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a b s t r a c t 

Pan-sharpening in remote sensing image fusion refers to obtaining multi-spectral images of high-resolution by 

fusing panchromatic images and multi-spectral images of low-resolution. Recently, convolution neural network 

(CNN)-based pan-sharpening methods have achieved the state-of-the-art performance. Even though, two problems 

still remain. On the one hand, the existing CNN-based strategies require supervision, where the low-resolution 

multi-spectral image is obtained by simply blurring and down-sampling the high-resolution one. On the other 

hand, they typically ignore rich spatial information of panchromatic images. To address these issues, we propose 

a novel unsupervised framework for pan-sharpening based on a generative adversarial network, termed as Pan- 

GAN, which does not rely on the so-called ground-truth during network training. In our method, the generator 

separately establishes the adversarial games with the spectral discriminator and the spatial discriminator, so as 

to preserve the rich spectral information of multi-spectral images and the spatial information of panchromatic 

images. Extensive experiments are conducted to demonstrate the effectiveness of the proposed Pan-GAN com- 

pared with other state-of-the-art pan-sharpening approaches. Our Pan-GAN has shown promising performance in 

terms of qualitative visual effects and quantitative evaluation metrics. 
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. Introduction 

Nowadays, a large amount of earth observation satellites have been

aunched, such as WorldView, QuickBird, SPOT, Landsat, IKONOS,

aoFen-1 and GaoFen-2, which lead to numerous remote sensing im-

ges available for various fields including geography, agriculture, land

urvey and environmental monitoring [1,2] . In remote sensing systems,

atellites can obtain two kinds of images in entirely different modalities,

.e. , multi-spectral image and panchromatic image. The multi-spectral

mages possess high spectral resolution while with low spatial resolu-

ion, which are limited by the onboard storage and bandwidth trans-

ission [3] . On the contrary, the panchromatic images have low spec-

ral resolution but high spatial resolution due to the large instantaneous

eld of view [4] . The task of pan-sharpening in remote sensing image

usion aims at obtaining fused images with both high spectral resolution

nd high spatial resolution. 

Over the past few decades, different pan-sharpening methods have

een investigated. Traditional attempts can be generally divided into

our categories, i.e. , i) methods based on component substitution (CS)
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u), chenchen870713@gmail.com (C. Chen), erfect@whu.edu.cn (P. Liang),

5] : For example, GS adaptive (GSA) [6] is a general scheme which is

apable if modeling any CS image fusion method by adopting multivari-

te regression to improve spectral quality without diminishing spatial

uality. Adaptive component-substitution-based fusion using partial re-

lacement (PRACS) [7] generates high-/low-resolution synthetic com-

onent images by partial replacement and uses statistical ratio-based

igh-frequency injection; ii) multi-scale decomposition-based methods

8] : For instance, coupled nonnegative matrix factorization unmixing

CNMF) [9] alternately unmixes hyperspectral and multispectral data

nto end member and abundance matrices. Sensor observation models

hat relate the two data are built into the initialization matrix of each

MF unmixing procedure. Modulation transfer functions-generalized

aplacian pyramid (MTF-GLP) [10] is a multiscale and oversampled

tructure which relies on the generalized Laplacian pyramid (GLP). It

electively performs injection of spatial frequencies from an image to

nother with the constraint of thoroughly retaining the spectral infor-

ation of the coarser data; iii) hybrid methods [11] : For example, in

ybrid color mapping (HCM) [12] , two newly developed techniques are

ntegrated. One is an HCM algorithm and the other one is a plug-and-
il 2020 
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lay algorithm for single image super-resolution; iv) model-based meth-

ds [13] . In band-dependent spatial-detail (BDSD) [14] , the solution

inimizes the squared error between the low-resolution multi-spectral

mage and the fused result obtained by spatially enhancing a degraded

ersion of the multi-spectral image through a degraded version, by the

ame scale factor, of the panchromatic image. 

However, these traditional methods suffer from severe spectral dis-

ortion owing to the strong assumptions that are not realistic from the

iewpoint of remote sensing physics [3] . Recently, deep learning has

chieved great success in various fields [15] , such as computer vision

16] , pattern recognition [17] and image processing [18] . Many re-

earchers have also introduced the convolution neural network (CNN)

ased deep learning methods into the task of pan-sharpening, such as

NN [19] , PanNet [20] and PSGAN [21] . Although they have achieved

esirable fusion performance with few spectral distortion, two problems

ave not been solved yet. One is that the traditional deep learning-based

an-sharpening schemes [19–21] require additional supervision. They

reat original high-resolution multi-spectral (HRMS) images as ground-

ruth. Since the relation between low-resolution multi-spectral (LRMS)

mages and HRMS images tend not to obey simple blur and interpolation

peration, it is not reasonable to obtain the LRMS images by blurring

nd downsampling the original HRMS images. The other problem goes

o that they mainly use the spectral information by regarding the CNN

odel as a black-box under the supervision of so-called ground-truth

 i.e. , original HRMS images), which, however, overlook the rich spatial

nformation of panchromatic images. 

To overcome the above-mentioned problems, we propose a novel

nsupervised framework for pan-sharpening based on a generative ad-

ersarial network (Pan-GAN). The pan-sharpening can be formulated

s a multi-task problem, aiming to preserve the spectral information of

RMS image and maintain the spatial information of panchromatic im-

ge. More specifically, due to the lack of ground-truth, it is assumed that

he spectral distribution of the fused image should be consistent with

hat of the LRMS image, and the spatial distribution of the fused im-

ge should be consistent with that of the panchromatic image with the

ame resolution. Thus, in the proposed unsupervised Pan-GAN frame-

ork, the generator attempts to generate an HRMS image containing

ajor spectral information of the LRMS image together with additional

mage gradients of the panchromatic image. And then, by the adversarial

ystem, the spectral discriminator tries to force the spectral information

f the generated image to be consistent with that of the LRMS image,

nd the spatial discriminator tries to force the spatial distribution of the

enerated image similar to that of the panchromatic image. Thus, our

roposed Pan-GAN can jointly preserve the rich spectral information of

he LRMS image and the abundant spatial information of the panchro-

atic image. 

