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Person Reidentification via Discrepancy
Matrix and Matrix Metric
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Abstract—Person reidentification (re-id), as an important task
in video surveillance and forensics applications, has been widely
studied. Previous research efforts toward solving the person re-id
problem have primarily focused on constructing robust vector
description by exploiting appearance’s characteristic, or learn-
ing discriminative distance metric by labeled vectors. Based
on the cognition and identification process of human, we pro-
pose a new pattern, which transforms the feature description
from characteristic vector to discrepancy matrix. In particu-
lar, in order to well identify a person, it converts the distance
metric from vector metric to matrix metric, which consists of
the intradiscrepancy projection and interdiscrepancy projection
parts. We introduce a consistent term and a discriminative
term to form the objective function. To solve it efficiently, we
utilize a simple gradient-descent method under the alternat-
ing optimization process with respect to the two projections.
Experimental results on public datasets demonstrate the effective-
ness of the proposed pattern as compared with the state-of-the-art
approaches.

Index Terms—Discrepancy matrix, matrix metric, metric pro-
jection, person reidentification (re-id).

I. INTRODUCTION

ERSON reidentification (re-id) is the task of visually
matching images of the same person, obtained from
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different cameras distributed over nonoverlapping scenes [1].
It has drawn significant attentions in recent years [2]-[9] due
to its important applications in video surveillance [10]-[12].
Although face [13]-[16] and gait [17], [18] may be more
reliable biometrics to identify a person, they are not always
available due to low resolution and pose variations of an indi-
vidual in typical surveillance scenario [19]-[21]. Therefore,
the appearance of individuals is mainly exploited for person
re-id. Generally, given a probe person image taken from cam-
era A, the re-id algorithm aims to search for images of the
same person from the gallery captured by camera B. Previous
research efforts for solving the re-id problem have primarily
focused on the following two aspects.

A. Feature Description

Many approaches have been proposed to develop dis-
criminative visual descriptions that are robust to distinguish
different persons in various cameras, such as ensemble of
localized features (ELF) [22], symmetry-driven accumula-
tion of local features (SDALF) [23], salient color-name-based
color descriptor (SCNCD) [24], local maximal occur-
rence (LOMO) [25], Gaussian of Gaussian (GoG) descrip-
tor [26], and deep convolutional neural network (CNN)
approaches [27]-[31]. In general, a feature vector x € RN x1
is always used to describe an image I by these methods [32],
where Ny denotes feature dimension.

B. Distance Metric

There are also many efforts toward learning optimal
matching metrics under which instances belonging to the
same person are closer than those belonging to different
persons, such as probabilistic relative distance comparison
(PRDC) [19], keep it simple and straightforward metric
learning (KISSME) [33], locally adaptive decision functions
(LADF) [34], local Fisher discriminant analysis (LFDA) [35],
and cross-view quadratic discriminant analysis (XQDA) [25].
Generally, most of these methods would learn a distance
metric M € RY >V then the distance of an image pair
(I}, 15) is calculated by d(x),xB) = () — xB)TM() —
xg), where the superscripts A and B stand for the cam-
era label, and the subscripts p and ¢ stand for the person
ID. Actually, by performing eigenvalue decomposition on
M with M = LTL, the distance can be rewritten as (1).
With this definition, it is easy to see that the essence of
the metric learning-based method is to seek a projection that
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Fig. 1. Toy example to make a comparison of descriptions by characteristic

and discrepancy, respectively. We suppose that different parts of a vector
denote different properties of the corresponding person. Left: person in /1 can
be described as a feature vector by the characteristic of its appearance. Right:
person can be described as a combination of four vectors by discrepancies
with I, — Is.

transforms the original image features into a new feature
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Almost all of the state-of-the-art approaches follow the same
routine. They represent each person image using a feature
vector, no matter hand-crafted or deep-learned, based on the
person’s own appearance. Then, they compare image pairs by
their feature vector distances [36]. However, when describing
a person, we can exploit not only the characteristic of his/her
own appearance, but also the appearance relationships with the
others. Recently, An et al. [37] proposed a reference descrip-
tor (RD) [37] method. They introduced a reference set and
selected typical identities from the reference set to reconstruct
each person. The reconstruction weights were used to describe
the corresponding person. In our opinion, the RD method
focuses on discovering global and coarse-grained reconstruc-
tion relationships with reference identities as a whole, and
ignores its local difference relationship with each part of
each reference identity, which is fine-grained and may contain
important information. We name the difference relationship
as discrepancy. To describe a person, his/her appearance dis-
crepancies with the reference set are exploited in this paper.
Fig. 1 shows a toy example. We suppose that different parts of
a vector denote different properties of the corresponding per-
son. As Fig. 1(left) shows, in a traditional manner, the person
in I7 is described as wearing a blue T-shirt and long pants,
without any carryings. The upper body is blue and the lower
body is black. These characteristics are extracted as a feature
vector. On the other hand, we can also represent the person by
the discrepancies with other persons. Let us see Fig. 1(right).
We provide another way to describe I; as follows: the color
of the T-shirt of I, shifts to green comparing with that of
I, I} does not hold a backpack but /3 holds, the pants of /;
are longer than those of /4, and the color of the pants of I}
is darker than that of Is. So the toy example shows that a
person can be described not only by his/her characteristic,
but also by his/her discrepancies with the others. Generally,
we utilize the feature vector to represent a person. To this
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end, each discrepancy of two images can be denoted as the
difference of the feature vectors, i.e., one subtracts another.
In this toy case, the image I; is described by a combina-
tion of four discrepancy vectors (or a discrepancy matrix)
instead.

If each discrepancy between two persons is represented by

a vector, all the discrepancies with a reference set will form
a matrix to describe the corresponding person. Comparing to
the reference description vector [37], the discrepancy matrix
captures more diverse characteristics, and it also reduces the
effect caused by the variation of camera conditions through
introducing a couple of reference sets from two cameras. The
details are presented in Section III-B. In the discrepancy matrix
pattern, the distance of each image pair should be calculated
based on a pair of discrepancy matrices. Therefore, exist-
ing metric learning approaches, which focus on generating
vector metric, are obviously inappropriate for the proposed
description. It is easy to recognize that two discrepancy matri-
ces from the same person should be similar to each other,
while those from different persons should be dissimilar. To
this end, an effective matrix distance metric learning method
is proposed, including intradiscrepancy and interdiscrepancy
projections.

The contributions of this paper are as follows.

1) From Characteristic Vector to Discrepancy Matrix: We
propose a new idea to describe a person image, which
is represented by the discrepancies with a set of images
rather than the characteristic of the image itself. It is
proved that compared with characteristic vector, dis-
crepancy matrix is more discriminative and effective for
person re-id.

2) From Vector Metric to Matrix Metric: We propose a
matrix metric for the re-id task, which consists of
intradiscrepancy projection part and interdiscrepancy
projection part. The matrix metric is learned by simulta-
neously considering the consistency constraint (pulling
two discrepancy matrices from the same person close)
and the discrimination constraint (pushing two discrep-
ancy matrices from different persons far away) in the
training stage.

