combination of LR prototypes in the
training set. Then, the target HR face image is reconstructed
by replacing the LR training images with the corresponding
HR ones, while using the same coefficients. However, global
face-based super-resolution methods cannot well recover the
fine individual details of an input face which are essential for
the following face recognition task.

By decomposing a holistic face image into small patches,
local patch-based face image super-resolution methods
have strong synthesis ability and can capture more facial
details. Therefore, in this paper, we mainly focus on the
local patch-based methods. For a comprehensive overview
of face image super-resolution techniques, readers are
referred to [13].

The basic assumption of local patch-based face image
super-resolution methods is that if two LR face patches are
similar, then their corresponding HR ones are also simi-
lar, i.e., the high-frequency details lost in an LR image can
be learned from a training set of LR and HR image pairs.
Therefore, once obtaining the relationship between the LR
and HR patches, we can use the learned relationship (explicit
regressions or implicit representations) to predict the target
HR patch of the observation LR patch. As for the explicit
regression-based methods, they aim at learning the direct
mapping function from the LR space to the corresponding
HR space [29]–[31]. For the implicit representation-based
methods, Freeman et al. [32] presented an example-based
super-resolution approach to select the nearest patch by mod-
eling the relationship between local regions of images and
scenes using the patch-wise Markov network learned from
the training set. This approach is computationally intensive
and sensitive to training set. To increase the flexibility of the
nearest patch selection, Chang et al. [33] introduced the neigh-
bor embedding (NE) algorithm which is inspired by the idea
of locally linear embedding [34]. It predicts the HR patch
by combining the HR training patches in a linear manner.
Recently, the coupled spaces learning techniques have been
introduced to model the relationship between the LR and HR
images in a common coherent subspace from the perspective
of manifold alignment. For example, Li et al. [35] performed
face image super-resolution on a synthesized common mani-
fold by two explicit mappings. Huang et al. [27] used the CCA
to project both LR and HR training patches onto a common
coherent subspace. An and Bhanu [36] further extended CCA
to 2-D CCA. Jiang et al. [37] proposed a coupled-layer NE
for face super-resolution.

To incorporate more face structure priors, Ma et al. [15]
proposed a position-patch-based framework. It constructs
image patches using all the training patches based on least
squares representation (LSR). To overcome the unstable

solution of LSR, sparsity constraint is imposed on the patch
representation, leading to the sparse representation (SR)-
based face image super-resolution methods [8], [38], [39].
Wang et al. [40], [41] introduced a weighted SR for face image
super-resolution. In [42], a novel SR method was developed
by exploiting the support information on the representation
coefficients. This method is further extended to the coupled
space while preserving the local manifold structure of the HR
data space [30]. Gao and Yang [43] proposed to learn the rela-
tionship between LR and HR training samples in the SR space
rather than in the original data space. In [44], a Cauchy reg-
ularized SR method was proposed to represent the input LR
patch. Though SR has achieved great success in face image
super-resolution problem, one challenge for SR-based methods
is their sensitivity to noise. To further explore the relationship
between the local pixels, Shi et al. [45] proposed to combine
the global reconstruction model, the local sparsity model and
the pixel correlation model into a unified regularization frame-
work and presented a novel two-phase framework for the face
image super-resolution problem. Noise in the LR observation
image has a great impact on the reconstruction weights of SR-
based methods. To address this problem, Jiang et al. [46], [47]
introduced a locality constraint to the patch representation
model and developed an efficient face image super-resolution
algorithm using locality-constrained representation (LcR). By
introducing the locality constraint, the impact of noise to face
image super-resolution performance can be reduced that has
also been certified in [48].

The fused least absolute shrinkage and selection oper-
ator (LASSO) penalty introduced in [49] can enforce a
sparse solution in both the coefficients and the differences
between neighboring coefficients through an L1 norm regular-
izer, which is desirable for applications such as prostate cancer
analysis [49], image denoising [50], [51], and time-varying
networks [52]. It encourages the sparsity of the regression
coefficients and shrinks the differences between neighboring
coefficients toward zero simultaneously. As such, the method
achieves both sparseness and smoothness in the regression
coefficients.