To show the superiority of our method, we present a representa-

ive example in Fig. 1 . The left two images are the interpolated multi-

pectral image and panchromatic image, where the multi-spectral im-

ge has higher spectral resolution with four spectral bands, and the

anchromatic image has higher spatial resolution. The third image is

he pan-sharpening result of an existing CNN-based method PNN [19] .
 I  

111 
learly, it only preserves the spectral information of the original LRMS

mage, which is very similar to the interpolated multi-spectral image.

ut the spatial information in the panchromatic image is nearly lost, for

nstance, the texture information on the street. In contrast, the result

f our Pan-GAN can preserve both the spectral information of original

RMS image and the spatial information of panchromatic image, where

he texture information on the street can also be clearly observed. 

The major contributions of this paper are summarized as follows.

irst, unlike other CNN-based pan-sharpening methods, our unsuper-

ised pan-sharpening framework, say Pan-GAN, is based on the genera-

ive adversarial network, which does not rely on the so-called ground-

ruth, and the training process is based on the original source image by

esigning specific loss functions. Second, our proposed Pan-GAN adopts

wo discriminators to force the spectral and spatial information of the

enerated image to be consistent with the LRMS and panchromatic im-

ges, respectively. In this way, the rich spectral information of the LRMS

mage and the abundant spatial information of the panchromatic image

an be preserved simultaneously. Third, we provide both qualitative and

uantitative comparisons between Pan-GAN and other state-of-the-art

ethods to show the validity and superiority of the proposed method. 

The rest of our paper is organized as follows. Section 2 introduces

he related work and background material. In Section 3 , we describe

ur method in detail. Section 4 verifies the validity of our model struc-

ures and combined loss through extensive experiments, and we also

llustrate our method for pan-sharpening compared with seven state-of-

he-art methods on public available datasets including WorldView II and

aoFen-2. In Section 5 , we give some concluding remarks. 

. Related work 

This section briefly reviews the background material that our work

s based on, including the methods for pan-sharpening, GANs, and GANs

ith multiple discriminators. 

.1. Methods for pan-sharpening 

In recent years, a large number of pan-sharpening and image fu-

ion methods have been proposed due to the fast-growing demands

nd progress of image representation methods [22–28] . According to

he theories adopted, these fusion methods can be broadly divided

nto five categories. The first is component substitution-based methods

5,29,30] . These methods usually use a linear transformation and sub-

titution for some components in their transformed domain, which are

ery fast and easy to be implemented, such as intensity-hue-saturation

31] and principle components transform [32] . The second is multi-scale

ecomposition-based methods [8,33] , which involve three steps, i.e. , de-

omposition, fusion and transform. The decomposition-based methods

rovide both spatial and frequency domain localization and achieve bet-

er performance. The third is hybrid methods [11,33] , which combine

he advantages of both component substitution and multi-scale decom-

osition methods. A representative is the fusion based on curvelet and

CA [33] . The fourth is model-based methods [13,34,35] . An MRF model
Fig. 1. Schematic illustration of pan- 

sharpening. From left to right: interpo- 

lated original multi-spectral image, original 

panchromatic image, pan-sharpening result 

of PNN [19] , pan-sharpening result of our 

proposed Pan-GAN. 
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as been adopted to model the images for the fusion of edge informa-

ion in [34] ; while [35] adopts a superposition strategy to make full

se of the information of LRMS and panchromatic images to decrease

he spectral distortion and preserve the spatial information. The fifth is

eep-learning-based methods [19–21,36,37] . These methods can typi-

ally achieve desirable fusion performance relying on powerful feature

xtracting ability of convolution network with few spectral distortions.

owever, there are still some drawbacks. In PNN [19] , the three-layer

rchitecture is modified by SRCNN with more specific knowledge in re-

ote sensing and with HRMS images for supervised learning. The sim-

larity of them is measured by the mean square error. In PanNet [20] ,

he up-sampled LRMS image is directly propagated to the output of the

etwork to preserve the spectral information and the network is trained

n the high-pass domain to preserve the spatial structure. However, the

peration of up-sampling and the selection of high-pass domain will in-

roduce some blurred information into the result or lose some spatial

tructures. In PSGAN [21] and RED-cGAN [37] , which are GAN-based

odels, the generator tries to generate the image similar to the ground

ruth and the discriminator tries to distinguish between the generated

mages and the HRMS images. In RED-cGAN, the results are further im-

roved by introducing the residual encoder-decoder network and con-

itional GAN. So both the generator and the discriminator network in

hese two methods need the HRMS images for supervised learning. 

In general, the above-mentioned methods either suffer from severe

pectral distortion or require so-called ground-truth as supervision. In

his paper, we introduce an unsupervised learning method based on GAN

ith specifically designed loss functions for pan-sharpening to overcome

hese problems. 

.2. Generative adversarial networks 

The GAN was firstly proposed by Goodfellow et al. [38] , which is

riginally designed to generate more realistic images in an unsupervised

ay. Since then, it has achieved great successes in many computer vision

asks [39–43] . The main idea of GANs is to build a minmax two-player

ame between learning a generator and a discriminator. The generator

akes noise as input and tries to generate different samples to fool the dis-

riminator, while the discriminator aims to determine whether a sample

s from the model distribution or the data distribution. The adversarial

elationship between the generator and the discriminator continues un-

il the generated samples cannot be distinguished by the discriminator.

he generator then can capture the data distribution with more real-

stic image samples produced. Mathematically, a generative model G

ims to generate samples, whose distribution ( P G ) tries to approximate

he distribution ( P data ) of real training data, G and D play the minimax

wo-player game as follows: 

in 
𝐺 

max 
𝐷 

𝑉 GAN ( 𝐺, 𝐷) = 𝔼 𝑥 ∼𝑝 data ( 𝑥 ) [ log 𝐷( 𝑥 )]+ 

𝔼 𝑧 ∼𝑝 𝑧 ( 𝑧 ) [ log (1 − 𝐷( 𝐺( 𝑧 )))] . (1)