3) A New Pattern: We provide a new re-id pattern
which reidentifies and ranks the images by discrepancy
matrix and matrix metric (DM?). Extensive experi-
mental evaluations on benchmark datasets demonstrate
the effectiveness of the proposed pattern. It is also
worth noting that the proposed re-id pattern is inde-
pendent of the choices of feature descriptors. Combined
with the state-of-the-art feature extraction methods, for
example deep learning method, better results can be
obtained.

The rest of this paper is organized as follows. In Section II,

a brief review of related work for re-id is given. In Section III,
we present the motivation of our approach and formally define
the new problem. In Section IV, we illustrate the details of
the proposed matrix metric learning. Section V reports exper-
imental results and analysis. Finally, Section VI concludes
this paper. Table I summarizes the notations used in this

paper.
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TABLE I
SUMMARY OF NOTATIONS

Symbol Description
A (B) Camera A (B)
0; Person with the ID number ¢
M Number of the training person images in each camera
N Number of the testing person images in camera B
33;4 (IF ) Feature vector of person o; in camera A (B)
Ny Number of dimensions of feature vector
Ny Number of reference person images in each camera
fZA ( fiB) Feature vector of reference person o; in camera A (B)
x;‘ Feature vector of the probe person o, in camera A
aqu Feature vector of the gallery person o, in camera B
X:L-4 (XiB ) Discrepancy matrix of person o; in camera A (B)
Xﬁ Discrepancy matrix of the gallery person o, in camera A
XqB Discrepancy matrix of the gallery person o4 in camera B
L Feature projection of traditional methods
L, Intra-discrepancy projection
Lo Inter-discrepancy projection
FEecon Consistent term
FEgis Discriminative term
Espr Sparse term
o Weight for the sparse term
Sk A triple sample (X', XP, XP), i # j
Z; Difference of Xf‘ and XF
Ug Difference of Xf‘ and Xf in sy
Vi Difference of X:L-4 and X? in s
1 The m-th row of Lo
D A diagonal matrix
dmm The m-th diagonal element of D
lg(2) The generalized logistic loss function
g(2) The derivative of logistic loss function I5(2)
A1 (A2) Step length at each gradient update
€ A small positive value

II. RELATED WORK

In this section, we give a brief review of the related
work on person re-id. Current re-id research can be generally
categorized into two classes: 1) feature description-based and
2) distance metric-based approaches.

Feature description approaches aim to construct discrimi-
native visual descriptions. Generally, this kind of approaches
can be divided into hand-crafted-based and deep learning-
based. The hand-crafted descriptions in re-id task are designed
by exploiting special appearance characteristics of pedestri-
ans. Wang et al. [38] studied an appearance model to capture
the spatial distribution of the appearance. Gray and Tao [22]
performed viewpoint invariant description using an ELF
Farenzena et al. [23] described the appearance image with seg-
mented regions by using symmetry and asymmetry perceptual
principles. Ma et al. [39] combined biologically inspired fea-
tures and covariance descriptors (BiCov). Layne et al. [40]
learned a selection and weighting of mid-level semantic
attributes to describe people. Kviatkovsky et al. [41] used
shape context descriptors to represent the intradistribution
structure, which are invariant in different lighting conditions.
Zhao et al. [42] assigned salience to each patch in an unsu-
pervised manner. Yang et al. [24] proposed an SCNCD to
represent person image. Eiselein et al. [43] fused multiple
basic features, such as color histograms, SURF [44], and
designed an efficient person descriptor which is fast and meets
the practical need of low runtimes. Liao et al. [25] analyzed

the horizontal occurrence of local features, and maximized the
occurrence to make a stable representation against viewpoint
changes. Matsukawa et al. [26] modeled each person image
region as a set of multiple Gaussian distributions in which
each Gaussian represents the appearance of a local patch.
Recently, deep-learned descriptions are emerged for the re-id
task. Li et al. [27] utilized a unified deep architecture to learn
a filter for re-id. Ding et al. [28] presented a scalable distance
driven feature learning framework based on the deep neural
network for re-id. Zhang et al. [29] developed deep bit-scalable
hashing codes to represent raw images. Wang et al. [30] com-
bined four CNNs, each of which embeds images from different
scale or different body part. Overall, all of these methods focus
on the person’s own appearance, and represent each person
image as a feature vector.

Besides the characteristics of the person image itself, the
relationships with other identities can also be exploited.
An et al. [37] utilized a reference set to describe a person.
However, they select some typical reference features to con-
struct a vector, while we exploit discrepancies rather than
original reference features to form a matrix for the re-id
problem.

The distance metric approaches pay attention to find
a proper distance measure. Hirzer et al. [45] and
Dikmen et al. [46] employed LMNN [47] to learn the optimal
metric for re-id. Zheng et al. [19] learned a Mahalanobis dis-
tance metric with a PRDC. Kostinger ef al. [33] used Gaussian
distribution to fit pair-wise samples and got a simpler metric
function. Tao et al. [48] presented a regularized smoothing
KISS metric learning by seamlessly integrating smoothing and
regularization techniques for robustly estimating the covari-
ance matrices. Mignon and Jurie [49] introduced pairwise
constrained component analysis (PCCA) to learn distance met-
ric from sparse pairwise similarity/dissimilarity constraints in
high-dimensional input space. Pedagadi et al. [35] combined
unsupervised principle component analysis (PCA) dimension-
ality reduction and LFDA defined by a training set to perform
metric learning. Li et al. [34] proposed to learn a decision
function that can be viewed as a joint model of a distance met-
ric and a locally adaptive thresholding rule. Wang et al. [50]
transformed the metric learning problem to a feature pro-
jection matrix learning problem that projects image features
of one camera to the feature space of the other camera.
Liao et al. [25] learned a discriminant low-dimensional sub-
space by XQDA. Wang et al. [1] investigated consistencies
between two cameras and adjusted the metric for each query-
gallery pair. Zhang et al. [51] proposed to learn a discrimina-
tive null space for person re-id, by minimizing the within-class
scatter to the extreme and maximizing the relative between-
class separation simultaneously. Zheng and Shao [52] learned
the distance metric in the Hamming space for fast person
re-id.

All of these methods attempt to obtain a proper distance
metric for feature vectors. In contrast, our proposed approach
exploits discrepancy matrix. Therefore, traditional approaches,
which focus on generating vector metric rather than matrix
metric, cannot be used in our problem. To this end, a matrix
metric learning method is proposed.
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III. PROBLEM STATEMENT AND MOTIVATION

In this section, we first review the traditional pattern for the
re-id task. Then, we present the motivation of DM3 learning
in the proposed method.

A. Feature and Vector Metric

For the traditional re-id problem, a set of labeled persons
O = {01,03,...,0py} is associated with two cameras, where
M is the number of persons. We denote the representative
description of person o; captured by camera A (or B) as x’l“ (or
xBy, xt, xB e RN X1 Then, {x},.... x4, ..., 1 <i<M
and {xB, ...,xf, .. .,xf@}, 1 <j < M, respectively, represent
the two labeled training sets captured by A and B. Based on
these two sets, a uniform distance metric L is learned.

Let xﬁ stand for a testing probe data from camera A, and
{xf,Hl,...,xg, ...,xf,l+N},M+l < g < M+ N represent the
test data from B, where N is the number of testing data in
camera B. Then, for each testing probe data xﬁ, the distance
between the testing probe data and every testing data xg can
be calculated by exploiting (1) (as the left column of Fig. 2
shows). After obtaining all of the distances, the ranking list is
generated.

