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Fusing Local and Global Features for
High-Resolution Scene Classification

Xiaoyong Bian, Chen Chen, Long Tian, and Qian Du

Abstract—In this paper, a fused global saliency-based multiscale
multiresolution multistructure local binary pattern (salM>LBP)
feature and local codebookless model (CLLM) feature is proposed
for high-resolution image scene classification. First, two different
but complementary types of descriptors (pixel intensities and dif-
ferences) are developed to extract global features, characterizing
the dominant spatial features in multiple scale, multiple resolution,
and multiple structure manner. The micro/macrostructure infor-
mation and rotation invariance are guaranteed in the global feature
extraction process. For dense local feature extraction, CLM is uti-
lized to model local enrichment scale invariant feature transform
descriptor and dimension reduction is conducted via joint low-rank
learning with support vector machine. Finally, a fused feature rep-
resentation between salM*LBP and CLM as the scene descriptor to
train a kernel-based extreme learning machine for scene classifica-
tion is presented. The proposed approach is extensively evaluated
on three challenging benchmark scene datasets (the 21-class land-
use scene, 19-class satellite scene, and a newly available 30-class
aerial scene), and the experimental results show that the proposed
approach leads to superior classification performance compared
with the state-of-the-art classification methods.

Index Terms—Codebookless model (CLM), feature representa-
tion, image descriptors, rotation invariance, scene classification,
saliency detection.

1. INTRODUCTION

HE recent availability of satellite/aerial images has fos-
T tered the development of techniques to classify and in-
terpret high-resolution image scenes with detail structures and
different spatial resolutions. In recent years, scene classifica-
tion has received increasing attention both in academia and
real-world application [1]-[5]. The goal of image scene classi-
fication is to automatically assign a semantic category to each
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given image based on some predefined knowledge. Although
great effort in image scene classification has been made, it is
still a challenging task due to many factors to be considered
such as highly complex structures and spatial patterns.

In the past decades, many methods have been presented for
image scene classification. The low-level visual feature meth-
ods that assume the same type of scene should share certain
statistically holistic attributes and have demonstrated their ef-
ficiency on classifying image scenes. For example, the scale
invariant feature transform (SIFT) [6] was widely used for mod-
eling structural variations in image scenes. In addition, statis-
tical distributions exploitation on certain spatial cues such as
color histogram [7], texture information [8] has also been well
surveyed. In [9], local structural texture similarity descriptor
was applied to image blocks to represent structural texture for
aerial image classification. In [10], semantic classification of
aerial images based on Gabor and Gist descriptors [11] was
evaluated individually. In order to depict the complex scene, the
combinations of complementary features are often preferred to
achieve improved results. In [12], six different kinds of feature
descriptors, i.e., simple radiometric features, Gaussian wavelet
features, gray level co-occurrence matrix, Gabor filters, shape
features, and SIFT, were combined to form a multiple-feature
representation for indexing remote sensing images with differ-
ent spatial resolutions, and better performance was reported.
Recently, local binary pattern (LBP) [13] and completed LBP
(CLBP) [14] are also presented. Afterwards, multiscale com-
pleted LBP (MS-CLBP) [15] and extended multistructure LBPs
(EMSLBP) [16] were adopted for remote sensing image scene
classification and competitive results were reported. However,
this kind of methods may not able to produce discriminative rep-
resentation, especially when salient structures in high-resolution
image scene often dominate the image category, e.g., the distinct
objects such as tennis court, baseball fields, and storage tanks
in 21-class land-use scene.

