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ABSTRACT  

Depth maps captured by Kinect depth cameras are being widely used for 3D action recognition. However, such images 

often appear noisy and contain missing pixels or black holes. This paper presents a computationally efficient method for 

both denoising and hole-filling in depth images. The denoising is achieved by utilizing a combination of Gaussian kernel 

filtering and anisotropic filtering. The hole-filling is achieved by utilizing a combination of morphological filtering and 

zero block filtering. Experimental results using the publicly available datasets are provided indicating the superiority of 

the developed method in terms of both depth error and computational efficiency compared to three existing methods.  
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1. INTRODUCTION  

In the last few years, there has been a considerable increase in research works related to 3D action recognition. Some 

prominent applications of action recognition include intelligent surveillance, human-computer interaction and video 

analytics, e.g. [1-3]. Since the release of the Microsoft Kinect depth camera, the use of depth maps extracted from depth 

images has been growing for human action recognition, e.g. [4-6]. Features extracted from depth maps, such as 

histogram of oriented gradients (HOG) and histogram of optical flow (HOF) have been employed to recognize different 

actions [7-10]. However, depth maps provided by the Kinect depth camera are often noisy due to imperfections 

associated with the Kinect infrared light reflections. In addition, they exhibit missing pixels (i.e., pixels without any 

depth value which appear as black holes in depth maps), see Fig.1. The noise and holes can greatly affect the feature 

extraction outcome [8, 9, 11] and in turn the performance of action recognition. The noise-reduction and hole-filling 

enhancement algorithms presented in this paper are intended to serve as a pre-processing step for action recognition 

systems that use the Kinect depth camera.  

 

           

     Fig.1 - Example depth images captured by a Kinect depth camera exhibiting depth imperfections (noise and black holes) 

 

A number of methods have been proposed for noise smoothing and hole filling in depth images. Le et al. [12] 

proposed an adaptive directional filter by which depth pixels were classified into four groups: non-hole/non-edge, non-

hole/edge, hole/non-edge, and hole/edge. In their method, color images were used to locate edge pixels in depth images. 

Tomasi et al. [13] used bilateral filtering (BF) [24] to denoise depth images. To fill holes while preserving edges, 

Camplani and Salgado [14] iteratively applied a joint bilateral filter (JBF) [12], which is a popular color-guided filtering 

method, and reported good performance for hole-filling [15]. However, it is noted that JBF does not perform well around 
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depth discontinuities where the foreground and background exhibit similar colors. Jung et al. [16] proposed a modified 

version of the joint trilateral filter (JTF) by using both depth and color pixels to estimate a filter kernel and by assuming 

the presence of no holes. Liu et al. [17] employed an energy minimization method with a regularization term to fill the 

missing regions and remove the noise in depth images. The linear regression model utilized in their method is based on 

both depth values and pixel colors. The examination of the above previous methods indicate that these methods are 

primarily based on different types of filters to smooth noise in depth images and to fill holes by using color images to 

guide the process. In other words, the previously developed methods are color-guided. In this paper, no color 

information is utilized leading to a computationally efficient solution.  

Noting the computational limitations of the exiting methods in terms of the utilization of color or skeleton 

information, this paper provides a depth image recovery method that does not rely on any color image guidance [18], or 

skeleton information [26]. Denoising and hole-filling are performed purely based on depth images themselves and no 

other information is assumed to be available. For denoising, a discriminant approach is utilized to distinguish noise and 

non-noise depth pixels via gradient magnitude and orientation. For hole-filling, a zero block filter is utilized to fill them. 

The details of the developed method are mentioned next. 

2. DEVELOPED DENOISING AND HOLE-FILLING METHOD 

There exist several causes of noisy pixels and black holes in depth images as described in [4]. Noisy pixels are generated 

mostly due to background discontinuities at the contours of objects and the limitations of the sensor hardware. Holes are 

caused mostly by the infrared light reflectivity of different materials, fast movements, porous surfaces, and other similar 

effects.  