B. Discrepancy Matrix

The general pattern described above exploits a person’s own
characteristic to describe its appearance. Most of the feature
descriptors transform the characteristics of each person image
to a discriminative feature vector. We can also represent the
person by the discrepancies with other persons. Given a set
of reference image features {fi,f>,....fn}.f € RV <1 the
description of image I is to construct a series of feature vector
differences with the set of images as [x—f1; x—f2; - - - ; x—f, ].
We denote the description as X € RN *Nr | where N, is the
number of images in the reference set. It should be noted
that [37] and [53] utilized a reference set to describe a person
as well, and their focus is on selecting some typical images
from the reference set and exploiting the reconstruction param-
eters to produce a vector descriptor. However, our attention is
paid on the discrepancies with all the images in the reference
set to generate a matrix descriptor.

On the other hand, scale zooming, illumination change,
and capture equipment difference between two cameras make
the original feature description not robust enough. However,
the effects of external environment on different persons may
be similar in the same camera. Therefore, the difference
between two feature descriptions may reduce these effects.
Based on this consideration, we construct the discrepancy
matrix description by feature differences with the reference
image set from the same camera. Specifically, in our pat-
tern, two sets of reference images are selected, which produce
image feature descriptions { flA, fé“, ceey fﬁr} from camera A,
and { ff, fZB,..., fﬁr} from camera B. By definition, if the
subscripts of two feature descriptions are the same, the fea-
tures are extracted from the same person from two different
cameras. Hence, as the right column of Fig. 2 shows, for
the image II/,‘ from camera A, its discrepancy matrix descrip-
tion is X,*} = [xl"} —flA;x,"} —f?; ;x,"} —flér]. While for

IEEE TRANSACTIONS ON CYBERNETICS

Traditional Methods The Proposed Method

Camera B

Camera A

Camera A Camera B
Feature 5§ &

description

B A B
Exq Ny X, Xy
N,
Distance 2 A A ;
d(zy,zg) = ||L(zy — x| d(Xy X)) = |Lu(X; — X)Ll

metric

Fig. 2. Comparison of traditional methods and the proposed method. For both
feature description and distance metric parts, the proposed method is different
from traditional methods. The feature description is transformed from vector
(x’;,xg) to matrix (Xﬁ, Xg). Ny is the number of the dimension of feature
vector, and N, is the number of the reference images. The distance metric
is transformed from feature projection (L) to intradiscrepancy projection L
and interdiscrepancy projection Lj.

the image If from camera B, its discrepancy matrix descrip-
tion is Xg = [xf; —f{g;x‘(}1 — 15 ;xf; —fﬁr]. In this way,
the feature description is transformed from characteristic vec-
tor to discrepancy matrix. After obtaining discrepancy matrix
description, we calculate the distance between each description
pair. Following [54], we use the Frobenius norm to measure
the distance of different matrices. For example, for the image
pair (I, I5), the distance is d(X5, X5) = (X2} — XEB)| 7.

To testify the effectiveness of the discrepancy matrix
description, we made a preliminary experiment to compare it
with the feature vector description. The experiment included
ten runs. For each run, 100 pairs of images were randomly
selected from the VIPeR dataset [55], respectively, from cam-
era A and camera B, and were set as two reference image sets.
Another 100 pairs of images were randomly selected from the
rest of the dataset. Each image was represented as a feature
vector, respectively, using the hand-crafted GoG descrip-
tor [26] and the deep-learned fine-tuned CNN (FTCNN)
descriptor [56], and then the discrepancy matrix of each image
was also constructed following the method described in the
previous paragraph. For the vector description, we calculated
the Euclidean distance of each pair of feature vectors. For the
matrix description, we computed the Frobenius norm of the
matrix difference of each pair of discrepancy matrices. We
used the CMC curve [38], which describes the expectation
of finding the true match within the first » ranks, to evalu-
ate the average results of ten runs. The results are shown in
Table II. From this table, we can easily conclude that the dis-
crepancy matrix description is more effective than the feature
vector description. We attribute the improvement to the reduc-
tion of the effect caused by the variation of camera conditions.
The reason is as follows. In terms of theory, it is reasonable
to assume that although big viewpoint warps and occlusions
exist sometimes, from cameras A to B, the visual appearance
of each person will encounter consistent cross-camera imag-
ing variations in a period of time. Kviatkovsky et al. [41]
proved that under different illumination conditions, each color
will get a constant shift in the log-chromaticity color space.
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TABLE 1T
PRELIMINARY EXPERIMENT COMPARING THE DISCREPANCY MATRIX DESCRIPTION AND THE FEATURE VECTOR DESCRIPTION.
PERSON RE-ID MATCHING RATES (%) AT DIFFERENT RANKS ON THE VIPER DATASET

Method (rank@) 1 2 3 4 5 6 7 8 9 10

hand-crafted feature vector 213 | 29.7 | 346 | 394 | 439 | 475 | 499 | 533 | 556 | 57.6

hand-crafted discrepancy matrix | 22.9 | 33.4 | 39.5 | 43.7 | 465 | 49 | 51.9 | 54.7 | 56.9 | 59.7

deep-learned feature vector 29.3 | 379 | 445 | 495 | 535 | 57.6 | 61.0 | 629 | 65.6 | 67.7

deep-learned discrepancy matrix | 31.8 | 43.1 | 49.8 | 54.2 | 579 | 61.1 | 63.2 | 65.3 | 68.3 | 69.7

Wi 1 [1] d d that the transformation for each o inter-
ang e.t al. [ ] emonstrated t aF the transtormation (?r eac discrepancy discrepancy

person is consistent across two different cameras. Inspired by I & > -
these two methods, we assume that feature differences caused %’ nlnlin T H
by cross-camera imaging conditions are the same, and define [ 5 , B
this uniform feature difference as v for each person. Then, . n; I | e ool
; ; ; ; (TTITTTTITT] [
for a pair of reference images (I;-“,IIB), their feature differ- ! I o
ence can be formulated as fiA — fiB = v + o;, where o; stands Ly I -
for the bias error. Meanwhile, for a pair of test images, their ! N, u

feature difference can be formulated as flf — ff =v+o.
As we know, the traditional feature distance is determined by
the difference v 4+ o. It means that the cross-camera imaging
variation v acts as a key factor, especially when the imaging
variation is very large. Introducing v will make different image
pairs hard to be distinguished. Whereas, the distance of dis-
crepancy matrices relies on XQ - Xg = [(xﬁ - xg ) — (-
IO = 2By — (=SB s =B — () — )] =
[c —o1;0 —02; -+ ; 0 —on,], where the cross-camera imag-
ing variation is removed. Without considering v, the bias error
o from the same person is always smaller than that from dif-
ferent persons, which makes re-id relatively easier. Hence, it
would help improve the performance of discrepancy matrix
description.

In addition, experiments also show that the samples whose
results rank at the first ten places are different for these
two types of description (i.e., vector description and matrix
description), and the difference ratio is 12.84%. This indicates
that the discriminative abilities of discrepancy matrix descrip-
tion and feature vector description are different, probably due
to the image relationships introduced by discrepancy matrix
description besides the person’s own feature representation.