A. Motivation and Contributions

The aforementioned local patch-based approaches only con-
sider certain aspects of the patch representation, thus the
representation is not optimal. For example, SR-based meth-
ods focus on the sparsity but neglect the locality prior, while
LcR considers the locality but takes no consideration of the
smoothness of the reconstruction weights. In addition, for
LcR [46], [47], it may assign very different reconstruction
weights to two similar patches, which is unreasonable in prac-
tice. To obtain smooth reconstruction weights, in this paper
we incorporate the fused LASSO term and locality regular-
ization into the patch representation objective function, and
propose a novel face image super-resolution method based on
smooth SR (SSR). The combination of fused LASSO term
and locality regularization is able to enforce similar patches
having similar reconstruction weights, while the sparsity con-
straint makes the reconstruction weights sparse. As a result,
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Fig. 1. Plots of reconstruction weights of one randomly selected patch associated with different patch representation methods. The first and the second rows
are the plots of LcR [46] and SR [8] methods: the horizontal axis of the first column is the index of the original training images without sorting, while these
of the second and the third are the indexes of the original training images with sorting by Euclidean distance and cosine distance, respectively. The third row
is the plot of reconstruction weights according to the sorted training patch index.

the reconstruction weights of SSR achieve smoothness and
sparsity simultaneously.

Fig. 1 shows the reconstruction weights of an image patch
according to the sorted training patch index by the distance
(we use Euclidean distance or cosine distance as a similar-
ity measure) to the input patch (for more details about the
experimental configuration, please refer to the experiment sec-
tion). It is worth noting that smaller index means the training
patch is closer (or more similar) to the input patch. From
the plots in this figure, we can see that SR-based method
has no regularity. The reconstruction weights are randomly
distributed among the LR training patch samples. Although
the general trend of the reconstruction weights of LcR is
decreasing with the decreasing similarity between the input
patch and the training patch, the reconstruction weights are
not smooth [e.g., some training patches that are far away from
(or dissimilar to) the input patch still have large reconstruc-
tion weights]. Our proposed SSR method can obtain smooth
reconstruction weights. Moreover, the training patches that
are similar to the input patch are given large reconstruction
weights while the training patches that are far away from the
input one are assigned with small reconstruction weights. This
can be attributed to the incorporating of fused LASSO prior
and locality prior simultaneously, which makes similar patches
in the training set have similar weights and similar patches to
the input one have large weights, thus leading to a smooth
representation.

The contributions of this paper are threefold.
1) Based on the assumption that similar training patches

have similar coding coefficients, we propose an SSR
model which considers the smoothness and sparsity of
the reconstruction weights simultaneously.

2) To the best of our knowledge, it is the first time
that fused LASSO is introduced to face image super-
resolution problem.

3) Extensive experimental results verified the superior per-
formance of our proposed method compared to the state-
of-the-art face super-resolution algorithms, especially
under the noise condition.

B. Organization of This Paper

The remainder of this paper is organized as follows.
Section II introduces notations used in this paper and gives
the formulations of patch-based face image super-resolution
method. Section III first reviews the SR method, and then
describes the proposed patch SSR model and shows details of
face image super-resolution via SSR. Section IV presents the
experimental results and analysis. Finally, Section V concludes
this paper.

II. NOTATIONS AND FORMULATIONS

Given an LR observation image, the goal of face image
super-resolution is to construct its HR version by learning
the relationship between the LR and HR training sets. As
for a local patch-based method, we divide the LR observation
image IL

t into M patches, {xt(p, q)|1 ≤ p ≤ U, 1 ≤ q ≤ V},
according to the predefined patch_size and overlap pixels.
xt(p, q) denotes a small patch at the position (p, q) of the
LR observation image xt, U represents the patch number in
each column, and V represents the patch number in each
row. Therefore, we have M = UV . In the same way we
divide all the N LR and HR training face image pairs,
IL = {IL

1 , IL
2 , . . . , IL

N} and IH = {IH
1 , IH

2 , . . . , IH
N }, into M

patches, respectively, {xi(p, q)|1 ≤ p ≤ U, 1 ≤ q ≤ V}N
i=1

and {yi(p, q)|1 ≤ p ≤ U, 1 ≤ q ≤ V}N
i=1. xi(p, q) denotes a

small patch at the position (p, q) of the ith training sample in
the LR training set, while yi(p, q) denotes a small patch at the
position (p, q) of the ith training sample in the HR training
set. For more details about the dividing strategy, please refer
to [46]. For the LR observation patch xt(p, q) located at the
position (p, q), e.g., the nose patch as shown in Fig. 2, its
HR patch yt(p, q) is estimated using the LR and HR train-
ing image patch pairs at the same position [when it does not
lead to a misunderstanding, we drop the term (p, q) for con-
venient from now on]. In particular, they first represent the
given LR patch xt with the LR training image patch set {xi}N

i=1,
and then transform the representation coefficients w (i.e., the
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Fig. 2. Face image dividing according to positions. The left column is the
input LR face, the middle column is the LR training face image set and the
right column is the HR training face image set.