 

2.1 Denoising 

The noise generated by the Kinect depth camera is normally less distinguishable from the noise generated by 

movements, which can be effectively removed using a smoothing filter [4]. Therefore, a Gaussian kernel filter is first 

used here to smooth out the noise caused by movements. For other types of noises, a different approach needs to be 

considered to smooth them out while preserving the movement information. Motivated by the effectiveness of 

anisotropic theory in image filtering [19] and the work in [27], where anisotropic filtering is used for improving 

detection of object contours and region boundaries in natural scenes, and as well as a similar concept in in [9] and [28], 

an anisotropic filter is used here for noise discrimination.  

For a point ),( yx , let us consider the neighborhood , where  indicates the size of a local 

window centered at . A gradient orientation discriminant is defined as follows: 

                                          (1) 

where 𝜎  denotes a scale size, and 𝜃𝜎(𝑥, 𝑦)  gradient orientation. If a point in a neighboring region has the same 

orientation as that of , it is expected to have an inhibitory effect. The strength value of  for the point

 is defined as follows:

      

 

                                           (2)

 

where 𝑀𝜎 denotes gradient magnitude. Next, a term for removing noise which uses a weighting factor  to balance the 

effect of  and  is considered, that is  

       

   .                                     

(3)  
 

As a result, if there is no noisy points in a neighboring region, the response will return the gradient magnitude ; 

otherwise, if there are noisy points in a neighboring region, the response will lower the influence of the gradient 

magnitude and smoothen out this point. 
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Algorithm 1 Pseudocode for zero block filter mask(ZBFM)

Require: A depth image (MXN);

A filter mask sized kXk; each element value is zero;

Ensure: fill zero fixels

fori =l -*Mdo
for j=1-3./s1 do

if f(x,y) =0 then // search every zero pixels f(x,y);

filter_mask(s,t) E- neighbor pixels value of f(x,y)

// search nonzero pixels in filter_mask;

if search result is Null, then

f(x,y) =0:

else search the maximal value m of all elements in filter_mask;

replace zero pixels with m

end if

end if

end for

end for

/ /0 <s.tsk

 

 
 

 

 

2.2. Hole-filling 

In depth maps, holes appear randomly at any place such as human bodies, walls, floor, door, shelf, bed, desk, chairs, etc. 

Some of these holes are small and isolated, but others are large and connected. For small holes, a morphological hole-

filling operator is applied to fill them, that is a morphological closing operation with a 5 × 5 mask as experimentally 

obtained in [12]. As illustrated in Fig.2, holes are filled in the red highlighted rectangular regions by the morphological 

hole-filling operator. However, such operators do not perform well in the green rectangular regions. 

       

Fig.2 - Raw depth map (left) and hole filling result based on morphological filtering (right)  

 

Here, a zero block filter is utilized to fill any remaining holes. This approach firstly searches zero pixels and labels 

them as holes. If f (x, y)= 0 , the pixel or point ),( yx is considered to be a hole. A small local window  (𝑥 ± 𝑠, 𝑦 ±

𝑡)0<𝑠,𝑡≤𝑘  is defined on the point ),( yx  with  𝑘 denoting the window size. This pixel is then filled according to its 

neighboring pixels. If the pixel values of its neighboring pixels are all equal to 0, its value is not changed. Otherwise, its 

value is replaced by the maximum value of the neighbors as follows: 

𝑓(𝑥, 𝑦) = {
0 ,        𝑖𝑓    𝑓(𝑥 ± 𝑠, 𝑦 ± 𝑡) = 0

max{𝑓(𝑥 ± 𝑠, 𝑦 ± 𝑡)} ,     𝑒𝑙𝑠𝑒
                                                 

(4) 
  

where 0 < 𝑠, 𝑡 ≤ 𝑘. The pseudocode of this computationally efficient hole-filling approach is provided in Fig.3. 

 

Fig.3 - Pseudocode of the hole-filling approach 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the results of the experimentations conducted are presented to show the performance of the developed 

depth map recovery method. These results correspond to the two publicly available depth datasets: the UR fall detection 

dataset [22] and the Middlebury dataset [23]. 