C. Matrix Metric

A standard nontrained metric, without considering the dif-
ferences of the elements or the relationships of the elements,
may not be proper. A trained metric iS necessary to make
the distance of two matrix descriptions from the same person
small, and that from different persons large. For traditional
vector metric learning, as (1) demonstrates, L is a projec-
tion matrix. If L € RNo*Nr | feature vectors will be projected
to RM*1 Following this rule, if we introduce a projection
L € RNoXr | after left multiplication LX? or Lqu9 , discrepancy
matrices will be projected to RNo*Nr,

As we know, the effectiveness of the left multiplication,
which multiplies weights on the entries of each discrepancy,
is different from that of the right multiplication. Actually, the
right multiplication works on the entries of different discrepan-
cies. Considering this difference, we introduce an intradiscrep-
ancy projection matrix L; € RV XV as the left-multiplier, as

Discrepancy Matrix

Lo

Fig. 3. Illustration of the two projections. Based on the principle of matrix
multiplication, the row of L| and the column of discrepancy matrix (intradis-
crepancy) are combined, and the column of L, and the row of discrepancy
matrix (interdiscrepancy) are combined.

well as an interdiscrepancy projection matrix L, € RV*M ag
the right-multiplier. This two projections L; and L; together
form the matrix metric.

To make the functions of these two projections clear, we
draw Fig. 3 to illustrate how left multiplication and right mul-
tiplication work. Each column of discrepancy matrix stands
for a discrepancy generated from a corresponding reference
image. Based on the principle of matrix multiplication, the
row of L and the column of discrepancy matrix are combined
in element-wise. It means that L.; works on each discrep-
ancy. Whereas, Ly works on different discrepancies. Fig. 3
also shows that the column of L; and the row of discrep-
ancy matrix (the same dimension of different discrepancies)
are combined in element-wise. In this paper, we introduce the
interdiscrepancy projection, and do not convert the discrepancy
matrix to vector. The reasons are as follows.

1) Easy to Understand With Independent Physical
Meanings: If we do not introduce L, as the right-
multiplier, each discrepancy will be treated equally by
L. However, we consider that not all, but some of
the reference images will be effective for the distance
measurement. Hence, we sparsely select a few typical
discrepancies by exploiting the interdiscrepancy projec-
tion L, to improve the performance. In Section V-C, we
analyze the sparsity of the interdiscrepancy projection.
From the experiment, we can see that if a person
image pair exists large variations, such as different
illuminations and background changes, it is of a small
possibility to be selected by the projection matrix
L,. L, demonstrates its ability on the selection of
different discrepancies. While, L; focuses on weighting
different dimensions of each discrepancy. We consider
that these two projections have independent physical
meanings.
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2) Less Parameters and Constraints for Lj: If the matrix is
converted to vector by concatenating the columns, tra-
ditional vector-based metric learning methods could be
utilized directly, in addition, the interdiscrepancy pro-
jection L, is not needed in this case. We agree that
designing a metric for the converted discrepancy vec-
tor may work. However, the dimension of the vector
will increase dramatically after reshaping the matrix to
the vector. If we attempt to give different contributions
to different discrepancies, more constraints should be
introduced to L. Then, it will make the intradiscrepancy
projection L difficult to learn.

3) Convenient to Add Constraints: The form of the con-
verted discrepancy vector would destroy the structural
information of the data matrix, and the independence
of each discrepancy would be broken. On the contrary,
if we retain the structure of matrix, L; and L, will
be exploited simultaneously. To learn the matrix met-
ric, we can optimize the two projections alternatively.
Meanwhile, we can add constraints to the two projec-
tions independently. For example, we introduce a sparse
term to make the projection L, sparse.

For the image pair (X4, Xg), the new distance is calculated

using (2). In this way, the distance metric is transformed from
vector metric to matrix metric

R T

As illustrated in the right column of Fig. 2, differ-
ent from traditional methods, the proposed method exploits
matrix instead of vector in feature description, and consists
of a couple of projections (the left-multiplier and right-
multiplier) instead of a single projection in the distance
metric part.

IV. PROPOSED MATRIX METRIC LEARNING

This section presents our matrix metric learning method.
We begin with the matrix metric learning for the re-id
problem. Then, a new objective function consisting of con-
sistent and discriminative terms is put forward. Considering
that not all the reference persons are useful for discrepancy, a
sparse term is introduced into the objective function as well.
Meanwhile, we exploit the alternating optimization and the
gradient-descent method to learn the metric, and a stochastic
sampling-based solution method is designed to accelerate the
optimization process.

A. Definition

The new distance between two images is defined as (2).
Compared with (1), where the projection transformation L
is applied, the proposed metric consists of the intradis-
crepancy projection part and the interdiscrepancy projection
part. Generally, with the intradiscrepancy projection and the
interdiscrepancy projection part, each pair of discrepancy sets
from the same person are pulled close, and those from dif-
ferent persons are pushed apart [as Fig. 4(left) illustrates].
Given two sets of descriptions {XA,...,X?,...,XQ,,} and

{XB e, Xf e Xff,,} as training sets, the essence of metric
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consistent term
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«—» inter discrepancy push

Fig. 4. Tllustration of the proposed matrix metric learning. It consists of a
consistent term, which makes combinations of discrepancies (matrices) of the
same person close, and a discriminative term, which makes combinations of
discrepancies of different persons apart.

learning is to find optimal L; and L, under the supervised
information generally containing two pair-wise constraints,
i.e., similar constraint and dissimilar constraint.

B. Objective Function for Matrix Metric Learning

Motivated by Wang er al. [50], we formulate the objective
function with two terms, and learn the matrix metric, includ-
ing Ly and L. The first term projects Xf‘ and X?, which are
generated from the same person, close to each other, thereby
the inconsistency of two cameras is effectively eliminated.
We call it the consistent term. The second term projects X?
away from Xf , where i # j. It holds the discriminative ability
of the metric, and we refer to it as the discriminative term
[Fig. 4(right)].

Specifically, the consistent term can be defined by the sum
of matrix distances of all similar pairs

M
Eeon(, o) = - Y (X4, XF). 3
i=1

Intuitively, this term in the objective function penalizes
large discrepancy matrix distance between images of the same
people.

Before introducing the discriminative term, we denote the
triple set as T = {(X?,Xf,Xf)Hi #j.k=1,..., S}, where
s is the size of the set. Then, for each triple sample si, the
following inequality d(X‘i“, Xf) < d(Xf‘, XJB) needs to be sat-
isfied. We define an error function for one triple sample as
e(sy) = d(X‘;‘, XIB) — d(X‘;‘, Xf). With this error function, the
formulation of the discriminative term is defined as

s
1
Egis(Ly, L) = 3 E lg(e(sk)) “4)
k=1

where lg(z) = (1/B)log(1 + eP?) is the generalized logistic
loss function (refer to [50]). It is easy to see that this term
in the objective function penalizes triple samples invading the
inequality. Here, we choose the logistic loss function instead
of the hinge loss function for two reasons. First, the hinge
loss is not differentiable at zero, while logistic loss function
has derivatives everywhere which makes the solution simpler.
Second, the logistic loss gives a soft approximation to hinge
loss and is more flexible.
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In addition, as discussed in Section III-C, L, is the
interdiscrepancy projection, acting as the right-multiplier con-
trols the weights of different discrepancies. It selects typical
reference persons which are useful for discrepancies. We
consider that not all the reference persons are useful for dis-
crepancy, and some of them have more discriminative power
and bring less noise. Hence, discrepancies should be sparsely
selected [57]. We utilize £> 1-norm to improve discrepancy
selection [58], [59]. By solving the ¢, j-norm minimization
problem, L, will be sparse in each column. The formulation
of the sparse term is defined as