Therefore, more recently, more algorithms for modeling the
local variations of structures and evaluating various features via
midlevel visual representation have been developed for scene
classification. The popular bag-of-visual-words (BoVW) model
[17] provides an efficient approach to solve the problem of
scene classification, where the image is represented as occur-
rence histogram of a set of visual words by mapping the local
features to a visual vocabulary, where the vocabulary is pre-
established after clustering. It should be noted that the original
BoVW model ignores spatial and structural information, which
may limit its descriptive ability. To avoid this issue, a spatial
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pyramid matching (SPM) framework was proposed in [18]. This
approach partitions an image into fine subregions and computes
BoVW histograms of local features in each subregion, and then
concatenates the histograms from all subregions to form the
SPM representation of an image. However, SPM only consid-
ers the absolute spatial arrangement, and the resulting features
are sensitive to rotation variations. Later on, several improved
land-use scene classification methods with absolute and relative
spatial information exploitation are also presented recently. In
[19], a spatial co-occurrence kernel, which is general enough
to characterize a variety of spatial arrangements, was proposed
to capture both the absolute and relative spatial layout of an
image. In [20], a multiresolution representation was incorpo-
rated into the BoVW model to partition all resolution images
into subregions to improve the SPM framework. To achieve ro-
tation invariance, [21] introduces a concentric circle-structured
multiscale BoOVW model to represent the spatial layout infor-
mation. In [22], partlet-based method was proposed to achieve
efficient VHR image land-use classification. In [23], the im-
proved Fisher vector (IFK) [24] feature coding methods were
evaluated for scene classification and reported to achieve bet-
ter performance. Moreover, unsupervised feature learning [3]
from very large local patch features and its variants [25] were
explored to obtain better scene classification results.

Nonetheless, all the aforementioned methods still carry little
semantic meanings. Currently, deep learning methods achieve
impressive results on satellite scene classification [26]-[28].
The two freely available deep convolutional neural networks
(CNN:gs), i.e., OverFeat [29] and CaffeNet [30], may be the most
popular for learning visual features for classification. In [31],
another architecture, GoogleNet [32], also showed promising
performance for aerial images. In [33], multiscale dense CNNss
activations from the last convolutional layer were extracted as
local features descriptors and further coded through vector of
locally aggregated descriptors [34] and IFK to generate the final
image representation. In [35], an efficient stacked discrimina-
tive sparse autoencoder (shallow-structured model) is proposed
to learn high-level features for land-use classification. In ad-
dition, some object detection methods in satellite/aerial scenes
via deep learning are also presented [36]-[40]. For all the deep
CNN architectures used above, either the global or local fea-
tures were obtained from the networks’ pretrained on image
scene datasets and were directly used for classification of image
scenes. However, deep CNNs have an intrinsic limitation due to
the complicated pretraining process to adjust parameters.

In this paper, we propose a fused feature representation
method based on global saliency-based multiscale multireso-
lution multistructure LBP (salM>LBP) and local codebookless
model (CLM), which are utilized to extract global and local
features, respectively, to characterize both global structures and
local fine details of image scenes. Specifically, the salM?LBP is
proposed to extract globally rotation invariant features of image
scenes. Then, the local enrichment SIFT (eSIFT) descriptor [41]
is employed to extract local features and CLM [42] is chosen to
model local features into a discriminative representation. The fi-
nal representation for an image is achieved by fusing salM>*LBP
and CLM (salM’LBP-CLM) features. It is noted that CLM
describes the patch descriptors by a single Gaussian model,

requiring no pretrained codebook and the subsequent coding.
Meanwhile, to alleviate the side effect of background clutter on
our approach, we also present a simple yet effective patch sam-
pling method based on saliency detection. Experimental results
on three benchmark datasets show that the proposed fused fea-
ture representation (salM*LBP—CLM) gains very competitive
accuracy compared with state-of-the-art methods.

The main contributions of this paper can be summarized as
follows.

1) To the best of our knowledge, it is the first attempt to com-
bine global salM?LBP features and local CLM (eSIFT) to
achieve a fused representation for image scene classifica-
tion. Two different types of features together can effec-
tively mitigate respective shortcomings of global features
and local ones.

2) The proposed representation framework is unified in a
simple and effective way, which benefits image scene
classification.

3) Saliency-based sampling is useful and efficient to exclude
background clutter and extracts the representative patches
that dominate the image category, which is beneficial to
highly cluttered scene (e.g., 21-class land-use scene).