3.1 Parameters setting  

The outcome of our method is influenced by these four parameters: Gaussian scale size , window size r, balance factor 

 and zero filter block size k . Appropriate values of these parameters were determined by the experimentations 

described next.  

For a quantitative performance comparison, the Middlebury dataset [23] was utilized noting that this dataset 

provides the groundtruth disparity maps. Following the same experimental setting discussed in [17], [20], [21] and [25], 

depth images were generated by randomly removing some valid pixels and adding Gaussian white noise to the disparity 

maps. Example test images with randomly selected marked areas are shown in Fig.4. The average root-mean-squared 

error (RMSE) was computed for all the images in the dataset.  
 

             

           

Fig.4 - Depth maps of Moebius, Art, Book, Dolls, Reindeer and Laundry (from left to right and top to bottom) 

 

First, the effect of different balance factor  was examined. As noted in [4], the scale size  was considered 

with the denoising window size . Both RMSE and visual quality were examined.  As shown in Fig.5, when  was 

changed from 0.1 to 5.5, the average RMSE reached its minimum value at 𝜆 = 2.5.  Fig.6 shows a closeup part of the 

image ‘Moebius’ exhibiting that when =2.5, the best visual quality was obtained.  However, when =5.0, the 

denoised image became too blurry. By considering small values of , pixels were slightly impacted by their neighboring 

pixels based on Equations (2) and (3). That is, a large amount of the noise was preserved, leading to high RMSE values. 

On the other hand, while considering large values of , pixels were highly impacted by their neighboring pixels with a 

greater possibility of mistakenly taken as noise. As a result, a large amount of non-noise was smoothed out as noise and 

over-smoothing occurred on the images, which led to high RMSE values. 

In another experiment, the filter block sizes of 3, 5, 7, 9, 11 and 21 were selected to examine the effect of the filter 

block size on the hole-filing performance. As can be seen from Fig.7, when the block size was set to 5, the average 

RMSE value reached a minimum. When the size was changed from 7 to 21, the average RMSE remained the same or 

about 4. Thus, the block size of 5 was selected as the zero pixel filter block size.  

Moreover, RMSE values were computed to compare the performance of our method and the three existing methods 

[17,18]. As can be seen from Table 1 and Fig.8, our method outperformed these existing methods in terms of both 

RMSE and visual quality. 

 

s
l

l s = 5
w = 5 l

l l
l

l
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Fig.5 - Denoised RMSE vs. different balance factor  

 

Fig.6 - Closeup of denoised outcome =1.0, 2.5, 5.0 (from left to right) 

 

Fig.7 - Hole-filling RMSE vs. different sizes of zero pixel filter block  

Table.1 - RMSE of different methods on the Middlebury dataset 

RMSE Moebius Art Book Dolls Reindeer Laundry Average 

JBF [12] 0.8290 2.7612 2.1040 3.0521 3.2886 4.2117 2.7078 

FMM [17] 1.5139 3.2381 2.3935 3.1674 2.6838 3.8309 2.8046 

GFMM [25] 1.1433 2.7381 2.2242 3.0026 2.5772 3.7786 2.5773 

Ours 0.6550 2.3768 2.0294 2.8347 2.2010 3.4906 2.2645 
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Fig.8 - Visual comparison on sample image ‘Moebius’ from the Middlebury dataset: top row displays the original color image and  

depth map; bottom row displays the recovered depth maps using from left to right JBF, FMM, GFMM, and the developed method.  

In Fig.8, the top row displays the original color image and the depth map. The second row from left to right displays 

the results of JBF, FMM, GFMM and our method.  

3.2 Results on depth images from Kinect depth camera 

Our method was further applied to depth images captured by a Kinect depth camera. The UR fall detection dataset 

[22] contains raw depth images that were captured by a Kinect depth camera. The developed method was compared with 

three existing depth image enhancement methods (JBF [12], FMM [20], GFMM [25]). The depth sequences examined 

were of size 640 × 480 pixels. Two human activity sequences were randomly selected. Sequence 1 included frames 

#059, #099, and #139, and sequence 2 included frames #079 and #113. The results obtained are shown in Figs.9 through 

11. In these figures, from left to right, the color images, the raw depth images, and the results of JBF, FMM, GFMM and 

our method are displayed. 