outcome of different representation methods) to faithfully rep-
resent each corresponding (unknown) HR patch yt by replacing
the LR training image patch set {xi}N

i=1 with its HR counterpart
{yi}N

i=1. To handle the compatibility problem between adjacent
patches, simple averaging in the overlapping regions is per-
formed. From the process presented above, we learn that the
key issue of these local patch-based methods is to obtain the
optimal representation coefficients w, and this section reviews
some existing representation schemes.

Given an LR observation patch xt on the input LR face
image, LSR uses patches from all training samples at the same
position to represent it [15]

xt =
N∑

i=1

wixi + ε (1)

where ε is the reconstruction error. The optimal weight can
be solved by the following constrained least square fitting
problem:

min

∥∥∥∥∥xt −
N∑

i=1

wixi

∥∥∥∥∥

2

2

, s.t.
∑N

i=1
wi = 1 (2)

where w = [w1, w2, . . . , wN]T is the optimal N-dimensional
weight vector for the LR observation patch xt. The least square
estimation can produce biased solutions when the dimension
of the patch is smaller than the size of the training image
set [38].

III. PROPOSED SMOOTH SPARSE

REPRESENTATION-BASED FACE

IMAGE SUPER-RESOLUTION

A. Sparse Representation

To solve the biased patch representation problem, a possi-
ble solution is to impose some regularization terms onto it.
Inspired by the compressed sensing theory [53]–[55], which
has been proved to be effective in many applications such
as feature extraction [56], [57], and classification [58]–[60].
Yang et al. [8] introduced the sparsity constraint and used a
small subset of patches to represent LR observation patch xt

instead of performing collaboratively over the whole training
samples set

JSR(w) =
∥∥∥∥∥xt −

N∑

i=1

wixi

∥∥∥∥∥

2

2

, s.t. ‖w‖1 < ε. (3)

Lagrange multipliers offer an equivalent formulation of the
above equation

JSR(w) =
∥∥∥∥∥xt −

N∑

i=1

wixi

∥∥∥∥∥

2

2

+ λ‖w‖1 (4)

where ‖ • ‖1 denotes the �1-norm, and λ is the regularization
parameter that balances the contribution of the reconstruc-
tion error and the sparsity of the reconstruction weights. This
sparsity constraint not only ensures that the under-determined
equation has an exact solution but also allows the learned
representation for each patch to capture the salient properties.

B. Smooth Sparse Representation

SR-based methods emphasize that strong sparsity of the
reconstruction weights is important in representing the input
patch. However, there are two drawbacks of SR in the present
context.

1) One is the fact that it ignores smoothness (or flatness)
of the sparse reconstruction weights, which tends to set
neighbor penalties exactly equal to each other.

2) The other is that it neglects a locality constraint, which
states that the training patches that are most similar to
the input patch should be given larger reconstruction
weights than those that are most dissimilar.

Our proposed SSR method aims to overcome the two lim-
itations of SR-based methods. In addition, by incorporating
the locality constraint, it makes our proposed patch represen-
tation method smoother (see Section III-E for the smoothness
measurement of our proposed method).

1) Fused LASSO-Based Smooth Constraint: For the first
problem, we introduce the fused LASSO penalty

∑N
i=2 |wi −

wi−1|1, which has found its applications in prostate can-
cer analysis [49], image denoising [61], and time-varying
networks [52], to the patch representation objective function

JSSR(w) =
∥∥∥∥∥xt −

N∑

i=1

wixi

∥∥∥∥∥

2

2

s.t. ‖w‖1 < ε1 and
N∑

i=2

‖wi − wi−1‖1 < ε2. (5)

Similar to (4), an equivalent formulation of (5) can be given
by using the Lagrange multipliers, that is