A preliminary version of this work appeared in [16]. This pa-
per extends the earlier work [16] in the following aspects. First,
we perform more comprehensive surveys on related works. Sec-
ond, we proposed the improved LBPs by designing salM>LBP,
thereby enhancing the discrimination information among land-
use and land-cover (LULC) classes. Third, we develop a fused
representation based on global salM?LBP and local CLM with
eSIFT descriptor, emphasizing the overall contribution for scene
classification, where the weighted coefficient is empirically
found by cross-validation strategy. We extensively evaluate our
method on three benchmark datasets and comprehensively com-
pare it with the state-of-the-art approaches including deep learn-
ing methods, e.g., [27], [28], [31], [33], [49]. Experimental
results show that our method outperforms the state-of-the-art
methods. Moreover, our approach is flexible to combine with
more informative descriptors for further improvement.

The rest of this paper is organized as follows. Section II
represents the related works including extended LBP and CLM.
Section I1I describes the proposed salM*LBP—CLM approach in
details. Section I'V evaluates the proposed approach against var-
ious state-of-the-art classification methods on three challenging
image scene datasets. Finally, Section V concludes the paper.

II. RELATED WORK

A. Extended Local Binary Patterns

LBPs are an effective measure of spatial structure informa-
tion of local image texture. Given a center pixel and its gray
value z o. Its neighboring pixels are equally spaced on a cir-
cle of radius r with the center at location z( . Suppose the
coordinates of the central pixel (CI) are (0, 0) and p neigh-
bors {x, , }/_} are considered. Let a = 27n/p, for circular
neighborhood, the coordinates of ;. ,, are [—7 sin(a), r cos(a)].
Then, the LBP is calculated by thresholding the neighbors
{x, , }'_}, with the center pixel zo to generate an p-bit bi-
nary number; for elliptical neighborhood, let the length of the
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minor axis be equal to the radius r of circular neighborhood
and set a certain ratio of elliptical major and minor axis as m,
Xy = mrcos(a+6), Yy = rsin(a + 0), then the x-coordinate
of x, , is —Xosin(f) + Y; cos(#), while its y-coordinate of
xr n equals Xy cos(6) + Yy sin(6), where four different rota-
tional angles 6 € {0°,45°,90°,135°} in each ellipse are used.
Those locations not falling exactly on a pixel are estimated by
interpolation. No matter what the neighbor structure, the re-
sulting LBP for x ¢ in decimal number can be expressed as
follows:

p=l 1,2>0
LBP, , = z:;)s(z —20.0)2", s(z) = 000 (1)

where the difference (x, , — ) of the neighborhoods against
the center pixel characterizes the spatial local structure at cen-
ter location and is robust to illumination changes because the
signs of the differences are utilized. However, the original LBP
ignores the magnitudes of the differences. And the rotation-
invariant “uniform” LBP (called LBng‘f) suggested by Ojala
et al. [13] is defined by

p—1 .
) n_oS@r n —x0,0), ifULBP, ,) <2
o _ | Thosann —ama) FUWBR, ) <2
' p+1, otherwise
where
U(LBP, ,)