Egpr(L2) = [[L2ll2,1- ®)

Finally, we combine Econ, Edgis, and Egp; terms into a single
objective function for learning matrix metric as (6), where the
weights for the consistent term and the discriminative term are
set equal for simplicity in this paper, and p is the weight for
the sparse term

E(Ly, L) = Econ (L1, L) + Egis (L1, L) + pEgpr(L2). (6)

C. Optimization Algorithm

With the above objective function, the optimal metric can
be learned by solving the following optimization problem:

( 1, L;) =arg min E(L, Ly). (7
L, L

Due to the coupled variables and joint nonconvexity of
the proposed model, the global optimality cannot be guaran-
teed. To solve the model efficiently, we present an alternating
optimization process to learn L; and L, iteratively. Similar
to [60], we fix one of the projections and optimize the other
one, then in turn. As we know, the sparse term (5) is convex
as demonstrated in [58]. In addition, the consistent term (3)
and the discriminative term (4) are based on the distance
function (2). When we fix L; or Lj, the original distance
function degrade from a four-order polynomial to a two-order
polynomial. Consequently, (7) can be solved using a sim-
ple gradient-descent method under the alternating optimization
process with respect to L; and L;. We exploit a simple
stochastic strategy with randomly selected samples to acceler-
ate the iteration speed and meanwhile keep the optimization
accuracy. Specifically, for each positive example, we randomly
select k (k <« M) negative samples. A simple gradient descent
method can be exploited to learn L and L;. The gradients of
the objective function are given as

0E(Li, L) 9Econ(L1, Lo) n
oLy oLy

0Eqis(Ly, Lp)
JLy

®)

and
9E(Li,Ly)
oL,

0Econ (Ll s LZ)
oLy

aEspr (L2)
oL,
©))

0Eq4is(Ly, Lo)
+ oL, +u

where

M
8Econ(Ll’LZ) 2 TrpT
—_—— = — LiZ,1,L, Z,

8L1 M; 142 L9y L

(10)

Algorithm 1 Learning the Matrix Metric L; and Lj

Input: The training data: Positive samples with pair form {(Xf‘, X? )}, and Negative
Samples with triple form {(Xf\, Xf, XjB)k}»

Output:  The optimal matrix L} and L.

1: Initialize L and Ly;

2: for n =1 to Maxlter do

Fix Lg;

Compute VE(Ly) =

(95}

HE(aLLﬂ as Eq. 8, Eq. 10, and Eq. 12;

4
S: Choose a proper step A1 as [61];

6:  Compute LylHrl =L} - 4 VELy);

7: Fix L’1’+1;

8 Compute VE(L,) = as Eq. 9, Eq. 11, and Eq. 13;
9: Choose a proper step Ay as [61];

10:  Compute LT = L4 — 3, VE(Ly):

9E(L,Ly)
L

11: if converge then
12: break;

13: end if

14: end for

8Econ(Ll P L2)

oL, 11

2 M
== Z Z/LLZ1,
i=1

d0Egs(L1, L
% Zg(e(sk))

x (LlUkLsz U,j—lekLszTV,j) (12)

IEgs(Li, Ly  2$
3— - E, kg (E(Sk))

X
—~

U,leTLlUkLz—V[LlTlekLz) (13)

and
0Eqpr (L
9Espr(Lo) _ 2DL,. (14)
oL,
Here, g(z) = (1 + ¢ #9)~1 is the derivative of logistic loss

function /g(z). In above formulations, Z; = X2 — X5, Uy =
X} — X7, Vi = X! — X7P. Following [58], D is a diagonal
matrix with the mth diagonal element as d,;;;, = (1/2|1,1l2),
where 1,,, denotes the mth row of L.

With the gradients, an iterative optimization algorithm can
be used to learn the metric. Starting from the initial identical
matrix, L.; and L, are optimized iteratively. In the optimization
progress, we fix one and update the other as follows:

LYIH-I — qu _

MVE(L) (15)

and

Lyt = L5 — A VE(Ly) (16)
where A1 > 0 and Ay > O are step lengthes automatically
determined at each gradient update step. The iteration of the
algorithm is terminated when it reaches the maximum iteration
number (1000 in this paper) or meets the following criterion:

[E'T—E' < (17)
where ¢ is a small positive value, i.e., ¢ = 1 X 10~% in this
paper. The complete algorithm flow is shown in Algorithm. 1.
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Fig. 5.
(b) PRID 450S dataset. (c) CUHKOI1 dataset.

V. EXPERIMENTS
A. Datasets

1) VIPeR Dataset: The widely used VIPeR dataset [S5]
contains 1264 outdoor images obtained from two views of 632
persons. Some example images are shown in Fig. 5(a). Each
person has a pair of images taken from two different cameras,
respectively. All images of individuals are normalized to a size
of 128 x 48 pixels. View changes are the most significant cause
of appearance change. Other variations are also included, such
as illumination conditions and image qualities.

2) PRID 450S Dataset: The PRID 450S dataset [62]
was created in co-operation with the Austrian Institute of
Technology for the purpose of testing person re-id approaches.
It is a more realistic dataset, which contains 450 single shot
image pairs captured over two spatially disjoint camera views.
All images are normalized to 168 x 80 pixels. It is also a chal-
lenging person re-id dataset. Different with the VIPeR dataset,
this dataset has significant and consistent lighting changes.
Some examples from the PRID 450S dataset are shown in
Fig. 5(b).

3) CUHKOI Dataset: The CUHKO1 dataset [63] is a larger
dataset and contains 971 identities from two disjoint camera
views. Each identity has two samples per camera view. Some
example images are shown in Fig. 5(c). There are a total of
3884 images. All images are normalized to 160 x 60 pixels.
Similar to the VIPeR dataset, view changes are the most sig-
nificant cause of appearance change with most of the matched
image pairs containing one front/back view and one side-view.
Since a single representative image per camera view for each
person is considered in this paper, we randomly selected one
image from two samples per camera views for each people in
our experiments for this dataset.