JSSR(w) =
∥∥∥∥∥xt −

N∑

i=1

wixi

∥∥∥∥∥

2

2

+ λ1‖w‖1

+ λ2

N∑

i=2

‖wi − wi−1‖1 (6)

where the non-negative parameters λ1 and λ2 are used to con-
trol the contributions of the sparsity constraint and the sparsity
difference constraint, respectively. The first constraint encour-
ages sparsity in the reconstruction weights and the second
constraint encourages sparsity in their differences, i.e., flatness
of the reconstruction weight profiles wi as a function of i.
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2) Locality-Based Smooth Constraint: For the second prob-
lem, we sort the LR training patch samples (each column of
X = [x1, x2, . . . , xN]) according to the similarity between the
input LR patch and each LR training patch sample, which is
simply determined by the squared Euclidean distance

dist =
{
‖xt − xi‖2

2

∣∣1 ≤ i ≤ N
}
. (7)

We then sort the distance dist in ascending order and
obtain the index vector, idx = [[1], [2], . . . , [N]]. Then,
the sorted LR training patch samples can be defined by
Xidx = [x[1], x[2], . . . , x[N]]. Thus, x[i] is the ith element of
the reordered LR training patch samples. Finally, the objective
function of our proposed SSR can be written as

arg min
w

⎧
⎨

⎩

∥∥∥∥∥xt −
N∑

i=1

wix[i]

∥∥∥∥∥

2

2

+ λ1‖w‖1

+ λ2

N∑

i=2

‖wi − wi−1‖1

⎫
⎬

⎭. (8)

By sorting the LR training patch samples, we can expect to
obtain large reconstruction weights for the training samples
that are close to the input LR patch.

C. Optimization of SSR

To get the optimal weights w∗ from SSR (8), we employ the
fast iterative shrinkage thresholding algorithm [62]. It is known
that a gradient method can be used to optimize a smooth
objective function1 l(w) (e.g., in the SSR objective function,
l(w) = ‖xt − ∑N

i=1 wix[i]‖2
2).

We denote the regularization terms in (8) as

�(w) = λ1‖w‖1 + λ2

N∑

i=2

‖wi − wi−1‖1. (9)

Here, �(w) is nonsmooth. Following fast iterative shrinkage
and thresholding algorithm, the updating rule of w in each
iteration is:

w(t+1) = arg min
w

{
l
(
w(t)

) + 〈
w − w(t),∇l

(
w(t)

)〉

+ L

2

∥∥w − w(t)
∥∥2

2 + �(w)

}
(10)

where L > 0 is the Lipschitz constant of the gradient ∇l(w),
and the minimization admits a unique solution. By ignoring
some constant terms of w(t), we have

w(t+1) = arg min
w

{
�(w) + L

2

∥∥∥∥w −
(

w(t) − 1

L
∇l

(
w(t)

))∥∥∥∥
2

2

}
.

(11)

Thus, the key to solve (8) is how efficiently we can solve (11).
Minimization of the approximate objective function (11) can
be rewritten as

arg min
w

L

2

∥∥z(t) − w
∥∥2

2 + λ1‖w‖1 + λ2

N∑

i=2

‖wi − wi−1‖1 (12)

1Smooth means that l has a Lipschitz continuous gradient.

where z = w(t) − (1/L)∇l(w(t)). Equation (12) is the stan-
dard fused LASSO signal approximator (FLSA) introduced
by Friedman et al. [50].

It can be shown that wi(λ1, λ2), the optimal solution for the
standard FLSA for regularization parameters (λ1, λ2), can be
obtained from wi(0, λ2) (set λ1 = 0) by soft-thresholding

wi(λ1, λ2) = sign(wi(0, λ2)) · max(|wi(0, λ2)| − λ1, 0)

for i = 1, 2, . . . , N. (13)

Hence, we can set λ1 = 0 without loss of generality and focus
on the regularization path by varying only λ2

arg min
w

1

2

∥∥z(t) − w
∥∥2

2 + λ2

N∑

i=2

‖wi − wi−1‖1. (14)

Let D be a finite different matrix with dimension (N−1)×N
and its entries are zeros everywhere except −1 in the diagonal
and 1 in the superdiagonal

D =

⎛

⎜⎜⎜⎝

−1 1
−1 1

. . .
. . .

−1 1

⎞

⎟⎟⎟⎠.