p—1
= | Z S(xr.’n, - x0,0) - S(xr, mod (n+1,p) — $0,0)| (3)
n=0

where the superscript riu2 denotes the rotation invariant “uni-
form” patterns that have U values at most 2. Therefore, map-
ping from LBP, , to LBP;}’,Q. results in only p + 1 distinct
groups of patterns, leading to a much lower histogram rep-
resentation for the whole image. As the limited abilities of
LBP, , and LBP}"Z, later on, a CLBP [14] is proposed to
use both signs and magnitudes of LBP to extract detailed
local structure and texture information for texture classifica-
tion and claims better performance. More recently, in EM-
SLBP [16], the intensity and difference components are both
exploited to improve scene classification. The intensity-based
descriptors consider the intensity of the CI and those of its
neighbors (NI); while for the difference-based descriptors, the
radial difference (RD) and angular difference (AD) are com-
puted. Specifically, two rotation-invariant-uniform intensity-
based descriptors, CI- LBP;}}‘? (abbreviated as CI-LBP,, ,) and
NI- LBP;}‘? (abbreviated as NI-LBP,, ,.); two rotation-invariant-
uniform difference-based descriptors, RD- LBP;_”,Q, (abbreviated
as RD-LBP,, ;) and AD- LBP;‘“72 (abbreviated as AD-LBP,, ;)
are computed, which are different and complementary types of
descriptors. More details on the formal definitions of the first
three descriptors CI-LBP,, ., NI-LBP,, ,, and RD-LBP,, , can
be found in [16]. Obviously, NI-LBP,, . and LBP}" differ in the
selection of thresholding value and NI-LBP,, ;. tends to be more
discriminative and effective. As for RD-LBP,, ., the objective
is to obtain local RD patterns computed with given integer ra-
dial displacement ¢ (e.g., t = 1), z;, ,, and x,_; ,, according to

the pixel values of pairs of pixels of the same radial direction,
therefore, it is more robust to noise. Similarly, AD-LBP,, , is
defined as

AD-LBP, , =

1 .
Sor—08(@ = ea (nit.p))s T U(LBP, ;) <2

p+1, otherwise

1, x>¢
s(z) = { (4)
0, z<e¢
where the AD is computed with given angular displacement
t(27/p), where 1 is an integer such that 1 < ¢ < p/2, z, ,,, and
Ty mod(ntt,p) according to the pixel values of pairs of pixels
of t equally spaced pixels on a circular radius r, and function
mod(x, y) is the modulus x of y. € is a threshold value and 1%
of the pixel value range.

As stated, the intensity-based features and the difference-
based ones are complementary and have powerful discrimina-
tion for satellite/aerial scene classification. Let LBP, , . be
any of the four local feature descriptors aforementioned, and
LBP, , (i, 7) is the extracted LBP pattern of each pixel(i, j),
then feature extractor h, of length K is computed by

N M
he(k) =Y > 6(LBP, . (i,5) — k) ©)
i=1 j=1
where 0 < k < K — 1, K = 2P is the number of LBP codes,
the subscript x represents circular sampling (“c”) or elliptical
sampling (“e”), and §(-) is the Dirac delta function. M and N are
the size of the image.

B. Codebookless Model

The widely used bag-of-features (BoF) methods such as
BoVW and Fisher vector (FV) code an image with a pretrained
codebook, where the learned codebook describes the distribu-
tion of feature space and makes coding of high-dimensional
features possible. However, in the BoVW model, the computa-
tional cost scales as the product of the number of visual words
and may be less effective. For FV model, the number of Gaussian
mixture model (GMM) is often hard to select due to lacking of
general criteria as well as high computational cost of matching
methods. The most appealing one is CLM [42], which exploits
a single Gaussian model to represent image for classification.
More specifically, the CLM consists of a Gaussian model and
the matching method using Gaussian embedding and the log-
Euclidean metric. Due to informative representation with the
compact Gaussian model, this representation contains distinct
and can be a competitive discriminative information alternative
to the BoF methods.

CLM is a direct statistical estimation on sets of dense local
features. We first focus on enhancing local features such as SIFT
with both raw image information and the relative location and
scale of local features within the spatial support of the region,
instead of coding local features using large codebooks. Then, a
single Gaussian model is employed to simply model the dense
local features and further joint low-rank learning with support
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vector machine (SVM) proposed for high-dimensional feature
reduction while respecting the Riemannian geometry structure
of Gaussian models, the resultant local features are compact and
discriminative. Specifically, three main steps are incorporated
in local CLM feature learning. First, dense local features at a
dense grid are extracted by eSIFT, please refer to [41] for details
on the local descriptor enrichment process.