B. Effectiveness of Discrepancy Matrix and Matrix Metric

1) Experimental Settings: To evaluate the proposed pat-
tern, we used the GoG descriptor [26] and demonstrated
the effectiveness of the proposed method on reforming the
hand-crafted feature. Meanwhile, given the success of deep
learning features in computer vision applications, we also con-
ducted experiments to show the effectiveness of the proposed
method on deep learning features. The FTCNN [56] descriptor
was employed to extract original feature descriptions. General
parameter configurations were the same for these two fea-
ture descriptors. To accelerate the learning process and reduce

Some typical samples of three public datasets. Each column shows two images of the same person from two different cameras. (a) VIPeR dataset.

noise, we conducted PCA to obtain a low-dimensional repre-
sentation [33], i.e., 70 (Ny = 70) in the experiments. Then, the
discrepancy matrix was generated using the low-dimensional
feature vector. We set Ni = Ny and N> = N,. The entire evalu-
ation procedure was repeated ten times. CMC [38] curves were
used to calculate the average performance. To fairly evaluate
and show the effectiveness of the proposed method, we con-
structed three subsets for each dataset, including the training
set, the testing set, and the reference set. The three subsets are
nonoverlapped, and randomly selected from the whole dataset.
1) VIPeR Dataset: For the VIPeR dataset, we randomly
selected 100 sample pairs as reference set (N, = 100).
Following the general settings, where the number of
training and testing pairs are the same, 200 sample
pairs are, respectively, from the rest samples (M = 200
and N = 200). The obtained results are shown in
Fig. 6(a) and (d). As can be seen, the discrepancy matrix
performs better than feature vector, and the proposed
DM? method obviously outperforms the basic discrep-
ancy matrix and feature vector over the whole range of
ranks.
2) PRID 450S Dataset: Following the evaluation process on
the VIPeR dataset, we, respectively, set N, = 60, M =
150, and N = 150. The obtained results are shown in
Fig. 6(b) and (e). It is evident that the discrepancy matrix
performs better than feature vector, and the proposed
DM? method clearly outperforms the basic discrepancy
matrix and feature vector.
3) CUHKOI Dataset: Following the evaluation process on
the VIPeR dataset, we, respectively, set N, = 100,
M = 300, and N = 300. Fig. 6(c) and (f) presents the
comparison results of different methods. On this chal-
lenging CUHKO1 dataset, the same conclusion as draw
from the other two datasets can be achieved based on
the results.
These experiments prove that, on different datasets with
different feature vectors, the proposed pattern performs very
well.

C. Sparsity of the Interdiscrepancy Projection

As discussed above, the role of L, is to sparsely select
typical references which are more useful for discrepancies.
Following the set of previous experiments, we learned Ly with
N, = 100 and M = 200 on the VIPeR dataset. Fig. 7(a)
visualized the results of L;. From this figure, we can see that
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Fig. 6. Experimental results of feature vector, discrepancy matrix description and the proposed DM? method on three public datasets, respectively, exploiting
hand-crafted feature and deep feature. Results on the (a) VIPeR dataset using the GoG descriptor, (b) PRID 450S dataset using the GoG descriptor, (c) CUHKO1
dataset using the GoG descriptor, (d) VIPeR dataset using the FTCNN descriptor, (e) PRID 450S dataset using the FTCNN descriptor, and (f) CUHKO1

dataset using the FTCNN descriptor.
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Fig. 7. Analysis on the sparsity of the interdiscrepancy projection. (a) Visualization of the interdiscrepancy projection. (b) Typical reference examples. These

examples are selected depending on the values of corresponding rows of the

projection matrix Ly. The left three columns are examples, sparsely selected by

the row of Ly with a high value (high weight). The right three columns are examples with a small possibility to be selected.

L, is relatively sparse for each column, that is to say only few
reference persons are selected after right multiplication.

In Fig. 7(b), we list some reference examples by analyzing
the projection weights. They are, respectively, the selected per-
sons and the nonselected persons. Comparing these examples,
we reckon that if a person image pair exists large variations,
such as different illuminations and background changes, it is of
a small possibility to be selected by the projection matrix Ly.

With the visualization of L, this experiment illustrates that
some of the reference persons are more useful for discrepancy
than the others, have more discriminative power, and bring
less noise.

D. Evaluating Parameters of the Proposed Method

We validate the proposed approach under different param-
eters, including evaluating different parameter N; for the

contribution of the intradiscrepancy projection matrix, and
different parameter N, for the interdiscrepancy projection
matrix. The experiment was conducted on the VIPeR dataset,
and general configurations were the same as the former
experiments.

We fixed N» = 100 and carried out experiments with dif-
ferent Ny values. Then, we fixed Ny = 70 and conducted
experiments with different N> values. The results are shown
in Fig. 8(a) and (b). It is obvious that when N| > 6 (N, > 4),
although the performance is not stable, the results can still be
improved using the proposed matrix metric learning process
with different Ny (V2) values. To learn the projections L and
L, together, we exploit the alternating optimization and the
gradient-descent method, where the global optimality cannot
be guaranteed. Hence, it would make the metric not perfectly
accurate, and the values may vary a little. Comparing with
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Fig. 8. Parameter analysis of the proposed method. Results of different (a) Nis on the VIPeR dataset, where N» = 100 and (b) Nps on VIPeR dataset, where

N = 70.

the initial results, where Ny = 1, or N = 1, we consider
that the proposed matrix metric demonstrates its effectiveness
with a large margin, and that the small variations are accept-
able. Fig. 8(a) and (b) also shows that N1 (N2) should not be
too small, because the metric constraints by intradiscrepancy
projection matrix (interdiscrepancy projection matrix) will be
reduced when the number of dimensions is low.

E. Comparison of the Discrepancy Matrix and the
Discrepancy Vector

By exploiting a reference set, the discrepancy description of
an image can be constructed by multiple differences. We form
the description to be a matrix in this paper. Actually, it can be
reshaped to a long vector as well. We evaluated these two kinds
of discrepancy descriptions on the VIPeR dataset. Fifty sample
pairs were randomly selected as reference set (N, = 50). We
used the GoG descriptor [26] as the original feature descriptor,
and conducted PCA to obtain 50-D representations (Ny = 50).
As a result, the description of discrepancy matrix was denoted
as R0 while the description of discrepancy vector was
denoted as R?>%%1 For the former, two projections were used
with previous configurations. For the latter, since the projec-
tion L, would degrade and lose its effectiveness, we only
utilized the projection L. The comparison results are shown
in Fig. 9. It can be seen that the discrepancy matrix performs
better than reshaping it to the discrepancy vector. It might be
because the independence of each discrepancy is broken, and
all the discrepancies are treated equally after reshaping the
matrix to the vector. When we reshape the matrix to the vec-
tor, only L is exploited. To achieve the effectiveness of L,
we should to weight the contribution of different discrepan-
cies, then more constraints should be introduced to L;, which
are not considered in this paper. On the contrary, if we retain
the structure of matrix, L; and L, will be exploited simultane-
ously. Some typical discrepancies should be sparsely selected
by exploiting L, as discussed in Section V-C.

F. Effectiveness of Different Terms

To understand the effectiveness of different terms, we eval-
uated the proposed method without a discriminate term or
a consistent term, following the settings in Section V-B.

Cumulative Matching Characteristic (CMC) Curves - VIPeR dataset

Matches

Discrepancy Matrix
Discrepancy Vector | |

0 10 20 30 40 50 60 70 80 90 100
Rank

Fig. 9. Comparison of the discrepancy matrix and the discrepancy vector.
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Fig. 10. Effectiveness of the proposed method without a discriminate term
or a consistent term.

The obtained results are shown in Fig. 10. If the proposed
method does not use the discriminate term (the blue curve in
Fig. 10) or the consistent term (the red curve in Fig. 10),
the results become worse, and even worse than the basic
discrepancy matrix with the F-form distance.