By introducing a dual variable u, we can reformulate (14) as
the following equivalent min–max problem:

min
w

max‖u‖∞≤λ2

1

2

∥∥z(t) − w
∥∥2

2 + 〈Dw, u〉. (15)

Exchanging min and max and setting the derivative of (15)
with respect to w to zero, solution to (15) is obtained from
the primal-dual relationship

w = z − DTu. (16)

Plugging (16) into (15), we get the dual problem

min‖u‖∞≤λ2

1

2
uTDDTu − uTDz. (17)

Since (17) is a box constrained optimization problem, it
can be efficiently solved by the following projected gradient
method [63], [64]:

u(t+1) = Pλ2

(
u(t) − α

(
DDTu(t) − Dz(t)

))
(18)

where Pλ2 denotes the projection operator onto an l∞ ball
{u : ‖u‖∞ ≤ λ2}, and α is the reciprocal of the largest eigen-
value of the matrix DDT .

We solve the FLSA problem (14) through an iterative
algorithm by alternating between the primal and the dual
optimization as follows:

{
Primal: w(t+1) = z(t) − DTu(t)

Dual: u(t+1) = Pλ2

(
u(t) − (

DDTu(t) − Dz(t)
)) (19)

where the first step updates the primal variable based on the
current estimate of u(t), and the second step updates the dual
variable based on the current estimate of the primal vari-
able w(t). Note that z(t) can be obtained by z(t) = w(t) −
(1/L)∇l(w(t)).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1 Face Image Super-Resolution via SSR

1: Input: LR and HR training set IL = {IL
1 , IL

2 , · · · , IL
N} and

IH = {IH
1 , IH

2 , · · · , IH
N }, and a LR observation face image

IL
t . The parameters: patch_size, overlap, λ1, and λ2.

2: Compute U and V:
U = ceil((imrow − overlap)/(patch_size − overlap))

V = ceil((imcol − overlap)/(patch_size − overlap))

3: Divide each of the LR and HR training images and
the input LR image into M small patches according to
the same location of face, {xi(p, q)|1 ≤ p ≤ U, 1 ≤
q ≤ V}N

i=1, {yi(p, q)|1 ≤ p ≤ U, 1 ≤ q ≤ V}N
i=1 and

{xt(p, q)|1 ≤ p ≤ U, 1 ≤ q ≤ V}, respectively.
4: for p = 1 : U do
5: for q = 1 : V do
6: dist(p, q) = {||xt(p, q) − xi(p, q)||22

}N
i=1.

7: Sort dist(p, q) in ascending order to get idx.
8: Obtain the sorted LR and HR training patch sam-

ples, Xidx = [x[1], x[2], . . . , x[N]] and Yidx =
[y[1], y[2], . . . , y[N]].

9: Calculate w∗(p, q) according to (8).
10: yt(p, q) = ∑

i
w∗

i (p, q)yi(p, q).

11: end for
12: end for
13: Integrating all the obtained HR patches {yt(p, q)|1 ≤ p ≤

U, 1 ≤ q ≤ V} above according to the position (p, q).
The final HR image can be generated by averaging pixel
values in the overlapping regions.

14: Output: HR super-resolved face image IH
t .

1) Convergence Analysis: To solve the objective func-
tion (15), i.e., the reconstruction weights w and the dual
variable u, we adopt an iterative strategy and solve one variable
by fixing the other. We decompose our objective function (15)
into two subproblems: 1) the primal problem and 2) the dual
problem. By setting the derivative of the primal problem
with respect to w to zero (16), it can enable us to find the
global optimum by the primal iteration. To optimize (18), the
dual iteration has been proved to weakly converge to a fixed
point [63], [64]. That is to say, it can theoretically ensure that
a near optimal solution could be achieved in each step during
the iteration. Therefore, its value will not be increased in the
iteration process, which guarantees the convergence of the iter-
ative algorithm. Actually, the procedure in (19) can be seen
as the alternating direction method of multipliers algorithm
which has a fast convergence speed [65].

D. Face Image Super-Resolution Through SSR

As a position patch-based face image super-resolution
method, SSR consists of the following steps. First, we divide
all the LR and HR training face images into patches according
to the positions. Then, for each LR test image patch xt, we
can calculate its optimal patch representation weight vector
w∗, and transform it to the HR training patch space by

yt =
∑

i

w∗
i y[i]. (20)

Fig. 3. Super-resolved results and peak signal-to-noise ratio (PSNR) values
by SR (second column), fused LASSO (third column) and our SSR (fourth
column). The first and last columns are the input LR face and ground truth
HR face, respectively. The values under the second to the fifth columns are
the PSNR values.