Second, a single Gaussian model together with two-step met-
ric and two-parameter trade-off is utilized to model eSIFT for
discriminative representation. In what follows, we review Gaus-
sian model for image representation in detail. Let X = {z; €
RFX1 i =1,..., D} be the set of D local features extracted on a
dense grid of image. The image can be represented by the fol-
lowing Gaussian model via the maximum likelihood method:

1 Ts—1
N (i, ) = exp(—g(zi —p) T (2 — p) 6)
(2m)" det(%)

where ¥ = 1 ZZDZI (2 — p) (i — )" = < ZZD:1 x; are
covariance and mean vector matrix, respectively, and det(-)
denotes matrix determinant. Therefore, N'(, ) is a Gaussian
model estimated on a set of local descriptors extracted from
input image. Unlike GMMs used in FV, Gaussian models are
more efficient to fit the data and informative as well. To fit
the data, a two-step metric between Gaussian components is
exploited to compute the ground distance. The first step is to
embed Gaussian manifold into the space of symmetric positive
definite (SPD) matrices. Formally, A/(u, X) is first mapped to
an affine matrix A through a continuous function 7, that is,

P u .
of 1 @)

T NpX)— A=

in the affine group, A} = {(u,P)|u € R**1 P € R"* det
(P) > 0} is an k-dimensional element and Y. = PP' is the
Cholesky factorization of . A is mapped to an SPD matrix
S through the successive function v: A — S = AAT. Conse-
quently, AV (u, X) is uniquely designed as a (k + 1) x (k+1)
SPD matrix, namely,

N(p, %) ~S = ®)

S+ pup’ p
ptoo1
where S is an embedding matrix and the space of (k+ 1)
x (k4 1) SPD matrices S}, | is a Lie group that forms a Rie-
mannian manifold. Then map SZ + 1 into its corresponding Lie
algebra Sy, 1, the vector space of (k+ 1) x (k+ 1) symmet-
ric matrices, a linear space by using the Log-Euclidean metric.
Moreover, on one hand, as observed in [42], mean vector and
covariance matrix in the embedding matrix may have different
effects, meanwhile, their dimensions and order of magnitude of
each dimension may vary. Thus, a parameter 5 (5 > 0) is in-
troduced to balance the effect between mean and covariance of
Gaussian in (8); on the other hand, with consideration of the ob-
servations that the maximum likelihood estimator of covariance
is susceptible to noise interference and ought to be improv-
able by eigenvalue shrinkage [43], hence another parameter p
is introduced in the normalization of covariance matrix, where

eigenvalues power normalization (EPN) is applied to estimate
covariance matrices. Therefore, (7) and (8) can be rewritten,
respectively, as

7 (8): N ) - A = | ¥ ©)

X+ FPup’ fu
put 1

It is proved that the embedding matrix S(3, p) is still positive

definite as X7 being an SPD matrix. Note that EPN is charac-

terized for robust estimation of covariance matrices in Gaussian

setting for the case of high-dimensional features and compari-

son of Gaussians in Gaussian embedding and the Log-Euclidean

metric. The matrix S(/3, p) can be further embedded into a linear
space by matrix logarithm:

G(B, p) = 1og(S(3, p)). (1)

So an SPD matrix S is one-to-one mapped to a symmetric
matrices G (for simplicity, omitting the parameters 3, p) which
lies in a linear space, and the geodesic distance between two
Gaussian models N; = N (p;, 3;) and N; = N(p;, 3;) is

12)

N(u, %) ~S(B,p) = (10)

disty; v, = [|Gi — Gjl|F

where F is the Frobenius norm and distance (12) is known as
decoupled so that G; and G; can be computed separately and
adopted in a linear classifier.