The original GANs can work well for generating digital images on

NIST dataset. However, there still exist noise and incomprehensibility

n the generated results, especially for high-resolution images. In order

o improve the quality of generated images, there are many works pro-

osed recently. Laplacian pyramid has been utilized in LAPGAN [44] to

enerate high-resolution image supervised by the low-resolution image,

ut it does not work well for the images containing wobbly objects. In

45,46] , it has succeeded to generate nature images, but cannot leverage

he generators for supervised learning. Also, to improve the GANs’ sta-

ility during the training process, DCGAN [47] makes an achievement

n applying deeper convolution neural networks to GANs, which drafts

 rule about designing CNN architecture of generator and discriminator

or steady training. WGAN [48] relaxes the GANs training requirement

y modifying the objective function of GANs, which makes the model

lower to converge compared with the original GANs. LSGAN [49] over-

omes this question by using the least squares loss function. Minimizing
112 
he objective function of LSGAN yields minimizing the Pearson 𝜒2 di-

ergence, and LSGAN has two advantages over the regular GANs. On

he one hand, LSGAN can generate higher quality images than regular

ANs. On the other hand, LSGAN performs more stably than regular

ANs during the learning process. The objective functions of LSGANs

re defined as follows: 

in 
𝐷 

𝑉 LSGAN ( 𝐷) = 

1 
2 
𝔼 𝑥 ∼𝑝 data ( 𝑥 ) [( 𝐷( 𝑥 ) − 𝑏 ) 2 ] 

+ 

1 
2 
𝔼 𝑧 ∼𝑝 𝑧 ( 𝑧 ) [( 𝐷( 𝐺( 𝑧 )) − 𝑎 ) 2 ] , (2) 

in 
𝐺 

𝑉 LSGAN ( 𝐺 ) = 

1 
2 
𝔼 𝑧 ∼𝑝 𝑧 ( 𝑧 ) [( 𝐷( 𝐺 ( 𝑧 )) − 𝑐) 2 ] . (3)

Considering the speed of convergence and the difficulty of training,

e choose LSGAN as the basic GAN in our paper. 

.3. GANs with multiple discriminators 

Unlike standard GANs which have a single generator correspond-

ng to a single discriminator, there are some GANs with multiple dis-

riminators proposed according to multiple different tasks remained to

e solved. GMAN [50] extends GANs to multiple discriminators, which

an be trained reliably with the original and can produce higher quality

amples in a fraction of iterations. PS 2 -MAN [51] iteratively generates

ow-resolution to high-resolution images in an adversarial way using

ulti-adversarial networks. Moreover, FakeGAN [52] uses two discrim-

nators, where the one helps generator to be close to the deceptive re-

iew distribution and the other makes generated results more realistic. 

In our proposed method, the goals of multiple adversarial relation-

hips are originally defined as the spatial and spectral information

reservation. Therefore, we use two discriminators, i.e. , a spatial dis-

riminator and a spectral discriminator to improve the quality of our

usion results. 

. Method 

In this section, we describe the proposed unsupervised pan-

harpening framework, namely Pan-GAN, for multi-spectral image and

anchromatic image fusion, also called pan-sharpening. First, we formu-

ate the pan-sharpening problem based on the GANs. Then, we present

he loss functions and architectures of both generator and discriminator.

inally, we give some implementation details in our training process. 

.1. Overview of the framework 

Tracing the source, the primary target of the multi-spectral and

anchromatic image fusion is to preserve the spatial and spectral in-

ormation. However, existing methods based on CNN, such as PNN

19] and PSGAN [21] , usually treat pan-sharpening as a black-box deep

earning problem. Even though PanNet [20] focuses on preserving the

patial and spectral information, it gets the fused image by combin-

ng the interpolated multi-spectral image with the high frequency in-

ormation obtained by CNN, which very likely leads to blurry results.

esides, the above-mentioned methods rely on the ground-truth image,

.e. , Wald’s protocol [53] , where all original images are blurred by a

aussian kernel and then downsampled by a factor of 4. All these down-

ampled images are treated as training data, and the original images are

egarded as ground-truth. However, this operation may not make sense.

n fact, the relation between the LRMS and HRMS images always tends

ot to obey simple blur and down-sample operation, which is influenced

y many different factors in real-world scenes. Therefore, we propose an

nsupervised pan-sharpening framework Pan-GAN, which uses the orig-

nal source images as training data, and gets HRMS fused image without

upervision by ground-truth. 

In order to preserve the spectral information of LRMS image and

patial information of panchromatic image, we formulate the pan-

harpening problem as a multi-task problem, and utilize a generative



J. Ma, W. Yu and C. Chen et al. Information Fusion 62 (2020) 110–120 

Fig. 2. Framework of our Pan-GAN for pan-sharpening. 4 ↑ represents upsam- 

pling the original multi-spectral image to the same resolution as the panchro- 

matic image, and AP represents implementing the average pooling operation for 

the generated image to convert it into a single channel. The arrows between the 

generator and discriminators represent the adversarial relationships. 
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dversarial strategy to solve it, which is schematically illustrated in

ig. 2 . Without loss of generality, all LRMS images used in this paper

ave 4 spectral bands. To begin with, we interpolate the LRMS image

nto the same resolution as the panchromatic image, and the next step is

o stack them at the channel dimension. In particular, the first channel

f the stacked image is the panchromatic image, and the rest channels

orrespond to the interpolated LRMS image. Then, the stacked images

re fed into the generator G , and the output of G is the pan-sharpening

mage, i.e. , an HRMS image. However, the generated result only guided

y the loss function (will be discussed later) without the two discrimi-

ators always tends to have severe spectral distortion or lack of spatial

nformation, which cannot strike a balance between the spectral and

patial information. 