The consistent term pulls samples of the same person close,
and the discriminative term pushes samples of different per-
sons far away. We consider that if the object function without
the consistent term, the sample distribution of the same per-
son will be dispersed, and the intraclass sample will be easily
confused by the neighbor interclass sample. If the object
function without the discriminative term, samples of differ-
ent persons with similar appearance will be pulled together.
As the experiment demonstrates, neither of these two terms
can be omitted.
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TABLE IIT
COMPARING RESULTS WITH THE STATE-OF-THE-ART PERSON
RE-ID METHODS ON TOP RANKED MATCHING RATE (%)
ON VIPER DATASET
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TABLE IV
COMPARING RESULTS WITH THE STATE-OF-THE-ART PERSON
RE-ID METHODS ON TOP RANKED MATCHING RATE (%)
ON PRID 450S DATASET

G. Comparing to the State-of-the-Art Re-1d Methods

In this section, we compared our method with the state-of-
the-art re-id methods on different datasets. As we know, for
most datasets, the general setting is that half of the dataset is
selected as the training set, and the other half is taken as the
testing set. To make a fair comparison, we randomly selected
some of the samples from the training set as the reference set.
Tables III-V summarize the comparing results with the state-
of-the-art re-id methods, respectively, on the VIPeR, PRID
4508, and CUHKO1 datasets.

1) VIPeR Dataset: Following traditional methods, the
dataset were randomly split to two sets. One for train-
ing (M = 316) and the other for testing (N = 316).
Among the training set, the reference set N, = 100 was
randomly selected as well. The VIPeR dataset is the most
popular benchmark dataset for the re-id task, and hence,
a lot of recent progress reports results on this dataset.
We compare our approach with the following methods:
ELF [22], BiCov [39], SDALF [23], eSDC [42], midlevel
filters (MidFilter) [64], SCNCD [24], RD [37], PRDC [19],
KISSME [33], PCCA [49], LADF [34], LOMO descrip-
tor and XQDA (LOMO+XQDA) [25], deep metric learning
(DeepMetric) [65], DeepRanking [66], deep feature with rela-
tive distance comparison (DeepFeature+RDC) [28], deep fea-
tures with adaptive listwise constraint (DeepList) [30], LOMO
descriptor with the null space metric (LOMO+NFST) [51],
hierarchical Gaussian descriptor (GoG) [26] with XQDA,
and FTCNN [56] with XQDA. Note that, the RD method
extracts a feature description with a reference set, although
discrepancies with reference set are not exploited. The PRDC
method attempts to learn a metric with the sample dif-
ferences, although the discrepancy is focused on feature
distance other than description construction. DeepFeature,
DeepMetric, DeepList, DeepRanking, and FTCNN are those
methods related to deep learning frameworks, which obtain

Method (rank@) I 5 10 20 Method (rank@) T 5 10 20
ELF [22] 12.0 E 130 60.0 SCNCD [24] 1.6 68.9 794 378
BiCov [39] 20.6 32 56.1 68.0 KISSME [33] 330 59.8 71.0 79.0
SDALF [23] 199 384 194 66.0 CBRA [67] 264 571 71.0 832
eSDC [42] 263 46.4 586 72.8 CSL [68] 444 71.6 822 398
MidFilter [64] 29.1 525 65.9 79.9 Mirror [69] 554 793 378 939
SCNCD [24] 378 635 312 90.4 DRML [70] 56.4 - 82.2 90.2
RD [37] 333 65.1 783 885 (1) GoG [26]+XQDA 516 76.8 333 942
PRDC [19] 15.7 384 539 70.1 (2) FTICNN [56]+XQDA 50.2 742 343 93.7
KISSME [33] 19.6 48.0 622 77.0 (3) FTCNN+DM" 56.7(16.5) | 83.1(18.9) | 88.4(13.6) | 94.7(11.0)
PCCA [49] 193 139 649 803 Combine (1) and (2) 518 76.9 87.0 942
LADF [34] 30.0 64.0 80.0 92.0 Combine (1) and (3) 61.0 85.8 92.0 96.7
LOMO+XQDA [25] 40.0 635 305 91.0
DeepMetric [65] 2382 593 734 364
DeepRanking [66] 384 69.2 313 90.4
DeepFeature+RDC [28] 40.5 60.8 70.4 84.4 good performances recently. The proposed method (DM?) was
DeepList [30] 405 69.1 80.1 912 . -
LOMO+NEST [51] o) 7 59 930 evaluated with the FTCNN descriptor.
(1) GoG [26]+XQDA 373 674 77.2 89.6 All the results are listed in Table III. It should be men-
(2) FTCNN [56]+XQDA 312 598 740 835 . .
(3) FTCNN+DM* 373(16.1) | 67.4(17.6) | 80.3(16.3) | 89.5(16.0) tioned that: 1) GoG+XQDA and 2) FTCNN+XQDA stand for
Combine (1) and (2) 383 67.2 77.0 393 the traditional re-id methods, which utilize the feature vector
Combine (1) and (3) 427 74.3 85.1 93.1 (GoG or FTCNN) and the vector metric XQDA. Whereas,

3) FTCNN+DM? stands for the proposed method exploit-
ing the discrepancy matrix (based on FTCNN) and the matrix
metric DM?. Methods 1) and 2) are evaluated following the
procedure in traditional methods, such as [25]. The blue
numbers in the parenthesis indicate the improvements of the
proposed DM? over XQDA at each rank given FTCNN as
the feature descriptor. Due to the difference between feature
and discrepancy matrix description, vector and matrix met-
ric, we fused the proposed method (FTCNN+DM3) and the
state-of-the-art method (GoG+XQDA) by directly merging the
two ranking results. In detail, the fusion process is as follows.
Given a probe image II’;‘, two ranking lists will be generated
by methods 1) and 3). Then, for each image Ig in camera B,
we, respectively, obtain its ranking number rank; (15|I[‘;‘) and
rankj (I§|1[/2) based on the two ranking lists, and then com-
bine the numbers together as rank; (If]g |II/;‘)+rank3 (Ifl9 |II/;‘). After
obtaining the combined numbers of all the images in camera
B, we reorder them from small to large, and gain the fused
ranking list. As Table III shows, the fusion result outperforms
all the results generated by other methods.

2) PRID 4508 Dataset: Following the evaluation process
on the VIPeR dataset, the dataset were randomly split to
two sets. One for training (M = 225) and the other for
testing (N = 225). Among the training set, the reference
set N, = 70 was randomly selected as well. We com-
pare our approach with the following methods: SCNCD [24],
KISSME [33], color-based ranking aggregation (CBRA) [67],
correspondence structure learning (CSL) [68], mirror represen-
tation (Mirror) [69], and diversity regularized metric learning
(DRML) [70]. The proposed method (DM?) was evaluated
with an original FTCNN descriptor. All the results are listed
in Table IV. The blue numbers in the parenthesis indicate
the improvements of the proposed DM> over XQDA at each
rank given FTCNN as the feature descriptor. Table IV also
shows that the fusion result (FTCNN+DM? and GoG+XQDA)
outperforms all the results generated by other methods.