Finally, joint low-rank learning with SVM strategy is per-
formed to reduce high dimensional (> 10*) local eSIFT fea-
tures in this model in order to achieve compact CLM. By intro-
ducing a low-rank transformation matrix L € R r << k2,
d = (k+1) x (k4 2)/2, the geodesic distance (12) can be
modified as

disty; v, = |[LT(f; — £;)||2, st. LTL =1 (13)

where f; and f; are the unfolding vectors of two Gaussian mod-
els AV; and N, respectively. Motivated by joint optimization
of dimensionality reduction with classifier, here the low-rank
learning is jointly optimized with a linear SVM in an SPM
framework. Readers can refer to [42] for more details. As a
result, the reduced local features ought to be more informative
while reducing computational cost for classification hereafter.
Note that CLM differs in the way other ad-hoc local feature
methods are handled and is discriminative.

Some other feature representation methods for scene clas-
sification can be found in [3], [4], [7], [15]-[17], [20], [21],
[25], [27], [28], [31], [33], [42], and [44], whereas our work is
most related to [42] and [44]. In [42], Wang et al. evaluated the
CLM features with various local descriptors in image databases,
showing impressive classification performance, whereas we fuse
CLM with global descriptor for scene classification. In [44], lo-
cal and global features are employed and fused based on minimal
residuals for classification; however, sparse representation may
be unstable to some extent. With respect to deep learning based
methods, in Castelluccio ef al. [31] and Hu et al. [33] employed
direct pretrained CNNs or fine-tuned pretrained CNNss for scene
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classification and state-of-the-art results were reported. In con-
trast to non-CNNs, CNNs have to tune so many parameters of
all layers at the same time which is often time-consuming.

III. PROPOSED FEATURE REPRESENTATION FRAMEWORK

Driven by the success of extended LBP and codeless model
(CLM) in computer vision communities, we propose an effective
and efficient image presentation approach for high-resolution
image scene classification, that is, the fusion of salM*LBP and
CLM. The salM3LBP is used as global feature descriptor, while
patch-based eSIFT as local feature descriptor and modeled by
CLM. Then the salM’LBP and CLM (eSIFT) are fused as scene
descriptor for classification, represented as salM*LBP-CLM.
Here, we describe our scene classification framework. The over-
all framework of the proposed salM’LBP—-CLM is shown in
Fig. 1. As depicted in Fig. 1, the method consists of four parts.

1) First, converting the images from RGB color space to
YCbCr color space to obtain a grayscale image using the
Y component and multiple down-sampled scales of the
original image are obtained. Meanwhile, a saliency-based
patch sampling is proposed to enhance our salM’LBP
when images are heavily cluttered. Note that saliency de-
tection is just for some classes in the cluttered scenes.

2) Each scale image of the dataset is fed to extract global
features, where multiple resolution and two types of
structure (circular/elliptical sampling) are applied via
the proposed CI-LBP,, ,, NI-LBP, ., RD-LBP, ., and
AD-LBP, , descriptors. Note that the extracted mi-
cro/macrostructure features (salM>LBP) are rotation in-
variant in circular sampling and rotation invariance of
those from elliptical sampling can be derived by averag-
ing the histograms over different rotational angles.

3) Then, dense local features are extracted by local eSIFT
and further modeled by CLM in Gaussian setting and
joint low-rank learning with SVM manner. Moreover, the
reduced local features CLM and above global features
(salM®LBP) are fused to generate global image represen-
tation, and output the distribution of these features as the
scene descriptor.

4) Finally, kernel-based extreme learning machine (KELM)
[45] is adopted for scene classification and label as-
signment. Moreover, accuracy evaluation is extensively
conducted.

A. Saliency Detection

We first present a simple yet effective saliency patch sam-
pling method based on unsupervised saliency detection [46].
This method focuses attention on the image regions that
are most informative and dominate the image category, to
represent the scene information in the image and can detect
the visual saliency patches in the global and local perspectives.
That is, this method unifies global and local saliencies by mea-
suring the dissimilarities among image patches according to
the “repetition suppression principle” in the area of brain cog-
nition. Specifically, our saliency detection method consists of
two steps: novel items search and partial background removal.
In the first step we localize in novel items in cluttered scenes