To overcome this challenge, we regard preserving the spectral in-

ormation of the LRMS image and maintaining the spatial information

f the panchromatic image as two tasks, which we can utilize two dis-

riminators to deal with, respectively. The First discriminator D 1 named

pectral discriminator, aims to force the spectral information of the gen-

rated image to be consistent with that of the LRMS image. We first

nterpolate the generated LRMS image to be of the same resolution as

he generated HRMS image, then input the HRMS image and upsampled

RMS image into D 1 , which can also make the spectral distribution of the

enerated HRMS image consistent with that of the original LRMS image.

he second discriminator D 2 , named spatial discriminator, aims to force

he spatial information of the generated image to be consistent with that

f the panchromatic image. We implement the average pooling for the

RMS image generated by the generator along the channel dimension

o get the image in a single channel. Then we input this single-channel

mage and the panchromatic image into D 2 , which will make the spatial

istribution of the generated HRMS image consistent with that of the

riginal panchromatic image. During the training process, once these

wo discriminators cannot distinguish their inputs, we can then obtain

he desirable HRMS image. In addition, in order to maintain the spec-
113 
ral information better, we perform a histogram matching between the

esults and the interpolated LRMS. More concretely, the histogram of

he fused images should be as similar as that of the interpolated LRMS.

.2. Loss functions 

Our Pan-GAN consists of three parts, i.e. , a generator and two dis-

riminators (including the spatial discriminator and the spectral discrim-

nator). Next, we introduce them separately. 

.2.1. Loss function of generator 

The loss function of our generator G can be defined as follows: 

 𝐺 =  spectral +  spatial , (4)

here  𝐺 denotes the total loss of G . The first term  spectral on the right

and represents the spectral loss between the spectral information of

he generated HRMS image and that of the original LRMS image, and

he definition is as follows: 

 spectral = 

1 
𝑁 

𝑁 ∑
𝑛 =1 

‖‖‖↓ 𝐼 
( 𝑛 ) 
𝑓 

− 𝐼 
( 𝑛 ) 
ms 

‖‖‖
2 

𝐹 
+ 𝛼 adv1 , (5)

here 𝐼 
( 𝑛 ) 
𝑓 

denotes the generated HRMS image of our generator with

 ∈ ℕ 𝑁 

and N being the number of training data, ↓ 𝐼 
( 𝑛 ) 
𝑓 

stands for down-

ampling the generated image to be the same resolution as the LRMS

mage, 𝐼 
( 𝑛 ) 
ms denotes the original LRMS image, ‖ ⋅ ‖F stands for the matrix

robenius norm, and 𝛼 is a regularization parameter used to strick a bal-

nce between the two terms. The first term on the right hand in  spectral 

hich we call basic loss aims to keep the spectral information in the

RMS image. However, only relying on interpolation cannot represent

he relation between LRMS and HRMS images. Therefore, we introduce

he second term in  spectral , which can be defined as follows: 

 adv1 = 

1 
𝑁 

𝑁 ∑
𝑛 =1 

( 𝐷 1 ( 𝐼 
( 𝑛 ) 
𝑓 

) − 𝑐) 2 , (6)

here D 1 represents the spectral discriminator, and c denotes the value

hat the generator wants the spectral discriminator to believe for fake

ata. This term actually measures the spectral information diversity be-

ween the generated HRMS image and the LRMS image, which is also

alled spectral adversarial loss. It will be discussed in detail in the loss

unction of discriminator. 

The second term  spatial in  𝐺 denotes the spatial loss between the

patial information of the generated HRMS image and that of the origi-

al panchromatic image, which is defined as follows: 

 spatial = 𝜇
1 
𝑁 

𝑁 ∑
𝑛 =1 

‖‖‖∇ 𝐴𝑃 ( 𝐼 ( 𝑛 ) 
𝑓 

) − ∇ 𝐼 
( 𝑛 ) 
pan 

‖‖‖
2 

𝐹 
+ 𝛽 adv2 , (7)

here 𝐼 
( 𝑛 ) 
pan denotes the original panchromatic image, ∇ denotes the gra-

ient operator to extract high frequency spatial information, 𝜇 is a reg-

larization parameter which is set to balance loss between spectral and

patial information (this term we also call basic loss), 𝛽 is a regular-

zation parameter used to strick a balance between the two terms, and

P ( · ) represents the average pooling function along the channel dimen-

ion. However, the spatial information cannot be totally represented by

radients. Therefore, we also similarly add the second term to fill this

ap, which can be written in the following form: 

 adv2 = 

1 
𝑁 

𝑁 ∑
𝑛 =1 

( 𝐷 2 ( 𝐴𝑃 ( 𝐼 
( 𝑛 ) 
𝑓 

)) − 𝑑) 2 , (8)

here D 2 denotes the spatial discriminator, and d represents the value

hat the generator wants the spatial discriminator to believe for fake

ata. This term is also called spatial adversarial loss, which will be ex-

lained in detail later. 
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.2.2. Loss function of discriminator 

Actually, there are two discriminators in our Pan-GAN: one is used

or spectral preservation, and the other is for spatial preservation. Their

oss functions can be uniformly defined as follows: 

 D = 

1 
𝑁 

𝑁 ∑
𝑛 =1 

( 𝐷( 𝐼 ( 𝑛 ) ) − 𝑏 ) 2 + 

1 
𝑁 

𝑁 ∑
𝑛 =1 

( 𝐷( 𝐼 ( 𝑛 ) 
𝑓 

) − 𝑎 ) 2 , (9)

here I ( n ) denotes the target image whose distribution we want to fit,

 and b respectively denote the labels of the target image I ( n ) and the

enerated HRMS image 𝐼 
( 𝑛 ) 
𝑓 

, D ( I ( n ) ) and 𝐷( 𝐼 ( 𝑛 ) 
𝑓 

) respectively denote the

lassification results of the target image and the generated HRMS image.

e adopt the least square loss [49] as the loss function in this paper.

t obeys minimizing the Pearson 𝜒2 divergence, making the training

rocess more steady and converge quickly. 

To preserve the spectral information, we set 𝐷 = 𝐷 1 and 𝐼 ( 𝑛 ) = ↑ 𝐼 ( 𝑛 ) ms .

n other words, our spectral discriminator is designed to distinguish the

enerated HRMS images from the interpolated LRMS images. Based on

he assumption that the spectral information distribution will not change

ith scales, we also enforce the spectral information of the generated

RMS image to have similar distribution to the LRMS image. Once the

pectral discriminator cannot distinguish 𝐼 
( 𝑛 ) 
𝑓 

and ↑ 𝐼 ( 𝑛 ) ms during the ad-

ersarial procedure, we reach our goal. 