 

 

 

 

Fig.9 - Three sample frames of sequence 1: each row from left to right corresponds to the original color image, original depth 

map, recovered depth maps using JBF, FMM, GFMM, and the developed method 
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Fig.10 - Two sample frames of sequence 2: each row from left to right corresponds to the original color image, original depth 

map, recovered depth maps using JBF, FMM, GFMM, and the developed method 

 

 

 

Fig.11 - Closeup of the second row frame in sequence 2 appearing in Fig.10 

 

 

Color images were used in the JBF method [12, 13], and the weights were calculated based on a filter window of 

size 5´5. The standard deviations of this filter were 5 and 0.3. This method performed well in the body area but many 

large holes remained and the edges appeared blurry. For the FMM method, a binary image mask was produced by 

performing contour detection on the color images. The number of iteration was set to 100. Some parts of the body such 

as the head appeared over-smoothed and the holes were not completely filled. The results of the GFMM method 

appeared fine on the body but the background objects became oversmoothed, such as the two chairs on the left. In our 

method, the following parameter settings as described earlier were considered: , , =1.5. As can be seen 

from these figures, all the holes in the images got filled and the noise was also reduced while preserving the boundaries. 

In the test sequence 2, there were many holes in the depth images and the upper part of the body was quite noisy. The 

comparison results showed that our method achieved improved performance compared to the other methods. More 

importantly, our method did not use any color image making it computationally efficient.  

3.3 Computational efficiency  

This subsection includes the computational complexity of the developed method. For denoising, the computational 

complexity for the Gaussian kernel filter is 𝑂(2𝑀𝑁𝑟1), where  𝑀𝑁 denotes the depth image size & 𝑟1  the filtering 

window size, and the computational complexity of the anisotropic filter is 𝑂(𝑀𝑁log (𝑀𝑁)) +  𝑂(𝑀𝑁𝑟2
2), where 𝑟2 

denotes  the local window size. For hole filling, the computational complexity for the morphological closing filter used 

is 𝑂(25𝑀𝑁), and the computational complexity of the  zero block filter is 𝑂(𝑀𝑁𝑟3
2), where 𝑟3 denotes the  zero mask 

size. 

The computational efficiency or real-time aspect of our method for depth image enhancement is further presented 

here. For a depth image, the denoising is performed first and the hole-filling is done right after the denoising. Note that 

there are four major processing components based on four types of filters: Gaussian kernel filtering, anisotropic filtering, 

morphological filtering, and zero block filtering. The average processing time of each filtering component for the UR 

fall detection dataset is listed in Table 2.  All the experiments were carried out using MATLAB on a PC equipped with 

Intel Xeon 3.4GHz CPU with 16GB RAM. As noted in Table 2, our method provided a real-time depth video processing 

rate of 30 frames per second. A videoclip of the enhancement running in real-time can be viewed at 

http://www.utdallas.edu/~kehtar/DepthEnhanced.avi. 

 

 

 

 

s = 5 w = 5 l
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Table.2 - Processing times associated with the filtering components of our method 

Depth image enhancement 
Average processing time 

(ms/frame) 

Denoising 
Gaussian kernel filtering 0. 94 

Anisotropic filtering 19.63 

Hole filling 
Morphological filtering 1.17 

Zero block filtering 1.09 

 

4. CONCLUSION 
 

In this paper, a method for depth image enhancement has been developed for the purpose of reducing noise and filling 

holes. The main attribute of the developed method is that, despite most of the existing methods for depth image 

enhancement, it does not utilize any color information to achieve the depth image or map recovery in a computationally 

efficient manner. The experimentations carried out on the publicly available depth image datasets have revealed that the 

developed method provides enhanced images that come closer to the groundtruth depth images compared to three 

existing methods while achieving real-time processing rates. This method can be deployed as a preprocessing step in 

action recognition systems that utilize depth images. 
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