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3D Action Recognition Using Multi-scale
Energy-based Global Ternary Image
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Abstract— This paper presents an effective multi-scale energy-
based Global Ternary Image (GTI) representation for action
recognition from depth sequences. The unique property of our
representation is that it takes the spatial-temporal discrimination
and action speed variations into account, intending to solve the
problems of distinguishing similar actions and identifying the
actions with different speeds in one goal. The entire method
is carried out in two stages. In the first stage, consecutive
depth frames are used to generate GTI features, which implicitly
capture both interframe motion regions and motion directions.
Specifically, each pixel in GTI represents one of three possible
states, namely positive, negative and neutral, which indicate
increased, decreased and same depth values, respectively. To
cope with speed variations in actions, energy-based sampling
method is utilized, leading to multi-scale energy-based GTI
(E-GTI) features, where the multi-scale scheme can efficiently
capture the temporal relationships among frames. In the second
stage, all the E-GTI features are transformed by Radon Trans-
form (RT) as robust descriptors, which are aggregated by the
Bag-of-Visual-Words (BoVW) model as compact representation.
Extensive experiments on benchmark datasets show that our
representation outperforms state-of-the-art approaches, since it
captures discriminating spatial-temporal information of actions.
Due to the merits of energy-based sampling and RT methods,
our representation shows robustness to speed variations, depth
noise and partial occlusions.

Index Terms—Action recognition, depth sequence, human-
computer interaction

I. INTRODUCTION

How to accurately recognize actions, e.g., hug, hand wave
and smoke, in a cost-effective manner is one main chal-
lenge that confronts human-computer interaction, content-
based video analysis and intelligent surveillance. Most previ-
ous works have used color cameras to record actions as RGB
sequences and developed distinctive action representations for
action analysis [1], [2], [3], [4]. However, action recognition
using RGB sequences continues to be challenging because
of problems such as severe changes in lighting conditions
and cluttered backgrounds. Moreover, information loss in
depth channel introduces ambiguity that renders difficulty in
distinguishing similar actions.

With rapid advances of imaging technology in capturing
depth information in real time, many works [6], [7], [8] solve
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(a) A depth sequence of action “bend”

(b) DMM (c) Global Ternary Image (GTI)

Figure 1: Comparison between DMM and GTI. (a) is a depth sequence of
action “bend”. (b) shows the DMM of the front view projection generated
using all depth frames [5]. (c) shows the GTIs of the front view projection
generated using consecutive depth frames. Pixels in red, green and blue colors
denote positive, negative and neutral states, respectively. (Best viewed in color)

action recognition problems by using depth data from depth
cameras, particularly the cost-effective Microsoft Kinect RGB-
D camera. Compared with conventional RGB data, depth data
is more robust to changes in lighting conditions, because the
depth value is estimated by infrared radiation without relating
it to visible light [9]. Subtracting foreground from cluttered
background is easier using depth data, as the confusing texture
and color information from cluttered backgrounds are ignored
[10]. In addition, RGB-D cameras provide depth maps with
appropriate resolution and accuracy, which provide three-
dimensional information on the structure of subjects/objects
in the scene [11].

One of the most challenging tasks in 3D action recognition,
e.g. action recognition using Kinect sensor, is to describe
3D motions from depth sequences which contain redundant
data and noise. To this end, various representations of depth
sequences have been developed, including Moving Pose (MP)
[12], Histogram of 4D normals (HON4D) [13], Random Occu-
pancy Pattern (ROP) [14] and depth motion map (DMM) [5].
Among these methods, DMM-based representations transform
the action recognition problem from 3D to 2D and have been
successfully applied to depth-based action recognition.

Motivation and Contributions: Our method is directly
inspired by DMM-HOG [5], shown in Fig. 2 (a). In the
work [5], depth maps were projected onto three orthogonal
planes and a depth motion map (DMM) in each plane was
generated by accumulating foreground regions through an
entire sequence. Then, histogram of gradients (HOG) feature
was used to describe each DMM. Finally, HOG features were
concatenated as final representation. The success of DMM
indicates that describing interframe motions is an efficient
way to encode 3D action. However, DMM of an entire depth
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Figure 2: DMM-HOG [5] representation and our representations.

sequence can barely capture detailed temporal motion in a
subset of depth frames. As a result, an old motion history may
get overwritten when a more recent action occurs at the same
point. An example is shown in Fig. 1 (b), where the limitation
of DMM in capturing detailed motions is illustrated.

To this end, we propose a Global Ternary Image (GTI)
feature, which outperforms DMM in capturing detailed frame-
to-frame motion information including both motion regions
and directions. As shown in Fig. 1 (c), it is observed that
more detailed motion information (positive motion colored
in red and negative motion colored in green) of the human
body can be captured by GTIs than DMM. In previous
work [5], HOG is used to describe the textures of DMM.
Since GTI mainly contains shape information and lacks in
texture information, we used Radon Transform (RT) instead
to describe the shape of GTI. The pipeline of building Bag of
GTIs representation is detailed in Fig. 2 (b). We observe that
the speed variations of different performers affect the shape of
GTI directly. Therefore, we propose an energy-based sampling
method, which converts a depth sequence into multi-scale
speed insensitive depth sequences. Based on these sequences,
we develop a multi-scale energy-based GTIs representation,
shown in Fig. 2 (c). Two main contributions are as follows:
• Multi-scale energy-based Global Ternary Image represen-

tation efficiently captures spatial-temporal discrimination
of depth sequences, and it outperforms most state-of-
the-art methods on benchmark datasets designed for 3D
action and gesture recognition.

• The proposed representation shows robustness to com-
mon problems in real applications, i.e., speed variations,
depth noise and partial occlusions, therefore it achieves
best performances on modified MSRAction3D datasets,
which involve above problems.

The remainder of this paper is as follows. Section II reviews
related work. Section III presents Global Ternary Image and
Section IV provides multi-scale Energy-based Global Ternary
Image. Experimental results and comparisons are reported in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Action recognition methods using sole depth sensor are
reviewed in this section. It is noted that fusing depth and other
sensors like inertial sensor [15], [16], [17] can provide more
abundant cues for analysis. According to the type of input
data, 3D action recognition methods are roughly categorized
into skeleton-based approaches and depth-based approaches.

Taking adopted feature type into consideration, depth-based
approaches are further categorized into local feature-based ap-
proaches and global feature-based approaches. Comprehensive
reviews on 3D action recognition appear in [18], [19], [20].

Recent approaches built end-to-end systems by directly
using original image/video as inputs to train neural networks
[21], [22]. Specifically, differential Recurrent Neural Net-
works (RNN) [21] and part-aware Long Short-Term Memory
(LSTM) [22] have been proposed to model temporal rela-
tionships among frames. Although high accuracies have been
achieved, deep learning-based methods need large labeled data
and time cost for training. It is noted that this work focuses
on related hand-crafted feature-based approaches.

A. Skeleton-based approaches

Since actions can be denoted by movements of skeleton
joints, related methods [23], [12], [24], [25], [26] represented
motions by encoding 3D skeleton joint positions, estimated by
tracking framework [27]. Yang et al. adopted the differences
of joints in temporal and spatial domains to encode the
dynamics of joints and then obtained EigenJoints by applying
Principal Component Analysis (PCA) to joint differences [23].
The EigenJoints contain less redundancy and noise, when
compared with original joints. Zanfir et al. provided a non-
parametric Moving Pose (MP) framework, which considers
more features like position, speed and acceleration of joints
[12]. To ensure precision of estimated joints, Wang et al.
incorporated temporal constraints and additional segmentation
cues of consecutive skeleton joints for selecting K-best joint
estimations [24]. Another way to improve the performance
of skeleton joints is to associate local features with joints.
This idea, termed as Actionlet Ensemble Model by Wang et
al., combines local occupancy pattern with 3D joints [25].
Pairwise relative positions of skeleton joints were also uti-
lized in the work [25], because they are more discriminating
and intuitive than previous skeleton joints-based features.
Additionally, Luo et al. reduced the irrelevant information
of pairwise skeleton joints feature and proposed a 3D joint
feature, which selects one joint as reference and uses its
differences to the remaining joints as features [26]. However,
applications of skeleton-based approaches are limited, since
skeleton data may be inaccurate when a person is indirectly
standing toward the camera. Moreover, skeleton can be barely
obtained in applications like hand gesture recognition.