To preserve the spatial information, we set 𝐷 = 𝐷 2 , 𝐼 
( 𝑛 ) 
𝑓 

= 𝐴𝑃 ( 𝐼 ( 𝑛 ) 
𝑓 

)
nd 𝐼 ( 𝑛 ) = 𝐼 

( 𝑛 ) 
pan , and our spatial discriminator is designed to distinguish

he generated average pooling HRMS images from the original panchro-

atic images. The spatial information cannot be only represented by

radients, and they can obey a specific distribution. Once the spatial

iscriminator cannot distinguish 𝐴𝑃 ( 𝐼 ( 𝑛 ) 
𝑓 

) and 𝐼 
( 𝑛 ) 
pan , our generated HRMS

mage can then well preserve the spatial information of the original

anchromatic image. 

.3. Network architectures 

Our network architecture includes the generator, spectral discrimi-

ator and spatial discriminator. Architecture of them are all designed

ased on the CNN, which are shown in Fig. 3 . 
114 
.3.1. Network architecture of generator 

There are several CNN architectures that can be chosen to implement

ur generator, for example, residual network [16] , which has been used

n PanNet. In this paper, we adopt the architecture of PNN, which is

riginally used for image super-resolution [54] . Compared with residual

etwork, the architecture of PNN is more simple and easy to train. Ac-

ordingly, our generator architecture has three convolution layers with

lter sizes of 9 ×9, 5 ×5, and 5 ×5, respectively. The stride is set to 1

ith padding, and the numbers of extracted feature maps in each layer

re set to 64, 32 and 4, respectively. In order to speed up the conver-

ence of model training and make it more steady, we obey the rule

esigned by DCGAN [47] , i.e. , all activation functions are ReLU, except

hat the last layer is tanh. We employ the batch normalization except

he last layer, which can overcome the sensitivity to data initialization

nd avoid the problem of vanishing gradient. In addition, we also up-

ate the PNN architecture by adding some skip connections inspired by

he DenseNet [55] . These skip connections can transfer more details to

he later layers to make full use of the valid information and make our

raining process efficient. Experimental results also verify the validity

f these skip connections. 

It should be noted that the image scale in our generator remains the

ame in different layers, which is different from the original GAN. Ex-

sting works usually use the architecture of encoder and decoder for the

enerator. However, the encoder needs to downsample the image, which

ay lose some important information of the original image. Therefore,

e avoid this operation in our generator. 

.3.2. Network architecture of discriminator 

Although our Pan-GAN consists of two discriminators, i.e. , the spec-

ral discriminator and the spatial discriminator, they have the same

tructure with different inputs. We use fully convolution neural net-

orks for our discriminators, and each of them consists of six layers.

he filter size of the first five layers is 3 ×3, and that of the last layer is

 ×4. The stride of the first five layers is set to 2, and the last one is set

o 1. The number of extracted feature maps in different layers are set to

6, 32, 64, 128, 256 and 1, respectively. In addition, we also obey the

ules proposed by DCGAN, except for the first layer, i.e. , the batch nor-

alization and leaky ReLU are used as activation function in the other
Fig. 3. Network architecture of the generator, spectral 

discriminator and spatial discriminator. The numbers 

of feature maps are shown on the left, and the sizes of 

filters are given on the right. 
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ve layers. For the spectral discriminator, the input is the generated

RMS image or the interpolated LRMS image. For the spatial discrimi-

ator, the input is the original panchromatic image or the single channel

mage generated by the generated HRMS image after average pooling

long the channel dimension. The output of discriminators is both the

lassification results. 

.4. Training details 

Our training data consists of the original LRMS image with resolu-

ion of 32 ×32 and the original panchromatic image with resolution of

28 ×128. The size of batch images is set to 32. The number of training

teps is set to 100,000 (the epoch is set to 53). 𝜇 is set to 5, 𝛼 is set to

.002, and 𝛽 is set to 0.001. The initialized learning rate is set to 0.0001

ith decay rate setting to 0.99, and the decay step is set to 10,000. Our

ptimizer solver is the RMSProp optimizer [56] . To speed up the train-

ng process and make our model steady, on the one hand, different from

raditional training strategy, we first train the generator and the spec-

ral discriminator. When the spectral discriminator gets convergency,

he spatial discriminator is added into our model, and we train them

imultaneously. On the other hand, the labels a, b, c and d are not fixed,

hich are also called soft labels. For the discriminator, the label a of

he generated HRMS image is a random number ranging from 0 to 0.3,

hile the label b of the target image is a random number ranging from

.7 to 1.2. For the generator, labels c and d are random numbers ranging

rom 0.7 to 1.2. 

. Experiments and evaluations 

Note that our model consists of a generator and two discriminators,

.e. , a spatial discriminator and a spectral discriminator, and the loss

unction of our Pan-GAN is constructed by using a bunch of losses in-

luding two basic losses and two adversarial losses, we first conduct ab-

ation study which we also call analysis of different network structures

n different loss combinations to verify the validity of spatial discrimina-

or and spectral discriminator. Then, several comparative experiments

re conducted respectively on datasets from WorldView II and GaoFen-2

GF-2) satellites to demonstrate the superiority of our Pan-GAN. We use

even state-of-the-art pan-sharpening methods for qualitative and quan-

itative comparison, including P+XS [13] , MTF-GLP [10] , BDSD [14] ,

IRF [57] , PNN [19] , PSGAN [21] and PanNet [20] . The codes of all

hese compared methods are publicly available, and we set the parame-

ers of these methods according to the original papers. The experiments

re conducted on a desktop with 2.4 GHz Intel Xeon CPU E5-2673 v3,

eForce GTX 1080Ti, and 64 GB memory. 

.1. Datasets and metrics 

There are two datasets used in our experiments, including World-

iew II and GF-2. The spatial resolutions of panchromatic images in

hese two satellites are 0.5m and 0.8m, respectively, while the spatial

esolutions of their corresponding LRMS images are 1.8 m and 3.2 m

ith four bands including red, green, blue and near-infrared. We crop

he panchromatic and LRMS images into 60,000 image patch pairs of

izes 128 ×128 and 32 ×32, respectively, and then randomly split them

nto 90% and 10% as our training data and validation data, respectively.