TABLE I
SI INDEXES OF ONE SUBJECT (CORRESPONDING TO FIG. 3) OF

DIFFERENT METHODS UNDER DIFFERENT NOISE LEVELS

Similarly, [y[1], y[2], . . . , y[N]] are the sorted HR training patch
samples. All the LR patches in the input LR face image
are processed in raster-scan order, from left to right and top
to bottom. Lastly, we enforce compatibility between adja-
cent patches (the values in the overlapped regions are simply
averaged) following [8]. The entire process of the proposed
SSR-based face image super-resolution method is summarized
in Algorithm 1. ceil(x) is the function that rounds the elements
of x to the nearest integers toward infinity.

E. Smoothness Measurement

In recent years, many image super-resolution methods have
been proposed that use penalties on the regression (coding)
coefficients in order to achieve sparseness or shrink them
toward zero. They may overemphasize on sparsity to recon-
struct the input image patch. As a result, very distinct patches
may be chosen. In addition, the SR solution is usually not
stable, especially when the noise is strong, due to the limita-
tion of sparse recovery. Based on the assumption that similar
training patches have similar coding coefficients, it is possi-
ble that there is some natural ordering of the coefficients. In
other words, neighboring coefficients should not change fast
but should change smoothly. By incorporating the smoothness
constraint, the most similar training patches will be chosen in
the sparse coding process, thus the input noise will be aver-
aged. In addition, it can also lead to the exact solution of the
under-determined least squares problem.

In order to measure the smoothness of different patch
representation approaches, e.g., SR, fused LASSO, and the
proposed SSR, we define an evaluation metric of smooth-
ness for the patch representation called smooth index (SI).
Let w = [w1, w2, . . . , wN] denote the representation of one
patch, then SI is defined as

SI = e−∑N
i=2 |wi−wi−1| . (21)
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Fig. 4. Some training faces in the FEI face database.

Fig. 5. PSNR (dB) and structural similarity index measure (SSIM) per-
formance of our proposed SSR method under different levels of noise using
different values of λ1 and λ2.

Fig. 6. PSNR (dB) and SSIM comparisons of all the 40 test images
reconstructed by SR and our proposed SSR under different noise levels.

From the definition of SI, the smoothness of a representa-
tion approach is measured by the inverse of the accumulated
absolute difference between two adjacent coefficients. The
smoother of w, the larger of SI. The maximum value of SI
is 1. Fig. 3 presents the reconstruction HR faces and their
PSNRs (dB) values by SR, fused LASSO and our proposed
SSR. Table I reports the average2 SI indexes of one subject in
Fig. 3 of different methods under different noise levels. Note
that we have tuned the parameters λ in SR as well as λ1 and
λ2 in fused LASSO and SSR to achieve the best performances.
From Fig. 3, we can learn that our proposed SSR is better than
SR and fused LASSO in terms of visual quality and quantita-
tive measure. In addition, the representation of fused LASSO
and SSR are smoother than that of the SR method from
the results in Table I. This implies that fused LASSO-based

2SI is a measurement of the representation of one image patch, to measure
SI index of the entire face image, we calculate the average SI of all the patches
in a face image. Here, the SI is calculated with the optimal reconstruction
weights, which is obtained when the method achieves the best performance
in terms of PSNR.

Fig. 7. Visual reconstruction results of one subject with different noise levels
[from top to bottom (two rows as a group), the noise levels are σ = 0, 10, 30,
respectively] using SR method (the second column) and the proposed SSR
method (the third column). Note that the first column are the input LR faces,
while the last column are the ground truth HR faces.

TABLE II
AVERAGE PSNR (dB) AND SSIM COMPARISONS OF DIFFERENT

METHODS UNDER DIFFERENT NOISE LEVELS. RED INDICATES THE

BEST AND BLUE INDICATES THE SECOND BEST PERFORMANCE

smooth constraint is very important for the patch representa-
tion. Moreover, with the locality-based smooth constraint, the
representation can be smoother.