B. Depth-based approaches

1) Local feature: Intuitively, surface normals reflect the
shape of 3D objects. When human actions are treated as
space-time pattern templates [28], the task of human action
recognition is converted to 3D object recognition, therefore
surface normals can be used to represent human actions
[29], [13], [30]. Tang et al. formed a Histogram of Oriented
Normal Vectors (HONV) as a concatenation of histograms of
zenith and azimuthal angles to capture local distribution of the
orientation of an object surface [29]. Oreifej et al. extended
HONV to 4D space of time, depth and spatial coordinates,
and provided a Histogram of Oriented 4D Normals (HON4D)
to encode the surface normal orientation of human actions
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[13]. HON4D jointly captures motion cues and dynamic
shapes, therefore it shows more discriminating than previous
approaches which separately encode the motion or shape
information. To increase the robustness of HON4D against
noise, Yang et al. grouped local hypersurface normals into
polynormal, and aggregated low-level polynormals into Super
Normal Vectors (SNV) [30].

Another type of local feature is called cloud points, which
denotes human actions as clouds of local points. Li et al.
extracted points from the contours of planar projections of
3D depth map, and employed an action graph to model the
distribution of sampled 3D points [31]. Vieira et al. divided 3D
points into same size of 4D grids, and applied Spatio-Temporal
Occupancy Patterns (STOP) to encode these grids [32]. Wang
et al. explored an extremely large sampling space of Random
Occupancy Pattern (ROP) features and used a sparse coding
method to encode these features [14].

Generally speaking, surface normals and cloud points show
robustness against partial occlusions. When parts of features
are destroyed by partial occlusions, the rests of local features
are still useful to represent human actions. However, these lo-
cal feature-based methods ignore the global constrains among
points therefore they are not distinctive to classify human
actions with similar local structures.

2) Global feature: As a traditional method of extracting
motions, frame difference method calculates the differences
between consecutive frames to generate motion regions. By
accumulating these motion regions across a whole sequence,
Boblick et al. proposed a Motion Energy Image (MEI) to
represent where motion has occurred in an RGB sequence
[33]. A Motion History Image (MHI) was also proposed in
[33], where the intensity of each pixel in MHI is a function
of temporal history information at that point.

By incorporating an additional dimension of depth, Azary
et al. extended MHI to define a Motion Depth Surface (MDS),
which captures most recent motions in the depth direction as
well as within each frame [34]. To make full use of depth
information, Yang et al. projected depth maps onto three
orthogonal planes and generated a depth motion map (DMM)
in each plane by accumulating foreground regions through an
entire sequence [5]. Based on the concept of DMM, Chen et al.
proposed an improved version, which stacks the depth values
across an entire depth sequence for three orthogonal planes
[35], [36]. Yang et al. used DMM to train deep convolutional
neural networks (CNNs) [37]. On the basis of DMM, a
DMM-Pyramid architecture was proposed to partially keep
the temporal ordinal information lost in DMM. Zhang et al.
proposed Edge Enhanced Depth Motion Map (E2DMM) to
balance the information weighing between shape and motion
[38]. Additionally, they employed a dynamic temporal pyramid
to segment the depth video sequence to address temporal
structure information of dynamic hand gestures.

Generally speaking, DMM-based representations, which are
able to effectively transform the action recognition problem
from 3D to 2D, have achieved promising accuracies on the
task of depth-based action recognition. However, interframe
motions are directly accumulated in previous works. In other
words, detailed motions (i.e. motion shapes and motion di-
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Figure 3: Extraction of GBI and GTI. (c) shows GBIs which denote motion
regions (colored in pink). (d) shows GTIs which denote both motion regions
and motion directions (pixels in green stand for negative motion and pixels
in red stand for positive motion). (e) shows that each GTI can be described
by two GBIs. (Best viewed in color)

rections) have not been extensively explored. To solve this
problem, we propose a new representation, which preserves
distinctive interframe motion cues and encodes global tempo-
ral constrains among depth frames. Moreover, our represen-
tation shows robustness to speed variations, depth noise and
partial occlusions.

III. GLOBAL TERNARY IMAGE

In this section, we firstly introduce the concept of Global
Binary Image (GBI), which is designed to represent motion
regions between two consecutive depth frames. Then, we ex-
tend GBI to Global Ternary Image (GTI), which is designed to
represent both motion regions and motion directions. Further,
GBI and GTI are transformed by Radon Transform (RT) to
form compact and robust feature vectors.

Suppose I denote a depth sequence containing a 3D action,
which is formulated as:

I = {I1, ..., Ii, ..., IN}, s.t. i ∈ (1, ..., N), (1)

where N is the total number of depth frames and Ii is the i-th
frame. The pipeline of extracting GBIs from two consecutive
depth frames, i.e., Ii and Ii−1, is shown in Fig. 3 (a)-(c).

The depth value of each pixel in a frame shows two useful
properties. First, the 3D shape information of human body
can be inferred by the spatial distribution of depth values.
Second, the changes in depth value across frames provide
motion information in the depth direction. To make full use
of depth information, each depth frame is projected onto three
orthogonal planes:

Ii → {mapiv }, s.t. v ∈ { f, s, t }, (2)

where mapiv is the projected map of the i-th depth frame on
the v view; f, s, t stand for the front, side and top views.

On each projected map, background (i.e. zero) region is
discarded and the bounding box of foreground (i.e. non-zero)
region is selected as the region of interest. As shown in Fig. 3
(a), the bounding box is the smallest rectangle, which contains
all regions that an actor can ever reach. To achieve scale
invariance, foregrounds in bounding boxes are normalized to
their respective sizes, which are fixed according to previous
work [36]. The normalization eliminates the effect of different
heights and motion extents of different performers also. After
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(a) Action #1 (b) GBI (c) GTI (d) Action #2 (e) GBI (f) GTI
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Figure 4: Comparison between GBI and GTI. Two depth frames are used
to denote action #1 (a) and action #2 (d). GBI (b) and GTI (c) of the side
view projection are generated for action #1. GBI (e) and GTI (f) of the side
view projection are generated for action #2. (Best viewed in color)

these steps, the i-th depth map generates three 2D maps, one
each on the front, side, and top views, i.e. mapif , mapis, mapit.

For each view, we detect depth value changes and obtain
binary maps to indicate motion regions. In the following
discussion, each binary map here is called a GBI. The value
of GBIiv on location j is defined as:

GBIiv(j) =

 1, if mapi−1
v (j) > 0 ∧ mapiv(j) = 0

1, if mapi−1
v (j) = 0 ∧ mapiv(j) > 0

0, otherwise,
(3)

where mapiv(j) is the depth value of mapiv on location
j. Here, we refer a pixel with non-zero depth value as a
foreground point and refer a pixel with zero depth value
as a background point. Under this assumption, Formula
mapi−1v (j) > 0 ∧ mapiv(j) = 0 indicates that the pixel
on location j jumps from the background to the foreground
and Formula mapi−1v (j) = 0 ∧ mapiv(j) > 0 indicates
that the pixel on location j jumps from the foreground to
the background. In other words, the state of a pixel changing
between background and foreground indicates the occurrence
of motion. A neutral state is detected on a pixel when the
depth value (non-zero) of a pixel grows bigger or changes to
a smaller value (non-zero). This phenomenon indicates that
GBI suffers less from depth noise, which severely changes
original depth values.