During the testing phase, we can directly feed the entire source im-

ges into the generator to produce the results without need for cropping

hem into small patches with the same size as the training data because

he generator of Pan-GAN is fully convolutional networks (FCN). FCN is

ifferent from classic CNN in that classic CNN uses fully connected lay-

rs to get fixed length eigenvectors after convolution layers while FCN

oes not. Thus, FCN can accept input images of any size. In order to

ully illustrate the effectiveness of our method, we conduct two types

f testing: testing under Wald’s protocol and full-resolution testing. It is

ifficult to get a comprehensive evaluation of different methods only by
115 
ubjective judgement. Thus we introduce six widely used quantitative

etrics to characterize the fusion performance, i.e. , relative dimension-

ess global error in synthesis (ERGAS) [58] , root mean squared error

RMSE), relative average spectral error (RASE) [59] , the filtered corre-

ation coefficients (FCC) [60] , quality with no reference (QNR) [61] and

eneralized QNR (GQNR) [62] . 

The first three metrics evaluate the similarity or the error between

he fused result and the ground truth. More concretely, ERGAS is a global

uality metric to measure mean shifting and dynamic range change

63] . RMSE is used to measure the changes of the pixel values between

he ground truth and the fused image. RASE is used to measure the

pectral quality by computing the relative error between the fused im-

ge and the multi-spectral image. As for the rest three metrics FCC, QNR

nd GQNR, they are three approaches to assess the pan-sharpening per-

ormance without reference by checking main properties of the fused

esults. FCC uses the PAN image to evaluate the spatial quality of the

used image. QNR uses the original LRMS and PAN images to measure

he spectral distortion between the resampled LRMS images and the

used images, and the spatial distortion caused by discrepancies in spa-

ial details originated by fusion. Based on QNR, GQNR is applicable to

cenarios especially when the panchromatic band does not overlap the

hort-wave infrared bands. Generally speaking, larger values of FCC and

NR indicate better performance, and smaller values of ERGAS, RMSE,

ASE and GQNR indicate better performance. 

In order to fully illustrate the effectiveness of our method, when

erforming comparative experiments, we perform two types of testing,

.e. , testing under the Wald’s protocol where original HRMS images are

ownsampled to LRMS images and then HRMS images are used as refer-

nces and testing on full-resolution images. Under the Wald’s protocol,

he metrics we used are ERGAS, RMSE and RASE. When testing on full-

esolution images, we use the panchromatic images and the original

RMS images as the test data. Since there is no ground truth, we use

etrics FCC, QNR and GQNR mentioned above to evaluate the results. 

.2. Ablation study 

Ablation study on different loss combinations is conducted in this

ection. Considering whether spectral adversarial loss (  spectral ) or spa-

ial adversarial loss (  spatial ) being optimized, we divide our model

tructures into 4 types, i.e. Model-Generator with only generator pre-

erved and only basic loss optimized, Model-Spatial with spatial discrim-

nator preserved and basic loss and  spatial optimized, Model-Spectral

ith spectral discriminator preserved and basic loss and  spectral opti-

ized, and our Pan-GAN with  G optimized. The four structures are

escribed in Fig. 4 . 

We train these four models on WorldView II and test them under the

ald’s protocol. We tune the parameters so that all the models can ob-

ain their best performance. In particular, 𝜇 is set to 5, 𝛼 is set to 0.002,

nd 𝛽 is set to 0.001 with the other training setting being the same. Fu-

ion results of these four structures are presented in Fig. 5 , where the

RMS image is the ground truth, and the LRMS image is interpolated

nto the same resolution as the panchromatic image using bicubic in-

erpolation. From the results, we observe that the highlighted region in

he LRMS is rather blurry, where the pipelines cannot be distinguished

hich are visible in the panchromatic image and all the fusion results.

his indicates that the most of spatial information can be preserved by

nly optimizing the basic loss. However, it is clear that the fusion result

f Model-Generator show a different color distribution with the origi-

al LRMS, whereas the other three model structures do not suffer from

his problem. This demonstrates that the adversarial loss in  spectral and

 spatial can improve the spectral information preservation. 

To get a more accurate assessment for spectral distortion and spa-

ial information loss, we compute the residual images between HRMS

ground truth) and down-sampled fusion results for analyzing the spec-

ral distortion (as shown in Fig. 6 ), and compute the gradient resid-

al images between gradient of panchromatic image and gradients of
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Fig. 4. The four different network structures of our proposed method for ablation study. (a) Model-Generator. (b) Model-Spatial. (c) Model-Spectral. (d) Our Pan-GAN. 

Fig. 5. Fusion result of four different structures. From left to right, interpolated LRMS image, original panchromatic image, fusion result of Model-Generator, 

Model-Spatial, Model-Spectral, and our Pan-GAN. 

Fig. 6. Spectral distortion analysis. Residual images between HRMS and fusion 

results of three model structures including Model-Generator, Model-Spatial and 

our Pan-GAN. We multiply the pixel values in each error image by 4 for clear 

comparison of visual effects. Please zoom in to see the details. 
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Fig. 7. Spatial loss analysis. Residual images between gradient of panchromatic 

image and gradients of fusion results of three model structures including Model- 

Generator, Model-Spectral and our Pan-GAN. We multiply the pixel values in 

each error image by 4 for clear comparison of visual effects. Please zoom in to 

see the details. 
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usion results for analyzing the spatial information loss (as shown in

ig. 7 ). From Fig. 6 , we see that the Model-Generator clearly has the

argest spectral distortion, where the smooth regions in the residual

mage tend to have lots of shadow. For the fusion result of Model-

patial without spectral discriminator, there exist some regions ( e.g. ,

op left and top right corners) still suffering from large spectral dis-

ortion although most regions can well preserve the spectral informa-

ion. But compared with the Model-Generator, it exhibits much less

pectral distortion. This demonstrates that the panchromatic image can

ot only provide the spatial information, but also improve the spec-

ral quality. In contrast, the fused image of our Pan-GAN has much

maller residuals and we can hardly find regions suffering from ob-

ious spectral distortion. This demonstrates that the spectral discrim-

nator plays an important role in preserving the spectral information

uring the adversarial learning. Note that there are some traces in

he residual images of Model-Spatial and our Pan-GAN. From Fig. 6 ,

e see that with the spectral discriminator and spatial discriminator

radually being added, the gradient residual image gets better and

etter. 
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Further, we provide a quantitative comparison of these four struc-

ures on WorldView II. The statistical results of three full-reference met-

ics are summarized in Table 1 . The average metric values and the cor-

esponding variances are all listed in the table, while the ideal value of

ach metric is also given in the last row. From the results, we see that

ur Pan-GAN is able to achieve the best average values in all cases. 