and then determine the bounding box surrounding the novel
items (foreground). Next, we adaptively expand bounding box
to accommodate some background regions based on size and
intensity variance of the area inside the bounding box. Specif-
ically, we first choose the pixels with consistency score higher
than object threshold in the salient map as salient region and fit
a bounding box in the salient region, then heuristically expand it
with a centered larger size of width and height such as [1.2 1.5]
until image boundary and smaller intensity variance ratio such
as 0.8, which is a subimage with less clutter and helps to guide
the sampling. That is to say, some nonsalient regions according
to the scenes are sampled at the same time, for on one hand, not
all scene images satisfy the assumption that the salient regions
usually correspond to the scene; on the other hand, neighboring
regions of object can serve as the context and may be helpful for
classification. Then, the area outside bounding-box is removed
for classification. The purpose here is to remove the interference
of background for local and global feature extraction. Based on
aforementioned observations, we define novel items as coming
from those regions that hold dissimilarities with both global and
local properties, and saliency of a patch /; is computed by

N
sal(I;) = Z Z HWy k) - orr, f € {color, texture}
f k=1
(14)

W= w3 fwerel Ny

where H (-) means the histogram of visual words and ¢y a
weighed factor for each visual word. w§®, w{™" denote the
kth color and texture words, respectively. N/ is the number of
the quantized words in the image. We compute the saliency re-
gions of some cluttered scenes in the considered dataset. Fig. 2
shows the saliency detection results for different LULC classes
in the 21-class, 19-class, and 30-class scenes. In this paper,
we first adopt saliency detection to the three scene datasets
(21-class, 19-class, and 30-class) with some heavy background
clutters, for instance, residential, tenniscourt, bridge, river, play-
ground, and stadium, as they are simultaneous visually domi-
nating objects in the scenes, these classes benefit most from the
proposed saliency sampling. It should be noted that we do not
perform saliency detection on images with less background clut-
ter and image scene where both foreground and background are
valuable for scene representation. For example, most of natural
scene types are easy to be distinguished, thus these types are
saliency-free, whereas for those man-made scene types such as
residential, footballField, and storagetanks, saliency detection
can be done before feature extraction. Furthermore, we also
use multiscale saliency to measure the saliency of a patch in a
multiscale image. The proposed saliency detection is also ap-
plied in the subfeatures.

15)

B. Global and Local Feature Extraction

For global feature extraction, the proposed salM’LBP ap-
proach is applied to the scene (or saliency-based scene) to
extract extended LBP feature histogram according to a set of
parameters such as sampling point p, radius r, the ratio of
elliptical major and minor axis m, rotational angle 6, etc. In
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Fig. 2. Saliency detection results for three different scene images. From top
to bottom, the first two lines: 21-class, the middle two lines: 19-class and the
last two lines: 30-class.

order to incorporate more information for image description,
the multiresolution and multistructure sampling is enforced to
the global descriptor. Specifically, two types of LBP sampling
(circular and elliptical structures) with multiple radii and fixed
sampling points are considered to extract complementary fea-
tures. Formally, for an image patch, three-coupled global de-
scriptors (i.e., circular/elliptical NI-LBP, circular/elliptical RD-
LBP, and circular/elliptical AD-LBP) can be employed to ex-
tract global features and result in multiple feature vectors that
can capture texture, structure information, and spatial patterns
such as flat area, spot, corner, edge. Meanwhile, multiple scales
are also considered in salM>LBP; thus, we alter image scales in
different levels to capture both microstructure and macrostruc-
ture properties. More precisely, multiple scale (/), multiple radii

resolution (r), and multiple structure (f) are used in global fea-
ture extraction process, then the global preliminary features with
size of ¢ X [ X r X t(cis a constant) are generated. Note that the
extracted features from circular sampling are isotropic and rota-
tion invariant; however, those extracted from elliptical sampling
are anisotropic and should be averaged over different rotational
angles to derive rotation invariance. The reason is that average
anisotropic histogram is insensitive to local image fluctuation
such as rotation and its use as statistical feature of each image
is globally invariant to these changes. It is mentionable that,
as observed in [47], the proportions of the uniform patterns of
AD-LBP are too small to provide a reliable and meaningful
description of texture. Consequently, we mainly focus on other
global descriptors instead of AD-LBP. The global features are
directly stacked as a final feature vector.