Besides motion regions captured by GBI, motion directions
also play an important role in describing motions. Two similar
actions, i.e. action #1 in Fig. 4 (a) and action #2 in Fig. 4 (d),
are taken as an example. Obviously, their corresponding GBIs,
i.e. GBI in Fig. 4 (b) and GBI in Fig. 4 (e), are nearly the
same, indicating similar motion regions (pink pixels in Fig. 4
(b) and Fig. 4 (e)). It is observed that the main difference
between two actions are the motion directions. Therefore,
GTI is proposed to encode both motion regions and motion
directions, by adding directional information to GBI. GTIs
in Fig. 4 (c) and (f) are different for two actions, indicating
dissimilar motion directions. In other words, GTI can capture
both motion regions and motion directions, therefore showing
superior motion description power than GBI.

Similar to the step of formulating GBIiv , the value of
corresponding GTIiv on location j is defined as:

GTIiv(j) =

 +1, if mapi−1
v (j) > 0 ∧ mapiv(j) = 0

−1, if mapi−1
v (j) = 0 ∧ mapiv(j) > 0

0, otherwise,
(4)

where Formula mapi−1v (j) > 0 ∧ mapiv(j) = 0 indi-
cates positive motion (red pixels in Fig. 3 (d)) and Formula
mapi−1v (j) = 0 ∧ mapiv(j) < 0 indicates negative motion
(green pixels in Fig. 3 (d)). It is noted that each GTI can be

(a)  Original depth frames (b)  20% pepper noise

(c) Partial occlusion #1 (d)  Partial occlusion #2

frame i-1

frame i

0.8245

0.7629 0.7485

0.8893

0.8635 0.9235

(e) GBI (f) Feature map

Figure 5: The effect of Radon Transform. Radon Transform describes GBIs
of the front view projection generated using (a) original depth frames, (b)
depth frames added by 20% pepper noise, (c) depth frames partially occluded
by occlusion #1 (simulated by ignoring pixels located in the green region),
(d) depth frames partially occluded by occlusion #2. Number in (e) and (f)
denotes correlation coefficient. (Best viewed in color)

RT

RT

(a)  GTI (b)  GBI (c)  Feature map (d)  Feature vector of GBI (e)  Feature vector of GTI

Figure 6: Feature extraction from GTI. (b) shows two GBIs, denoting
positive and negative motion regions of the GTI in (a). (c) shows feature
maps generated by describing GBIs using Radon Transform. Feature maps in
(c) are converted to feature vectors in (d), which are concatenated to describe
the GTI in (a). (Best viewed in color)

described as two GBIs, which are shown in Fig. 3 (e).
With the directional information from GTI, we can easily

distinguish similar actions in Fig. 4, where Fig. 4 (c) shows
an action of “a person bends the head to the waist” and Fig.
4 (f) shows an action of “a person unbends the body”. These
observations indicate that GTI is able to efficiently capture the
details (e.g., regions and directions) of 3D motions.

GBI and GTI have shown robustness to depth value changes
(from one non-zero value to another) caused by depth noise.
However, they still suffer from space-time discontinuities in
depth data and partial occlusions. Similar to previous work
[39], pepper noises are added to original depth data to simulate
the space-time discontinuity. In Fig. 5 (e), pepper noise brings
fake motion regions and holes to GBI. Similar to previous
work [14], partial occlusions are simulated by ignoring a
portion of depth data. In Fig. 5 (e), the shapes of GBIs are
dramatically changed by occlusions. To solve these problems,
Radon Transform is introduced to convert GBIs to robust
feature maps. Fig. 5 (e) and (f) show that the correlation
coefficients between pairwise feature maps are larger than that
of the corresponding pairwise GBIs. In other words, feature
maps of GBIs share much similar appearances than GBIs,
therefore showing stronger robustness to pepper noise and
partial occlusions.

Mathematically speaking, Radon Transform in two dimen-
sions is the integral transform consisting of the integral of
a function over straight lines [40]. In other words, Radon
Transform can find the projection of a shape on any given line.
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(a)  Action “bend”performed by person #1 (d)  Action “bend”performed by person #2
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Figure 7: Illustration of energy-based sampling method. Action “bend” performed by person #1 and person #2 are shown in (a) and (d), respectively. (b)
and (e) are the accumulated motion energy curves, calculated by accumulating frame-to-frame motion energy. Depth frames in (c) and (f) are sampled from
(a) and (d), respectively. The sampling criterion is to keep frame-to-frame motion energy of the sampled sequence nearly the same. (Best viewed in color)

Given a compactly supported continuous function f(x, y) on
R2, the Radon Transform is defined as:

R
{
f(x, y), θ

}
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y)·

δ(xcosθ + ysinθ − ρ)dxdydρ,
(5)

where δ is the Dirac delta function, ρ ∈ [−∞,+∞], and θ ∈
[0, π]. When f(x, y) stands for an image of W in width and
H in height, ρ is limited to

[
b−
√
W 2+H2

2 c, d
√
W 2+H2

2 e
]
.

Let GBIiv denote a GBI, the corresponding feature vector
generated by applying Radon Transform is formulated as:

Ri
v =

[
R
{
GBIiv, θp

}]P
p=1

, (6)

where θp ∈ [0 π); each θp establishes a line on which the GBI
is projected; P stands for the total number of projections; θp
equals to p

P ·π. Fig. 6 shows the pipeline of extracting feature
vector from a GTI GTIiv , which can be described as two
GBIs: +GTIiv · (GTIiv > 0) and −GTIiv · (GTIiv < 0). Then,
Formula 6 is applied to describe each GBI as a feature map,
which is further reshaped as a feature vector. Let W and H
denote the width and height of the GBI. Then, the dimension
of the feature vector is fixed as d

√
W 2 +H2e ·P . Finally, the

feature vector of GTI is calculated by concatenating feature
vectors of corresponding two GBIs.

IV. ENERGY-BASED GLOBAL TERNARY IMAGE AND
MULTI-SCALE SCHEME

Different performers have different habits, which increase
the intra-varieties among same type of actions. As shown in
Fig. 7 (a) and (d), action “bend” is performed by person #1
and person #2, generating two depth sequences with different
speeds. Since GBI and GTI are designed to describe interframe
motions, speed variations will directly affect appearances of
GBI and GTI. In this section, it is observed that the state of
human pose in a sequence is related to motion energy. When
a person changes his or her pose, from one to another, the
motion energy extracted from two poses is a stable value,
which is unrelated to speed. Therefore, we select frames from
the original sequence to form a new sequence, in which the

Algorithm 1: Energy-based sampling method
Input: depth sequence I = {Ii}Ni=1, number of frames N,M
Output: sampled sequence SM

1 S1 ← I1, SM ← IN ;
2 E1 ← 0;
3 for i = 2; i ≤ N do
4 e← 0;
5 for v ∈ {f, s, t} do
6 for ∀j ∈ GBIiv do
7 GBIiv(j) ← Formula 3;
8 e← e+ num

{
GBIiv(j)

}
;

9 Ei ← Ei−1 + e;

10 m← 2, i← 2;
11 while m ≤M − 1 do
12 while i ≤ N do
13 if

(
EN

M−1
· (m− 1)

)
≤ Ei then

14 Sm ← Ii;
15 m← m+ 1;
16 break;

17 i← i+ 1;

18 return SM = {Sm}Mm=1;

motion energies between consecutive frames are nearly the
same. In this way, the sampled sequence suffers less from
the effect of speed variations. Correspondingly, an energy-
based sampling method is proposed to sample frames from
original depth sequences. As shown in Fig. 7 (c) and (f),
the sampled sequences are similar to each other, indicating
slight effect from speed variations. The GTI extracted from
sampled sequences is termed as Energy-based GTI (E-GTI),
which inherits the merits of GTI and shows robustness to speed
variations. Following paragraphs mainly focus on the energy-
based sampling method.