IV. EXPERIMENTAL RESULTS

In this section, we report the results of extensive experi-
ments performed to evaluate the effectiveness of the proposed
SSR approach for face image super-resolution. The experi-
ments are conducted on two public face databases namely, the
FEI face database [66] and the CMU+MIT face database [67].
All the face images are aligned by some recently proposed
automatic alignment methods [68] and robust feature matching
technology [69].

A. Database

The FEI face dataset [66] contains 200 persons, 100 men,
and 100 women. Each person has two images (one with normal
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Fig. 8. Visual reconstruction results of four subjects with different noise levels [from top to bottom (four rows as a group), the noise levels are σ = 10, 30,
respectively] using different methods (from left to right, they are the input LR image, results of bicubic interpolation, Wang and Tang’s method [25], NE [33],
LSR [15], SR [8], WSR [40], LcR [46], and our proposed SSR method, and the ground truth HR face images).

expression and the other with smile expression). Some samples
from this dataset are illustrated in Fig. 4. A face alignment pro-
cess has been done [66] per image enforcing the central points
of the eyes at fixed locations. We further crop and scale the
images into 120 × 100 normalized face images manually. We
randomly choose 180 persons (360 face images) for training
and leave the rest 20 persons (360 face images) for testing. In
the experiment, the HR images are first smoothed and down-
sampled to LR 30 × 25 images (by a factor of four), and
then the additive white Gaussian noise (AWGN) with different
noise levels (denoted by σ , e.g., σ = 0, 10, 30) is added. The
LR patch size is 4×4 while the HR counterpart is 16×16. The
overlap between neighbor patches is 3 pixels for LR patches
and 12 pixels for HR patches.

B. Parameter Settings

In our proposed method, the parameters λ1 and λ1 are set
experimentally. As shown in Fig. 5, we report the PSNR and

SSIM3 [70] performance under different noise levels according
to various values of λ1 and λ2. Experimentally, we set λ1 =
1e − 4 and λ2 = 0 (σ = 0), λ1 = 1e − 4 and λ2 = 1e − 2
(σ = 10), and λ1 = 1e − 2 and λ2 = 0.1 (σ = 30) to achieve
the best performance. From the objective function of SSR (6),
we learn that λ1 and λ2 are used to control the contributions of
the sparsity constraint and the sparsity difference constraint,
respectively. When σ = 0, λ2 is set to 0 to obtain the best
performance, which indicates that SSR will degenerate to SR
method [8]. With the increase of noise level, λ2 should be
set to larger values. This indicates that the sparsity difference
constraint plays an important role in removing the noise when
reconstructing the target HR face image. It is worth noting
that we set λ1 and λ2 to obtain the best performance in terms

3The higher the SSIM value, the better is the face super-resolution quality.
The maximum value of SSIM is 1, which means a perfect reconstruction.
Compared with the measure of PSNR, SSIM can better reflect the structure
similarity between the reconstructed image and the reference image.
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Fig. 9. Visual reconstruction results of six subjects with impulse noise using different methods (from left to right, they are the input LR image, results of
bicubic interpolation, Wang and Tang’s method [25], NE [33], LSR [15], SR [8], WSR [40], LcR [46], and our proposed SSR method, and the ground truth
HR face images).

of average PSNR and SSIM of all 40 test images. Therefore,
the best parameter settings are used for all test images, rather
than setting up separate parameters for each one.

C. Comparisons Between SR and SSR

To verify the effectiveness of the proposed SSR strategy,
in this section we compare the PSNR and SSIM values to
evaluate SR4 and SSR methods. Fig. 6 shows the PSNR (dB)
and SSIM comparisons of all the 40 test images reconstructed
by SR and our proposed SSR under different noise levels
(σ = 10, 30). When σ = 0, SSR and SR [8] have the same
performance. With the increase of noise level, the gain of SSR
over SR becomes more obvious, e.g., 0.25 dB and 0.0061 in
terms of PSNR and SSIM when σ = 10, 2.18 dB, and 0.0144
in terms of PSNR and SSIM when σ = 30. This certifies the
effectiveness of introducing the smoothness and locality priors
for SR.

In Fig. 7, we show the reconstructed results of one subject
using SR and SSR with different noise levels (when σ = 0, SR
and SSR have the same results). From these results, we learn
that with the increase of noise level, the reconstructed faces
by SR become dirtier and appear distorted. In contrast, our

4It should be noted that we use the sparse learning with efficient projec-
tions toolbox to solve the sparse coding problem of (4) to facilitate a fair
comparison.

proposed SSR method can maintain the main facial structure
and preserve more texture.