In conclusion, only using generator will lead to several spectral dis-

ortion; the spatial and spectral discriminators can respectively improve

he spatial information preservation and avoid spectral distortion; by

pplying these two discriminators simultaneously, we can get the best

usion result. 

.3. Comparative experiments 

In this section, we demonstrate the efficiency of the proposed method

n WorldView II and GF-2 and compare it with seven state-of-the-art

an-sharpening methods such as P+XS [13] , MTF-GLP [10] , BDSD [14] ,

IRF [57] , PNN [19] , PSGAN [21] and PanNet [20] . 
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Table 1 

Qualitative comparison of four different structures on 120 satellite images from the WorldView 

II dataset. The runtime is GPU time. Bold indicates the best result. 

Method ERGAS RMSE RASE Runtime (s) 

Model-Generator 4.899 ± 1.230 13.617 ± 4.258 18.448 ± 4.202 0.025 

Model-Spatial 4.227 ± 0.979 11.749 ± 3.130 16.069 ± 3.656 0.025 

Model-Spectral 4.577 ± 1.019 12.744 ± 3.239 17.433 ± 3.708 0.025 

Ours 2.766 ± 0.466 8.000 ± 1.086 11.078 ± 1.896 0.025 

Desired value 0 0 0 - 

Fig. 8. Qualitative comparison of different methods for pan-sharpening under the reduced-resolution test on the data from WorldView II. The size of the PAN image 

is 304 ×304. The first row is the fusion results and the second row is the corresponding error images of different methods. We multiply the pixel values in each error 

image by 4 for clear comparison of visual effects. Please zoom in to see the details. 

Fig. 9. Qualitative comparison of different methods for pan-sharpening under the reduced-resolution test on the data from GF-2. The size of the PAN image is 

500 ×400. The first row is the fusion results and the second row is the corresponding error images of different methods. We multiply the pixel values in each error 

image by 4 for clear comparison of visual effects. Please zoom in to see the details. 
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.3.1. Qualitative comparison 

As mentioned earlier, we conduct two types of comparison ex-

eriments, i.e. , testing under the Wald’s protocol and testing on full-

esolution images. 

First, we give the comparative results under the Wald’s protocol,

here original HRMS images are downsampled to LRMS images and

hen HRMS images are used as references, as shown in Figs. 8 and 9 . The

rst row shows the original HRMS (GT), LRMS and panchromatic im-

ges, as well as the fusion results of the eight methods. The second row

hows the corresponding error images between HRMS and fusion results

f different methods. In Fig. 8 , cars under the shadows are blurred in

RMS but visible in panchromatic images as highlighted. Among these

ethods, only the results of MTF-GLP, BDSD and our method can clearly

etain this detail, while that of other methods are missing or weak. How-

ver, there are some color distortions in the results of MTF-GLP and

DSD compared to Pan-GAN. As a result, our method not only main-

ains the spectral distribution, but also better preserves the spatial de-

ails, which is consistent with the error images on the second row. The

esults in Fig. 9 are similar to Fig. 8 . For the houses in the highlighted

art, our method is the best in both the spectrum distribution and the

patial details. 

Second, We present the qualitative comparison of different meth-

ds, which is tested on full-resolution images. The results are shown in

igs. 10 and 11 . The first row shows the original LRMS and panchro-
117 
atic images, as well as the fusion results of the eight methods. The

econd row shows the corresponding gradient error images between the

anchromatic image and fusion results. In Fig. 10 , in terms of visual

erception, there is some spectral distortion in the results of PNN and

SGAN, while other methods can well maintain spectral color distribu-

ion. However, it shows great diversity for the spatial information of

ifferent methods. For example, the highlighted part contains a strip-

haped object, which is visible in the panchromatic image but cannot

e found in the LRMS image due to the limited spatial resolution. For

+XS, SIRF, PNN, PSGAN and PanNet, this information is lost or weak-

ned in their results. Only MTF-GLP, BDSD and our method can better

aintain the details well, which are clear as that in the panchromatic

mage. For better visualization, we compute the error images to compare

he spatial information difference (represented by gradient) between the

used image and panchromatic image. From the results, we see that the

patial loss of our Pan-GAN is much smaller. In Fig. 11 , we can draw a

imilar conclusion as that in Fig. 10 . In particular, the pool highlighted

n the red box region is textured, which is very blurry in the results

f the competitors. Nevertheless, such information in the result of our

an-GAN is shown clearly with high contrast and clear edges. The spatial

rror images also demonstrate that our fusion result can well preserve

he spatial information. In addition, it is also worth noting that our Pan-

AN can also perform very well in maintaining the spectral information,

nd there is no distortion of color distribution in the intuitive sense. 
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Fig. 10. Qualitative comparison of different methods for pan-sharpening under the full-resolution test on the data from WorldView II. The size of the PAN image is 

624 ×624. The first row is the fusion results and the second row is corresponding gradient error images of different methods. We multiply the pixel values in each 

error image by 4 for clear comparison of visual effects. Please zoom in to see the details. 

Fig. 11. Qualitative comparison of different methods for pan-sharpening under the full-resolution test on the data from GF-2. The size of the PAN image is 500 ×400. 

The first row is the fusion results and the second row is the corresponding gradient error images of different methods. We multiply the pixel values in each error 

image by 4 for clear comparison of visual effects. Please zoom in to see the details. 

Table 2 

Quantitative comparison of eight methods on 120 images from the WorldView II dataset. All CNN-based methods are performed on 

GPU, while other methods are performed on CPU. Bold indicates the best result. 