Given a depth sequence with N frames, the accumulated
motion energy on the i-th frame is defined as:

Ei =
∑i

j=2

∑
v∈{f,s,t}

num
{
GBIjv

}
, (7)

where num{·} returns the number of non-zero elements in a
binary map. For simplicity of expression, E1 is set to zero.

In Algorithm 1, frames from a given depth sequence are
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selected to construct a sampled sequence with M frames. The
pipeline of such a construction can be divided into two steps.
First, the first and the last frames of the given sequence are
selected as the starting and ending frames of the sampled
sequence. Second, M − 2 frames are selected to make sure
that motion energies between consecutive frames are nearly
equal. As shown in Fig. 7 (b) and (e), accumulated motion
energies are calculated for both actions. Following Algorithm
1, we obtain sampled sequences with parameter M setting to
six for example. It can be seen that the intra-varieties between
sampled sequences, i.e., Fig. 7 (c) and (f), are much smaller
than those between original sequences, i.e., Fig. 7 (a) and (d).

To encode temporal information, Laptev et al. proposed a
pyramid-based representation to take into account the rough
temporal order of a sequence [1]. Yang et al. observed that
it is inflexible to handle action speed variations by evenly
subdividing a video along the time axis [30]. Therefore, they
defined a concept of motion energy to adaptively divide a
sequence into several temporal segments with equal motion
energy. Specifically, the starting and ending frames of each
segment are adaptively selected by using motion energy. Then,
the segment is constructed by all frames from original se-
quence, which locate between the starting and ending frames.
This pipeline indicates that the problem of speed variations
is still unsolved in each segment. Different from previous
work [30], we sample frames from original sequence using
motion energy and construct sampled sequences directly using
sampled frames. In this way, each frame of the sampled
sequence is related to the motion energy, therefore our sampled
sequences show robustness to speed variations.

In the field of image retrieval, Bag-of-Visual-Words
(BoVW) model is widely used to obtain a compact representa-
tion from local features. Here, we represent a depth sequence
I by a set of GBIs R = {Ri}Ni=2, where Ri is defined as:

Ri = [Ri
f , R

i
s, R

i
t ], (8)

which concatenates feature vectors from three projection
views. During the training stage of BoVW, local features are
randomly selected from training set and then clustered into
K “words” using clustering method, such as K-means [41].
During the testing stage, BoVW model finds the corresponding
“word” for each feature in the feature set R and then uses a
histogram of “words” as a simple representation of I:

BIGBI = B
{
R,K

}
= B

{
{Ri}Ni=2,K

}
,

(9)

where function B stands for performing all steps of BoVW
model. To remove the effect of the number of local features,
the above representation is further normalized as:

BIGBI =
B
{
{Ri}Ni=2,K

}
||B
{
{Ri}Ni=2,K

}
||2
, (10)

where || · ||2 calculates the l2 norm. Following similar steps,
Radon Transform and BoVW model are applied to generate
a representation BIGTI , when the depth sequence I is repre-
sented by a set of low-level GTIs.

Suppose the depth sequence I is sampled to form a sampled

(a)  Original depth sequence of action “bend”

(b) Sampled depth sequence #1

(c)  Sampled depth sequence #2

(d) Sampled depth sequence #3

Figure 8: Illustration of multi-scale sampled sequences. (a) is an original
sequence. (b), (c) and (d) are sampled depth sequences, which record different
scales of motions. (Best viewed in color)

(a) draw tick

(b) draw x

Figure 9: Action snaps from MSRAction3D dataset.

sequence SM with M frames, which can be represented by a
set of low-level E-GTIs. Similarly, a representation BIE−GTI

is formed to describe SM . However, a sampled sequence SM

only preserves one certain scale of motion from the original
sequence I. As shown in Fig. 8, three sampled sequences,
i.e., S3, S6 and S8, are sampled from an action “bend”. It is
noted that the parameter M is set to 3, 6 and 8 for example.
As can be seen, three sampled sequences record different
scales of motions. Specifically, motions in larger scale are
captured by sequence #1 and sequence #2, meanwhile motions
in smaller scale are captured by sequence #3. To capture
different scales of motion information, we sample multi-scale
depth sequences to give a detailed description of I. We set
parameter M in Algorithm 1 to M1, ...,ML, which produces
a number of L sampled sequences, i.e., SM1 , ..., SML

, from
sequence I. Let B

SML

E−GTI denote the representation of SML
.

By concatenating representations of all sampled sequences, we
obtain representation-level fused representation as:

BIE−GTI =
[
B

SM1

E−GTI , · · ·, B
SML

E−GTI

]
, (11)

which captures multi-scale motions of sequence I. Moreover,
the multi-scale scheme implicitly captures temporal relation-
ships among frames.

V. EXPERIMENTS AND DISCUSSIONS

A. Experiments with MSRAction3D dataset

1) Dataset: MSRAction3D dataset [31] stands out as one
of the most widely used depth datasets in literature [43]. It
contains 20 actions: “high arm wave”, “horizontal arm wave”,
“hammer”, “hand catch”, “forward punch”, “high throw”,
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Table I: Selection of K, P on the training samples of MSRAction3D dataset
with 10-fold procedure. Training samples are defined in previous work [42].

Accuracy (%) P = 2 P = 4 P = 6 P = 8
K = 500 95.26 97.28 97.61 97.57
K = 1000 96.57 98.66 99.00 98.61
K = 1500 97.95 98.64 98.97 98.97

Table II: Selection of L on the training samples of MSRAction3D dataset
with 10-fold procedure. Training samples are defined in previous work [42].

L 1 2 3 4
Accuracy (%) 98.59 99.23 99.85 98.64
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(a) Effect of K on Bag of GTIs model (b) Effect of P on Bag of GTIs model

(b) Effect of L on Multi-scale E-GTIs model

Figure 10: Evaluation of K, P , L on MSRAction3D dataset with protocol of work [42].

“draw x”, “draw tick”, “draw circle”, “hand clap”, “two-hand
wave”, “side boxing”, “bend”, “forward kick”, “side kick”,
“jogging”, “tennis swing”, “tennis serve”, “golf swing” and
“pick up & throw”. Each action is performed two or three
times by ten subjects facing the depth camera, resulting in
567 depth sequences. As shown in Fig. 9, actions like “draw
x” and “draw tick” are similar except for slight differences
between movements of one hand.

2) Settings: The recognition is conducted using a non-
linear SVM with a homogeneous Chi2 kernel [44] and pa-
rameter “gamma”, which decides the degree of homogeneity
of the kernel, is set to 0.8. We use the “sdca” solver for SVM,
besides other default parameters are set according to the vlfeat
library 1. Similar to previous work [36], the bounding boxes of
front, side and top views are resized to fixed sizes of 102×54,
102× 75 and 75× 54.

3) Parameter selection: Let K be the cluster number for
K-means and P be the number of projections for Radon
Transform. We use a baseline representation BIGTI to select
proper K and P . This representation is generated by per-
forming Bag of GTIs model on original depth sequences.
In Table I, parameter K changes from 500 to 1500 at an
interval of 500, and parameter P changes from 2 to 8 at
an interval of 2. We select these parameters on the training
samples of MSRAction3D dataset with 10-fold procedure. It is
noted that the samples performed by subjects #1, 3, 5, 7, 9 are
defined as training samples [42]. Highest accuracy of 99.00%
is obtained when K and P are set to 1000 and 6, respectively.
In following, we set default values of parameters K and P as
1000 and 6, which also work well on other datasets.