D. Compare With the State-of-the-Art Approaches

In order to prove the superiority of our proposed SSR-based
face image super-resolution method, we further compare it
with the state-of-the-art methods, such as Wang and Tang [25],
NE [33], LSR [15], SR [8], weighted sparse regulariza-
tion (WSR) [40], and LcR [46]. The Bicubic interpolation
method is given as a baseline for comparison. To make a fair
comparison among the comparison methods, we have carefully
tuned the parameters of the competing methods to achieve their
best performances.

The average PSNR and SSIM values are shown in Table II
when the input images are corrupted by AWGN (with the
standard deviation σ = 10, 30) or non-Gaussian noise (e.g.,
impulse noise by the random value with 2%). It can be seen
from the results that the proposed SSR method is the best
when the LR input is contaminated by noise. The PSNR and
SSIM gains of SSR over the second best method (marked by
blue) are 0.25 dB and 0.0061 when σ = 10 and 0.61 dB and
0.0132 when σ = 30, and 0.18 dB and 0.0103 when the input
is contaminated by impulse noise.

Figs. 8 and 9 show the reconstructed results with AWGN
LR face and impulse noisy LR faces, respectively. It is worth
noting that impulse noise is one of the most frequently
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Fig. 10. Visual reconstruction results of four subjects from the CMU+MIT
face database using SR [8], LcR [46], and our proposed SSR. (a) Captured
pictures. (b) Reconstructed results.

encountered noise in real conditions [71], [72]. From Fig. 8,
we can learn that, due to the smoothness and locality pri-
ors in our proposed method, the results have the least ringing
effects and most detailed features (e.g., edges and corners) are
quite close to the ground truth HR face images. The results
of bicubic interpolation and LSR [15] are smooth (when the
noise level is low), dirty and noisy (when the noise level is
high). The results of NE [33] and SR [8] lack of clear con-
tours and have serious blocking artifacts. When compared to
LcR [46], our results are very competitive and have relative
clear edges (see the mouths and face contours in the sev-
enth and eighth columns of Fig. 8). As for the super-resolved
results with impulse noise (Fig. 9), it is difficult for these tra-
ditional patch-based methods to remove added impulse noise.
NE method [33] introduces some dirty high-frequency infor-
mation, while LSR [15], SR [8], WSR [40], and LcR [46] still
maintain some noise. Wang’s global face method can remove
most of the noise, but have obvious ghost effect.

E. Super-Resolution Results With Real-World Images

In the above experiments, the input LR face to be recon-
structed are obtained by simply smoothing, downsampling and
adding AWGN. However, in reality, the image degradation pro-
cess is much more complex. Face image super-resolution in
real-world is an extreme complex and difficult problem [73].

To certify the effectiveness of the proposed method, we give
some super-resolved results with LR inputs in real-world con-
ditions. Note that the training samples are all from the FEI face
database. Fig. 10(a) shows three pictures with LR and noise
from the CMU+MIT face database [67]. Fig. 10(b) compares
the reconstructed results of our proposed SSR method, SR [8]
method, and the state-of-the-art LcR method [46]. The first
column in Fig. 10(b) represents the input LR face images, and
the second to the fourth column represent the reconstructed
HR faces by SR [8], LcR [46], and our proposed SSR, respec-
tively. Although the input LR face images are of low-quality
(contaminated with heavy noise) and different from the train-
ing samples, the proposed SSR method performs quite well for
the super-resolution task. SR method [8] has obvious artifacts,
while LcR method [46] produced varying degrees of “ghost
effect” at face contours.

V. CONCLUSION

In this paper, we propose a new model for face image
super-resolution based on SSR. By combining the strengths
of fused LASSO and the locality constrained representation,
it can achieve considerable improvement over several exist-
ing state-of-the-art face image super-resolution models both
quantitatively and qualitatively when the input LR face is
contaminated by high level of noise. In future work, we will
develop a multiresolution face SR method [74]. In addition,
how to learn a dictionary that is beneficial to smoothness and
sparsity will also be investigated. Lastly, in the experiments,
we found that the strategy of overlap patch representation
and reconstruction is very time consuming, which hinders the
practical applications. Thanks to the independence of different
input image patches, we can move forward to accelerate the
algorithm via parallel computation [75], [76].
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