3) CUHKOI Dataset: Following the evaluation process
on the VIPeR dataset, the dataset were randomly split to
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TABLE V
COMPARING RESULTS WITH THE STATE-OF-THE-ART PERSON
RE-ID METHODS ON TOP RANKED MATCHING RATE (%)
ON CUHKO1 DATASET

Method (rank@) 1 5 10 20
SDALF [23] 9.9 22.6 30.3 41.0
TML [63] 20.0 43.5 56.0 69.3
SalMatch [71] 28.4 45.8 55.7 67.9
MidFilter [64] 34.3 55.1 65.0 74.9
RD [37] 31.1 - 68.5 79.1
ImprovedDeep [72] 47.5 71.0 80.0 -
(1) GoG [26]+XQDA 44.5 71.1 78.1 89.0
(2) FTCNN [56]+XQDA 41.1 63.5 73.6 85.8
(3) FTCNN+DM* 43.7(12.6) 70.1(16.6) 77.4(13.8) 88.7(12.9)
Combine (1) and (2) 42.1 70.1 78.3 89.6
Combine (1) and (3) 49.7 77.3 86.1 91.4

two sets. One for training (M = 485) and the other for
testing (N = 486). Among the training set, the refer-
ence set N, = 100 was randomly selected as well. These
methods used a single-shot evaluating protocol. We com-
pare our approach with the following methods: SDALF [23],
transferred metric learning (TML) [63], saliency matching
(SalMatch) [71], MidFilter [64], improved deep learning archi-
tecture (ImprovedDeep) [72], and RD [37]. The proposed
method (DM?3) was evaluated with an original FTCNN
descriptor. All the results are listed in Table V. The blue
numbers in the parenthesis indicate the improvements of the
proposed DM? over XQDA at each rank given FTCNN as the
feature descriptor. Table V also shows that the fusion result
(FTCNN+DM? and GoG+XQDA) outperforms all the results
generated by other methods.

H. Evaluation on the Large Dataset

As we know, CUHKO3 [27] and Market-1501 [73] are two
large datasets in person re-id task. We choose the Market-
1501 dataset to evaluate our method. The Market-1501 dataset
is currently the largest benchmark dataset for person re-id,
which is more consistent with practical application scenario.
It contains 32 668 labeled bounding boxes of 1501 identities.
Following the experiment setting of [73], the dataset is split
into two parts: 12936 images with 751 identities for training
and 19732 images with 750 identities for testing. In testing,
3368 images with 750 identities are used as the probe set.

To make a fair comparison with the state-of-the-art meth-
ods, we randomly selected N, = 100 images pairs from the
training set as the reference set. The ID discriminative embed-
ding (IDE) feature proposed in [74] is used as our basic
feature. The IDE extractor is effectively trained on classifi-
cation model including CaffeNet [75] and ResNet-50 [76].
For the convenience of description, we abbreviate the IDE
trained on CaffeNet and ResNet-50 to IDE(C) and IDE(R),
respectively. We compare our approach with the following
methods. BoW feature with the weighted approximate rank
component analysis method (BoW+WARCA) [77], LOMO
descriptor with the null space metric (LOMO+NFST) [51],
IDE(C) feature with XQDA, and IDE(R) feature with XQDA.
The proposed method (DM?) was evaluated with the IDE(R)
feature. Besides the CMC value, we also compared the mean
average precision (mAP), as described in [74]. We report the
single-query evaluation results [73] for this dataset.

IEEE TRANSACTIONS ON CYBERNETICS

TABLE VI
COMPARING RESULTS WITH THE STATE-OF-THE-ART PERSON
RE-ID METHODS ON THE MARKET-1501 DATASET

Method (rank@) 1 5 10 mAP
BoW+WARCA [77] 45.1 | 68.1 76 -
LOMO+NEST [51] 55.4 - - 29.8
(1) IDE(C)+XQDA 61.4 | 81.0 87 37.4
(2) IDE(R)+XQDA 755 | 88.6 | 91.6 53.0
(3) IDE(R)+DM 734 | 87.6 | 91.1 51.8

Combine (1) and (3) 75.8 89.1 92.4 53.2

All the results are listed in Table VI. Table VI shows that
the fusion result (IDE(R)+DM?> and IDE(C)+XQDA) outper-
forms all the results generated by the other methods. However,
Table VI also shows that the proposed method (DM?3) with
the IDE(R) feature does not performs better than the XQDA
metric. We consider it is because the person images of the
Market-1501 dataset are captured from six different cameras,
while the proposed method is designed under two different
cameras. The advantage of our method, which focuses on
removing the uniform cross-camera imaging variation, would
be suppressed under the multiple cameras condition.

1. Discussion on the Running Time

During the iterative procedure, the running cost of the
offline training mainly depends on gradient and loss calcu-
lation. For the gradient, both traditional and the proposed
methods operate using matrix manipulation. For the loss, tradi-
tional vector-L2 distance transforms to matrix F-form distance.
Using MATLAB,! these two operations brings no more time
loss. However, two projections are used in our approach, which
will double the running cost. To evaluate the offline train-
ing time, we took the VIPeR dataset as an example. We set
the training set as M = 316, and among the training set, the
reference set N, = 100 was randomly selected. The average
running time for the four partial gradients (10)—(13) are 0.10,
0.11, 0.36, and 0.39 s. To calculate the total loss in each step,
it takes 0.203 s in average. To reduce iterations, an adaptive
step length strategy is utilized, which reduces much time. It
merely costs 49.8 s in average.

On the other hand, the on-line testing time of each pair
of discrepancy matrices is very fast. Using (2), the time cost
is 0.0002 s in average. In total, it costs 19.9 s for testing a
N = 316 set. In addition, to evaluate the testing time of the
combination result, we should also consider the XQDA [25]
method, which attempts to learn a Mahalanobis distance metric
in essence. After obtaining the metric, the distances of vectors
are calculated by Mahalanobis distance. It is recorded that the
testing time is 0.09 s in average for the N = 316 testing set.
That is to say, the combination work will not bring in much
time cost.

VI. CONCLUSION

In this paper, we proposed a new idea to describe a person
image. Specifically, the feature description is transformed from
characteristic vector to discrepancy matrix, and the distance

IThe CPU and RAM of our computer are, respectively, Intel Xeon E5-2683
and 256 GB. The version of MATLAB is R2015b.
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metr
Our

ic is transformed from vector metric to matrix metric.
model identifying person by their discrepancies with the

others is similar to human cognition process, and it is advan-
tageous because the proposed description presumably reduces
the external changes and is more fine-grained. Experimental
results on public datasets demonstrate the effectiveness of
the proposed pattern. In the following, we also provide a
discussion on future research directions.

1y

2)

3)

[1]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

In our proposed pattern, the reference set is chosen ran-
domly, and some typical persons are sparsely selected
from the reference set by exploiting L,, which is learned
during the metric learning process. It is proved that these
selected persons are more valuable than the other per-
sons. To this end, we can investigate what characteristics
are useful and how many persons should be exploited
as the reference set. If we discover the selection mech-
anism of reference persons, the most valuable ones will
be selected before metric learning, and the metric might
be more discriminative by removing the sparse term.
We propose the matrix metric learning method by con-
structing a hand-crafted objective function. As we know,
the deep learning framework can be also utilized to learn
the metric. For example, the proposed discriminate term
uses triple samples, and its idea is similar to the triple
network [78].

Although Section V-1 shows that the combination work
will not bring in much time cost, calculating distances of
discrepancy matrices is much more time consuming than
computing distances of feature vectors. This inspires us
to study how to accelerate the process of matrix distance
computation.
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