We select proper L for multi-scale representation BIE−GTI .

1Simple code to use non-linear SVM for classification can be found in
http://www.vlfeat.org/applications/caltech-101-code.html

Table III: Comparison between our method and related works on the
MSRAction3D dataset with protocol of work [42]. “L” is short for local
depth feature. “G” is short for global depth feature. “S” is short for skeleton
feature. “D” is short for depth learning method.

Methods Accuracy (%) Year Type
Motion Depth Surface [34] 78.48 2013 G

STOP [32] 84.80 2012 L
ROP+SC [14] 86.20 2012 L

STK-D+Local HOPC [45] 86.50 2016 L
LSTM [21] 87.78 2015 D+S

Actionlet Ensemble [42] 88.20 2014 L+S
HON4D [13] 88.89 2013 L
H3DF [46] 89.45 2015 L
LSGF [47] 90.76 2016 L

HOG3D+LLC [48] 90.90 2015 L
Moving Pose [12] 91.70 2013 S

dRNN [21] 92.03 2015 D+S
Hierarchical 3D Kernel [49] 92.73 2015 L
4DCov+Sparse Collab. [50] 93.01 2014 G

MMMP [51] 93.10 2015 L+S
Multi-fused features [52] 93.30 2016 G+S
Super Normal Vector [30] 93.45 2016 L

Depth Context [53] 94.28 2015 L
Hierarchical RNN [54] 94.49 2015 D+S

MBS [55] 95.20 2015 L
Range-Sample [56] 95.62 2014 L
Ker-RP-RBF [57] 96.90 2015 S

Key-Pose-Motifs [58] 97.44 2016 S
3D-CNN+DMM-Cube [37] 86.08 2014 D+G

DMM-HOG [5] 88.73 2012 G
2D-CNN+DMM-Pyramid [37] 91.21 2014 D+G

WHDMM [59] 92.73 2015 G
DMM-LBP-DF [36] 93.00 2015 G

2D-CNN+WHDMM [59] 100.00 2015 D+G
Bag of GTIs 95.70 2016 G

Multi-scale E-GTIs 97.27 2016 G
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Figure 11: Confusion matrix on MSRAction3D with protocol of work [42].

In MSRAction3D dataset, the average frame number of depth
sequences is around 40 frames, therefore we set the maximum
value of SML

to 40. It is noted that when a sequence contains
less than 40 frames, we interpolate the original sequence to
40 frames as a preprocessing step. To simplify the evaluation,
we convert original sequences into sampled sequences with
10, 20, 30, 40 frames. Multi-scale representation BIE−GTI

is denoted as the representation-level fusion of sampled se-
quences. Take scale L=3 as an example, we test possible com-
binations of three sequences from the four sampled sequences,
and report the best accuracy as the performance of this scale.
As shown in Table II, we achieve the highest accuracy of
99.85% when L is set to 3. Therefore, we set default value of
parameter L as 3 for MSRAction3D dataset. In following, we
select proper L for different datasets in similar way.

With the protocol of work [42], we test the effect of
parameters K, P , L on our models. Fig. 10 shows that selected

http://www.vlfeat.org/applications/caltech-101-code.html
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Table IV: Comparison between our method and related works on the
MSRAction3D dataset with protocol of work [31]. The original work is
colored in blue.

Methods Accuracy (%) Year Type
Bag of 3D Points [31] 74.70 2010 L

Motion Depth Surface [34] 78.48 2013 G
Key Poses+Pyramid [60] 95.14 2016 S

MBS [55] 97.00 2015 L
MMMP [51] 98.20 2015 L+S

DMM-HOG [5] 91.63 2012 G
WHDMM [59] 95.62 2015 G

TPDM-SPHOG [61] 96.14 2015 G
2D-CNN+WHDMM [59] 100.00 2015 D+G

Bag of GTIs 97.47 2016 G
Multi-scale E-GTIs 99.16 2016 G

parameters achieve optimal performances in certain scopes.

4) Comparison with related works: We adopt two types
of cross-validation methods on this dataset. First is the overall
cross subject accuracy regardless of subsets [42], and second is
the average cross subject performance on three action subsets
defined in previous work [31]. Table III and IV show the
results. According to Section II, related works can be divided
into different types, denoted as “L”, “G”, “S” and “D”. “L”
is short for local depth feature; “G” is short for global depth
feature; “S” is short for skeleton feature; “D” is short for deep
learning method; “+” denotes the combination of two methods,
e.g. “L+S” combines local depth and skeleton features.

In Table III, the proposed Bag of GTIs and Multi-scale
E-GTIs methods with default parameters achieve accuracies
of 95.70% and 97.27%. As shown in Fig. 11, most types
of actions are correctly classified. Our method outperforms
traditional global depth features, e.g., 4DCov+Sparse Collab.
[50] and DMM-LBP-DF [36]. This result shows that our
method encodes more abundant motion and temporal infor-
mation. Our method outperforms all local depth features, e.g.,
Range-Sample [56] and Depth Context [53]. The reason is
that global feature can encode the global relationships among
body parts, which are ignored by local features. Some skeleton
features, e.g., Ker-RP-RBF [57] and Key-Pose-Motifs [58],
achieve high accuracies. However, skeleton joints can be
accurately estimated only when action performers directly face
the camera. These joints are usually not reliable when action
performers are not in upright position (e.g. sit on a seat or lie
on a bed). What is worse, partial occlusions seriously affect
the accuracy of skeleton extraction method and thus limit the
wide usage of skeleton-based methods. Therefore, our method,
which directly operates on depth values, is more suitable for
practical applications.

Our method is directly comparable with DMM-HOG [5],
which uses histogram of gradients (HOG) feature to encode
DMM. The proposed Bag of GTIs outperforms DMM by
6.97%, which verifies that detailed interframe motion infor-
mation captured by GTI is more distinctive than accumulated
motion information captured by DMM feature. The proposed
Multi-scale E-GTIs outperforms Bag of GTIs by 1.57%, which
shows that the temporal information captured by the multi-
scale scheme benefits the recognition of similar actions.

We also compare our method with deep learning meth-
ods, which can be roughly divided into three categories,
i.e., RNN/LSTM, 3D-CNN and 2D-CNN. Based on skeleton

75

80

85

90

95

100

0 1 2.5 5 7.5 10 20

DMM-HOG
2D-CNN+WHDMM
Bag of GTIs
Multi-scale E-GTIs

0.9536 0.9511 0.9502 0.952
0.9361 0.9378

0.9046

0.8

0.84

0.88

0.92

0.96

1

0 1 2.5 5 7.5 10 20

(a)                                                                          (b)

0 % noise     20% noise Noise (%)

Re
co

gn
itio

n 
Ac

cu
ra

cy
 (%

)

75.82

90.11

92.63

94.87

Figure 12: Evaluation of robustness to depth noise. (a) Depth frames affected
by 0% and 20% percentage of pepper noise. (b) Recognition results on
MSRAction3D dataset with different percentages of pepper noise.

features, RNN/LSTM-based methods, i.e., LSTM [21], dRNN
[21] and Hierarchical RNN [54], have achieved high accu-
racies. However, these methods usually over overemphasize
the temporal evaluations and ignore the discriminating power
of spatial information [62]. Combining 3D-CNN and DMM,
3D-CNN+DMM-Cube [37] only achieves 86.08%. The reason
is that it requires a large scale of labeled depth sequence
samples to train a good 3D CNN model. Combining 2D-
CNN and DMM, 2D-CNN+WHDMM [59] has achieved high
accuracy. To evaluate the effect of extracting deep features
from hand-crafted features, we use the BoVW model to ag-
gregate WHDMM features as depth sequence representation,
which achieves accuracy of 92.73%. The 2D-CNN+WHDMM
outperforms WHDMM by 7.27%, indicating that 2D-CNN
can improve the discriminating power of hand-crafted features.
Without relying on CNN model, our method achieves compet-
itive accuracies with 2D-CNN+WHDMM method. Moreover,
our method shows robustness to depth noise, partial occlusions
and speed variations, which have not been explored in previous
works, e.g. 2D-CNN+WHDMM.