Method ERGAS RMSE RASE FCC QNR GQNR Runtime (s) 

P + XS [13] 2.910 ± 0.504 6.553 ± 1.202 12.039 ± 1.413 0.815 ± 0.034 0.899 ± 0.037 0.047 ± 0.018 172.568 

MTF-GLP [10] 3.122 ± 0.606 7.150 ± 1.358 13.183 ± 1.912 0.937 ± 0.028 0.950 ± 0.032 0.014 ± 0.013 0.543 

BDSD [14] 3.283 ± 0.691 7.438 ± 1.662 13.685 ± 2.382 0.921 ± 0.046 0.948 ± 0.035 0.062 ± 0.033 0.018 

SIRF [57] 4.366 ± 0.852 10.114 ± 2.638 18.756 ± 4.746 0.275 ± 0.186 0.781 ± 0.049 0.041 ± 0.056 71.246 

PNN [20] 2.915 ± 0.555 6.349 ± 1.339 11.668 ± 1.768 0.676 ± 0.064 0.839 ± 0.04 0.103 ± 0.036 0.028 

PSGAN [21] 2.836 ± 0.561 6.318 ± 1.404 11.595 ± 1.952 0.768 ± 0.037 0.952 ± 0.033 0.031 ± 0.014 0.011 

PanNet [19] 2.841 ± 0.564 6.078 ± 1.083 11.254 ± 1.651 0.502 ± 0.115 0.952 ± 0.034 0.017 ± 0.012 0.011 

Pan-GAN 2.631 ± 0.490 5.661 ± 1.208 10.406 ± 1.656 0.960 ± 0.012 0.952 ± 0.036 0.020 ± 0.012 0.025 

Desired value 0 0 0 1 1 0 - 

Table 3 

Quantitative comparison of eight methods on 120 images from the GF-2 dataset. All CNN-based methods are performed on GPU, 

while other methods are performed on CPU. Bold indicates the best result. 

Method ERGAS RMSE RASE FCC QNR GQNR Runtime (s) 

P + XS [13] 1.647 ± 0.249 3.177 ± 0.213 4.742 ± 0.338 0.835 ± 0.018 0.958 ± 0.015 0.041 ± 0.021 191.694 

MTF-GLP [10] 1.627 ± 0.333 3.161 ± 0.412 4.719 ± 0.626 0.896 ± 0.014 0.973 ± 0.018 0.038 ± 0.020 1.943 

BDSD [14] 1.925 ± 0.322 3.804 ± 0.396 5.674 ± 0.573 0.867 ± 0.025 0.965 ± 0.018 0.072 ± 0.056 0.018 

SIRF [57] 4.139 ± 0.943 12.233 ± 3.392 18.263 ± 5.036 0.725 ± 0.085 0.844 ± 0.044 0.066 ± 0.051 82.867 

PNN [19] 4.274 ± 0.883 11.648 ± 1.880 17.379 ± 2.782 0.666 ± 0.034 0.947 ± 0.01 0.113 ± 0.015 0.011 

PSGAN [21] 2.165 ± 0.237 5.164 ± 0.555 7.701 ± 0.787 0.796 ± 0.021 0.958 ± 0.014 0.080 ± 0.050 0.011 

PanNet [20] 1.786 ± 0.244 3.816 ± 0.399 5.699 ± 0.652 0.520 ± 0.046 0.825 ± 0.045 0.168 ± 0.149 0.028 

Pan-GAN 1.543 ± 0.220 3.047 ± 0.365 4.549 ± 0.547 0.906 ± 0.010 0.963 ± 0.016 0.102 ± 0.066 0.025 

Desired value 0 0 0 1 1 0 - 
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.3.2. Quantitative comparison 

We further provide quantitative comparisons of the seven methods

n the two datasets from WorldView II and GF-2. On the one hand,

or the metrics which need the ground-truth data, i.e. , ERGAS, RMSE

nd RASE, we downsample the source images into images with a lower

esolution and use the original HRMS images as the ground-truth data
118 
or calculation. On the other hand, for the no-reference metrics, i.e. ,

CC, QNR and GQNR, considering that these metrics do not need refer-

nce images and to keep the major advantage of unsupervised meth-

ds, we calculate these metrics on full-resolution images. The statis-

ical results of the six metrics and runtime are shown in Tables 2
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From the results, we see that our Pan-GAN is able to achieve much

etter average values than all the other competitors on all the three

ull-reference metrics on both datasets. These three metrics can show

hat our Pan-GAN can generate the closest fusion result to HRMS (the

round truth), no matter from the spectral information or the spatial

nformation. For the no-reference metrics, our method achieves the best

erformance in terms of FCC. This shows that our method can well main-

ain the spatial information of panchromatic images. Relatively speak-

ng, on QNR, our Pan-GAN also performs well, which ranks the first on

he WorldView II dataset and third on the GF-2 dataset. On GQNR, our

ethod can also achieve comparable performance. Moreover, we also

eport the time consumption of different methods on two datasets in

he last column of the two tables. Our methods can achieve comparable

fficiency compared with the other competitors. 

In conclusion, our Pan-GAN can well preserve the basic spectral

nformation of original LRMS image and spatial information of orig-

nal panchromatic image without any ground truth as supervision.

ompared with other state-of-the-art methods, our methods keep more

learly detail information ( i.e., spatial information) with few spatial in-

ormation loss. No matter qualitative comparison or quantitative com-

arison, our proposed method can always generate satisfying perfor-

ance. 

. Conclusion 

In this paper, we propose an unsupervised pan-sharpening frame-

ork called Pan-GAN for multi-spectral image and panchromatic image

usion based on the generative adversarial network. Our method formu-

ates pan-sharpening as a multi-task problem, that is, the preservation

f spectral and spatial information. We use the same generator to estab-

ish adversarial games with the spectral discriminator and the spatial

iscriminator, respectively, so as to preserve the spectral information

f the multi-spectral image and the spatial information of the panchro-

atic image simultaneously. Experiments on the WorldView II and GF-

 datasets demonstrate that our Pan-GAN can not only obtain the best

valuation metrics but also preserve the basic spectral information dis-

ribution well with few loss of spatial information. 
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