B. Experiments with modified MSRAction3D datasets

1) Depth noise: As illustrated in Fig. 12 (a), we follow
work [39] to simulate depth discontinuities in depth sequences
by adding pepper noise in varying percentages (of the total
number of image pixels) to depth images. In Fig. 12 (b), both
Bag of GTIs and Multi-scale E-GTIs achieve more than 92%
accuracies with different percentages of pepper noise. Com-
pared with 2D-CNN+WHDMM [59], our method achieves
better results when the percentage of pepper noise is larger
than 10%. These improvements indicate that Radon Transform
reduces the intra-variations brought by depth discontinuities,
which is illustrated in Fig. 5 (e) and (f).

2) Partial occlusions: We follow work [14] to simulate par-
tial occlusions using sequences from MSRAction3D dataset.
Each volume of the depth sequence is divided into two parts
along x, y and t dimensions, resulting in eight subvolumes.
The occlusion is simulated by ignoring the depth data in one
of the subvolumes. Totally, eight new datasets are generated,
and some of their snaps are shown in Fig. 13.

To verify the effect of Radon Transform (RT), we use a
pixel value-based descriptor to describe GTI instead. Suppose
GTIiv denote a GTI, we firstly convert it to a pair of GBIs:
+GTIiv · (GTIiv > 0) and −GTIiv · (GTIiv < 0). Then, pixel
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Table V: Evaluation of the robustness to partial occlusions.
Dataset / Accuracy (%) ROP [14] ROP+SC [14] DMM-HOG [5] 2D-CNN+WHDMM [59] Bag of GTIs (without RT) Bag of GTIs Multi-scale E-GTIs

MSRAction3D 85.92 86.20 88.73 100.00 88.20 95.70 97.27
Occlusion #1 83.05 86.17 73.63 90.84 73.16 90.55 92.31
Occlusion #2 84.18 86.50 52.38 92.31 51.33 93.45 95.24
Occlusion #3 78.76 80.09 79.85 89.38 80.16 91.30 93.41
Occlusion #4 82.12 85.49 78.75 87.91 79.87 88.61 91.58
Occlusion #5 84.48 87.51 64.47 86.08 62.08 87.39 90.11
Occlusion #6 82.46 87.51 71.06 89.38 71.66 89.07 93.04
Occlusion #7 80.10 83.80 68.50 91.58 70.89 91.52 93.77
Occlusion #8 85.83 86.83 76.56 94.87 80.56 94.13 97.07

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

Type 7

Type 8

Figure 13: Eight types of occluded depth sequences. Each sequence is
denoted as six frames for example.
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Figure 14: Speed differences between training and testing sets.

values of GBIs are directly concatenated as the descriptor of
GTI, which is named as Bag of GTIs (without RT).

Table V compares the robustness of different methods to
partial occlusions. Bag of GTIs outperforms Bag of GTIs
(without RT) on all cases, which verifies that RT can properly
suppress the intra-varieties, e.g., partial occlusions, as illus-
trated in Fig. 5 (e) and (f). A comparison of the performances
between our method and Random Occupancy Pattern (ROP)
feature [14] shows that our method achieves higher accuracy
with all kinds of occlusions than ROP feature. It is noted
that sparse coding (SC) can improve the robustness of a
given feature to occlusions [14]. Without using sparse coding,
our method still outperforms “ROP+SC”, in face of most
types of occlusions. Compared with DMM-HOG [5] and 2D-
CNN+WHDMM [59], our method achieves better results with
all types of occlusions. These improvements indicate that RT
can efficiently improve the robustness of a given feature to
partial occlusions.

3) Speed variations: Speed variations bring intra-varieties
among same types of actions. In Fig. 14, we use average
frame number of action sequence as an indicator of action
speed. Obviously, the speed differences between training and
testing sets of MSRAction3D dataset are quite small. While,
training on a large set of actions performed in various speeds
can reduce the effect of speeds. To eliminate the effect of
training data, we evaluate the robustness of our method against

(a) A depth sequence of action “draw tick”from MSRAction3D dataset

#1                #2                #3                #4                #5                #6                #7                #8                #9               #10        

#1                #3             #5              #7              #9

(b) Linear sampling (c) Radom sampling

#1               #2              #5               #9               #10

Figure 15: Comparison between linear sampling and random sampling.

Table VI: Evaluation of the robustness of speed variations.
Accuracy (%) MSRAction3D MSRAction3D-Speed

DMM-HOG [5] 88.73 76.19
2D-CNN+WHDMM [59] 100.00 88.64

Bag of GTIs 95.70 87.17
Multi-scale E-GTIs 97.27 91.30

various speeds on an MSRAction3D-Speed 2 dataset, which
contains totally different speeds between training and testing
sets. Specifically, we reserve all the sequences performed by
subjects #1, 3, 5, 7, 9 and randomly select half the number of
frames for sequences performed by subjects #2, 4, 6, 8, 10.
Based on the original time order, the selected frames are cate-
nated to form new sequences. Fig. 14 shows that the difference
in average frames between the training and testing sets of the
new dataset has been enlarged. Since random sampling method
is used, many key frames may be ignored in new sequences,
which makes action recognition more challenging. Comparing
linear sampling method with our random sampling method
(see Fig. 15), we infer that action speeds in MSRAction3D-
Speed dataset may change dramatically in a non-linear manner.

Table VI compares the robustness of different meth-
ods to speed variations. Multi-scale E-GTIs achieves
97.27% on MSRAction3D dataset and achieves 91.30%
on MSRAction3D-Speed dataset. These results indicate that
MSRAction3D-Speed dataset is more challenge than MSRAc-
tion3D dataset. Compared with DMM-HOG [5] and 2D-
CNN+WHDMM [59], our method achieves better results
on the MSRAction3D-Speed dataset. The reason is that our
method alleviates the effect of speed variations by energy-
based sampling method, which is illustrated in Fig. 7.

C. Experiments with DHA dataset

DHA dataset [63] contains action types extended from
Weizmann dataset [67] which is widely used to evaluate action
recognition methods using RGB sequences. It contains 23
action categories: “arm-curl”, “arm-swing”, “bend”, “front-
box”, “front-clap”, “golf-swing”, “jack”, “jump”, “kick”, “leg-

2Our collected MSRAction3D-Speed dataset can be found in https://github.
com/CvDatasets/depthDatasets.git

https://github.com/CvDatasets/depthDatasets.git
https://github.com/CvDatasets/depthDatasets.git
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(a) golf-swing

(b) rod-swing

Figure 16: Action snaps from DHA dataset.

Table VII: Comparison between our method and related works on the
DHA dataset with protocol of work [63]. Original work is colored in blue.

Methods Accuracy (%) Year Type
DMHI-Gist/CRC [64] 86.00 2015 G

D-STV/ASM [63] 86.80 2012 L
DMHI-AHB-Gist/CRC [64] 90.50 2015 G

D-DMHI-PHOG [65] 92.40 2015 G
DMPP-PHOG [65] 95.00 2015 G

DMM-HOG [5] 86.50 2012 G
2D-CNN+WHDMM [59] 92.86 2015 D+G

Bag of GTIs 91.92 2016 G
Multi-scale E-GTIs 95.44 2016 G
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Figure 17: Confusion matrix on DHA dataset with protocol of work [63].

curl”, “leg-kick”, “one-hand-wave”, “pitch”, “p-jump”, “rod-
swing”, “run”, “skip”, “side”, “side-box”, “side-clap”, “tai-
chi”, “two-hand-wave”, “walk”. Each action is performed by
21 people (12 males and 9 females), resulting in 483 depth
sequences. We use an extended version of DHA dataset where
six additional action categories are involved. In Fig. 16, “golf-
swing” and “rod-swing” share similar motions that involve
moving hands from one side up to the other side. A few more
such similar pairs can be found, like “leg-curl” and “leg-kick”,
“run” and “walk”, etc. Bounding boxes of front, side and top
views are resized to fixed sizes of 102×54, 102×75, 75×54.
Other parameters are the same with MSRAction3D dataset.

In Table VII, Lin et al. [63] achieves 86.80% on the orig-
inal DHA dataset. By encoding interframe constraints among
space-time volumes in a multi-scale way, our method achieves
higher accuracy even on the extended DHA dataset. DMM-
based methods, e.g. DMM-HOG [5] and 2D-CNN+WHDMM
[59], suffer from the effect of speed variations, therefore these
methods do not work well on DHA dataset, which contains
more severe speed variations than MSRAction3D dataset.
Since our method shows robustness to speed variations, we
achieve best performance on this dataset. Confusion matrix

hungry                  green                 finish                          blue                    bathroom             milk

z                             j                   where                        store                          pig                    past

Figure 18: Action snaps from MSRGesture3D dataset.

Table VIII: Comparison between our method and related works on the
MSRGesture3D dataset with protocol of work [14].

Methods Accuracy (%) Year Type
Motion Depth Surface [34] 85.42 2013 G

Random Occupancy Pattern [14] 88.50 2012 L
HON4D [13] 92.45 2013 L

4DCov+Sparse Collab. [50] 92.89 2014 G
HOG3D+LLC [48] 94.10 2015 L

MBS [55] 94.70 2015 L
Super Normal Vector [30] 94.74 2016 L

H3DF [46] 95.00 2015 L
Depth Gradients+RDF [66] 95.29 2014 L+S
Hierarchical 3D Kernel [49] 95.66 2015 L
STK-D+Local HOPC [45] 96.23 2016 L

DMM-HOG [5] 88.20 2012 G
E2DMM [38] 90.50 2013 G

3D-CNN+DMM-Cube [37] 92.25 2014 D+G
2D-CNN+DMM-Pyramid [37] 94.35 2014 D+G

DMM-LBP-DF [36] 94.60 2015 G
Bag of GTIs 96.42 2016 G

Multi-scale E-GTIs 98.80 2016 G

1.0

.96 .04

.96 .04

1.0

1.0

.96 .04

1.0

.04 .96

1.0

1.0

1.0

1.0

z

j

where

store

pig

past

hungry

green

finish

blue

bathroom

milk

z j w
here

store

pig
past

hungry

green

finish

blue
bathroom

m
ilk

avgRate = 98.80%

Figure 19: Confusion matrix on MSRGesture3D dataset with protocol of work
[14].

of our method on the DHA dataset, with highest accuracy of
95.44%, is shown in Fig. 17, where similar actions like ‘golf-
swing” and “rod-swing” contain small ambiguities.

D. Experiments with MSRGesture3D dataset

MSRGesture3D dataset [14] is a hand gesture dataset. It
contains 12 gestures, defined by American Sign Language:
“z”, “j”, “where”, “store”, “pig”, “past”, “hungry”, “green”,
“finish”, “blue”, “bathroom” and “milk”. Each gesture is
performed two or three times by each subject, resulting in 333
depth sequences. In Fig. 18, actions like “past” and “hungry”
are similar, because both actions contain similar poses of
palm. Moreover, self-occlusions bring extra challenges. The
bounding boxes of front, side and top views are resized to fixed
sizes of 118× 133, 118× 29 and 29× 133. Other parameters
are the same with MSRAction3D dataset.

In Table VIII, DMM-HOG [5] achieves accuracy of 88.20%
on this dataset. Recent works [37], [36] further enhance
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circle                         triangle                      up-down                      right-left                      wave              

  Z                                 cross                          comehere                    turnaround                          pat

fist                               fist                           index                              flat                           index              

  flat                              flat                              fist                               fist                              flat

Figure 20: Original action snaps from SKIG dataset.

(a) action “circle”performed with  hand posture: fist

(b) action “circle”performed with  hand posture: index

(c) action “circle”performed with  hand posture: flat

Figure 21: Action snaps from SKIG dataset, where backgrounds are removed.

the original DMM by using deep features or LBP features.
DMM-LBP-DF [36] achieves an accuracy of 94.60%, which
outperforms all previous DMM-based methods. Our Bag of
GTIs outperforms [36] by 1.82%, which verifies that GTI has
superior descriptive power than DMM in capturing motion
regions and motion directions. Using representation-level fu-
sion, we achieve state-of-the-art result of 98.80% (see Fig.
19), which is even 2.57% higher than the most recent local
depth feature-based method, i.e., STK-D+Local HOPC [45].
This improvement shows that our global feature can properly
capture the temporal and motion information of 3D gestures.

E. Experiments with SKIG dataset

SKIG dataset [68] contains 1080 hand-gesture depth se-
quences. It contains ten gestures, which comprise “circle”, “tri-
angle”, “up-down”, “right-left”, “wave”, “Z”, “cross”, “come-
here”, “turnaround” and “pat”. All gestures are performed
with hand (i.e., fist, flat and index) by six subjects under two
different illumination conditions (i.e., strong and poor light)
and against three backgrounds (i.e., white plain paper, wooden
board and paper with characters). This dataset is utilized to
test the robustness of our method against pose and illumination
variations. To eliminate the effect of background in the original
SKIG dataset, we apply the foreground extraction method [69]
to extract hand regions. Several snaps are shown in Fig. 21,
where the cluttered backgrounds are removed. The bounding
boxes of front, side and top views are resized to fixed sizes
of 118 × 133, 118 × 29 and 29 × 133. Other parameters are
the same with MSRAction3D dataset.

In Table IX, Bag of GTIs achieves an accuracy of 90.87% on
this dataset. This result shows that the intra-varieties, caused
by different hand poses, can be properly tackled with Radon
Transform. Therefore, our method outperforms original work
[68], which may suffer from the effect of pose variations. In
work [50], a collaborative sparse classifier is presented, taking

Table IX: Comparison between our method and related works on the
SKIG dataset with protocol of work [68]. Original work is colored in blue.

Methods Accuracy (%) Year Type
HOG/HOF [1] 72.10 2008 L
HOG3D [70] 75.40 2008 L

LFF+SPP [71] 81.10 2015 L
RGGP+RGBD [68] 88.70 2013 G

LFF+SPP+RGBD [71] 93.70 2016 L
4DCov+Sparse Collab. [50] 93.80 2014 G

Bag of GTIs 90.87 2016 G
Multi-scale E-GTIs 93.88 2016 G
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Figure 22: Confusion matrix on SKIG dataset with protocol of work [68].

advantage of 4DCov descriptor laying on a specific manifold
topology. Using representation-level fusion, we achieve state-
of-the-art result of 93.88%. As shown in Fig. 22, “right-left”
and “wave” have large ambiguities. This reason is that both
actions have similar movement of “moving one hand from
one side to another”. For the similar reason, there also exists
ambiguities among “comehere” and “pat”.

F. Evaluation of Global Ternary Image

The representation of GBI, named BIGBI , obtains an accu-
racy of 90.33% on MSRAction3D dataset (shown in Fig. 23).
BIGBI achieves 1.6% higher accuracy than DMM-HOG [5],
since more abundant motion information is preserved in GBIs.
To further verify the significance of extracting interframe
motions, we use shape information to form representation
which is denoted by BIshape. Specifically, each depth frame
is projected onto three views. For each view, we extract
the foreground region which stands for the shape. Following
the same steps that are used in forming BIGBI , we can
obtain BIshape using Radon Transform and BoVW model.
Only 61.50% recognition accuracy is achieved by BIshape on
MSRAction3D dataset, which is 28.83% lower than BIGBI .
This indicates that inter-frame motions can efficiently reduce
the ambiguity contained in shape information.

The representation of GTI, named BIGTI obtains an accu-
racy of 95.70% on MSRAction3D dataset (shown in Fig. 23).
Compared with GBIs, GTIs additionally contain directional
information about motions; therefore, BIGTI achieves 5.37%
higher accuracy than BIGBI . To further verify the significance
of encoding directions, we compare BIGTI and BIGBI on
a new dataset, named MSRAction3D-Order. We double the
sequences from MSRAction3D dataset by inverting their tem-
poral order. In other words, the new dataset contains double
the number of action types, where each type corresponds to
an opposite type. As expected, BIshape and BIGBI perform
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Table X: Evaluation of single scale and multi-scale structures.

Accuracy (%) 0 1 2 3 4 1+2 1+3 1+4 2+3 2+4 3+4 1+2+3 1+2+4 1+3+4 2+3+4 1+2+3+4
MSRAction3D 95.70 85.18 94.79 94.78 95.20 93.89 94.45 95.58 97.22 97.14 96.36 95.58 96.68 96.27 97.27 94.14

MSRAction3D-Speed 87.17 83.00 86.52 85.72 86.70 87.44 90.80 89.64 90.31 90.16 89.11 91.30 90.06 90.85 91.03 90.57
DHA 91.92 84.26 89.02 93.58 91.51 91.51 92.96 91.92 93.16 92.75 93.58 94.40 93.58 95.03 94.61 95.44

MSRGesture3D 96.42 93.71 96.42 96.42 97.32 97.32 98.21 97.91 98.21 97.32 98.21 98.51 98.51 98.80 98.21 98.80
SKIG 90.87 84.71 89.48 91.85 91.48 90.83 92.86 92.21 92.63 92.59 93.05 92.68 92.91 93.37 93.65 93.88
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Figure 23: Evaluation of GBI and GTI.

worse on MSRAction3D-Order dataset than on MSRAction3D
dataset. This is because one action type and its opposite type
contain similar motion regions, which bring extra challenges
to the task of classification. BIGTI achieves an accuracy
of 71.37%, which is higher than that of both BIshape and
BIGBI . This improvement is justifiable because GTI captures
directional information, which is essential to distinguish one
action type from its opposite type.

Generally speaking, BIGTI and BIGBI outperform BIshape on
both MSRAction3D and MSRAction3D-Order datasets, which
emphasizes the distinctive power of interframe motions, rather
than shape information. Meanwhile, BIGTI outperforms BIGBI ,
especially on MSRAction3D-Order dataset, which reflects the
effect of directional information in describing motions.

G. Evaluation of multi-scale structure

As single sampled sequence ignores much motion infor-
mation of original sequence, we extract multiple sampled
sequences and use multi-scale E-GTIs to describe the original
sequence. In MSRAction3D dataset, the average frame number
of depth sequences is around 40 frames, therefore we set the
maximum value of SML

to 40. To simplify the evaluation,
we convert original sequences into sampled sequences with
10, 20, 30, 40 frames. We use BIGTI , BS10

E−GTI , BS20

E−GTI ,
BS30

E−GTI , BS40

E−GTI (short for 0,1,2,3,4) (see Table X) to
describe the original sequence and the four corresponding
sampled sequences. Multi-scale representation is denoted as
BIE−GTI , which is the representation-level fusion of sampled
sequences. Accuracy of 97.27% is achieved by BIE−GTI on
MSRAction3D dataset, which is only 1.57% higher than that
of BIGTI . Meanwhile, from a comparison between BIE−GTI

and BIGTI , the accuracy is found to have improved by 4.13%
on MSRAction3D-Speed dataset. These improvements lead
to two conclusions. First, converting original sequences to
sampled sequences is beneficial for capturing multiple tempo-
ral information. Second, the effect of this conversion can be
enlarged especially on datasets whose sequences in training
and testing sets have big gaps in the distribution of speeds.
Using BIE−GTI , we obtain higher accuracies than those of
BIGTI on DHA, MSRGesture3D and SKIG datasets. The
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Figure 24: Evaluation of single scale and multi-scale structures.

(b) draw tick

(c) draw x

(a) hand catch

(d) draw circle

Figure 25: Difficult cases in MSRAction3D dataset.

improvements are illustrated in Fig. 24, which shows the
efficiency of multi-scale E-GTIs.

H. Difficult cases

In Fig. 25, four similar actions from MSRAction3D dataset
are illustrated to show the advantages and disadvantages of our
method. (1) Although the motion direction of action “draw x”
is similar to that of action “draw circle”, our method can detect
the difference by encoding their individual interframe motion
regions. (2) Although the motion regions of action “draw x”
are similar to those of action “draw tick”, our method can
distinguish them by using directional information of motions.
(3) The action “hand catch” can be regard as a sub-action of
action “draw tick”. In this case, misclassification may happen,
because histograms of local features, generated by BoVW
model, are similar for these actions. To solve this problem,
deep learning methods, e.g., RNN/LSTM, could be used to
further explore deep structures of our hand-crafted features.

I. Computation time

We test the computation time of our method with the
default parameters of K = 1000 and P = 6. The average
computational time required for extracting a GTI is 0.0363
seconds on a 2.5GHz machine with 8GB RAM, using Matlab
R2012a. The calculation time for applying Radon Transform
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on a GTI is 0.0019 seconds. The overall computational time
for calculating a feature vector of GTI is about 0.0381 seconds.
It is noted that each GTI can be extracted from consecutive
frames and then transformed by Radon Transform, which
shows that the feature extraction step for a depth sequence
can be conducted in parallel on a CPU/GPU.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a multi-scale energy-based Global
Ternary Image representation, which efficiently encodes both
spatial-temporal information of 3D actions. Compared with
Depth Motion Map (DMM)-based approaches, our method
preserves detailed interframe motion regions and directions.
Moreover, the temporal relationships among frames are cap-
tured by a multi-scale scheme. Therefore, our method out-
performs DMM and achieves comparable results with state-
of-the-art methods on benchmark datasets designed for 3D
action and gesture recognition tasks. With the developments
of energy-based sampling and Radon Transform methods,
our method shows robustness against speed variations, depth
noise and partial occlusions, which are common yet unsolved
problems for real applications. The robustness of our method
is evaluated on a series of modified MSRAction3D datasets,
where we achieve best performances.

Recent deep learning-based methods usually extract deep
features from raw depth sequences. While, problems like speed
variations, depth noise and partial occlusions bring ambiguities
to deep features. Our method directly tackles with these
problems, and the generated features can be further explored
by deep neural networks to increase their discriminative power.
Previous works like Moving Pose [12] and Hierarchical RNN
[54] rely on skeleton joints, which can be accurately estimated
only when action performers directly face the camera, thus
limiting the wide usage of skeleton-based methods. Therefore,
our method, which directly operates on depth values, is
more suitable for real applications. Future work focuses on
developing real-time action recognition system for monitoring
the behavior, e.g., fall down and wave hands, of the elders.
To deal with real world scenarios for action recognition, it
also calls for creating depth action datasets that incorporate
realistic problems, e.g. noise and occlusions.
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