For local feature extraction, we use local eSIFT descriptor
to obtain high-dimensional local features from the scene (or
saliency-based scene) aforementioned, followed by CLM to pro-
duce reduced local feature vector. Specifically, Given an image
I, B blocks in SPM framework, D dense local eSIFT features
can be extracted, which is fed to CLM to fit a single Gaussian
model that will be embedded into a vector space, then its SPM
representation is obtained such that a joint low-rank learning
with SVM is allowed to perform, as a result, a set of reduced
discriminative local features are achieved, shown in Fig. 3.

As illustrated in Fig. 3, local CLM (eSIFT) feature is dis-
criminatively represented by matrix multiplication between a
learned Gaussian model and a low-rank transformation matrix.
Compared with histogram and covariance, Gaussian model is
more informative and fitting of Gaussian models does not bring
high computational cost, unlike GMMs used in FV.

C. Classification by Fusing Features From Two Scenarios

As described above, the proposed scenario (I): salM*LBP fea-
tures are obtained globally (in the whole image) and scenario
(II): CLM (eSIFT) features, for notational simplicity, called
CLM, are achieved locally (extracted from overlapping local
image patches). Each type of features (i.e., global salM>LBP and
local CLM) reflects various properties and has its own meanings
such as LBP feature reveals the local image texture (e.g., edges,
corners, shapes, etc.), and CLM feature captures variations, re-
lations, etc. Based on the above-mentioned characteristics, we
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propose to fuse two scenarios, i.e., the global and local fea-
tures together, to characterize both global structures of scenes
and local fine details for scene classification. Cross-validation
strategy is employed for tuning the optimal parameter (i.e., 1)
using training data. In the proposed global-local fusion strategy,
each test image y is generated two types of features, i.e., Fgu
and Fy, representing global and local features, respectively, and
feature-level fusion is formulated as

F; (y) = nFc (y) + (1 —n)Fz (y)

where the feature Fy is a final feature representation of test
image y. Class label assignment on the test image is conducted
using standard distance metrics such as KELM. As illustrated
in Fig. 1, our fused scene descriptor promises a substantial
performance enhancement compared to individual decisions.

(16)

1V. EXPERIMENTS

Three challenging remote sensing scene datasets are utilized
for extensive evaluations of the proposed approach in the exper-
iments: 21-class land-use scene, 19-class satellite scene, and 30-
class aerial scene. In the experiments, the KELM is adopted for
classification. The classification performance of the proposed
method is compared with the state-of-the-arts in the literature.

A. Image Data and Experimental Setup

The first dataset is the well-known UC-Merced land-use
dataset consisting of 21 land-use classes and each class contains
100 images of size 256 x 256 pixels with spatial resolution of
30 cm (1 foot). It is up to now the first public land-use scene
image dataset with ground truth, which is manually extracted
from aerial orthoimagery downloaded from the United States
Geological Survey (USGS) National Map. This is a challeng-
ing dataset due to a variety of spatial patterns and some highly
overlapped classes, e.g., dense residential, medium residential,
and sparse residential that mainly differ in the density of struc-
tures, which make the dataset difficult for classification. This
benchmark dataset has a large geographical scale. For more in-
formation, see [1] and visit http://vision.ucmerced.edu/datasets.

The second dataset used in our experiments is composed
of a 19-class satellite scene dataset. It consists of 19 classes
of high-resolution satellite scenes. Each class has 50 images,

Modeling

dimension reduction Learned feature set

TABLE I
SCENE CLASSES AND THE NUMBER OF IMAGES PER CLASS IN
30-CLASS AERIAL SCENE DATASET

Name #images Name #images Name #images
Airport 360 farmland 370 port 380
bare land 310 forest 250 railway station 260
baseball field 220 industrial 390 resort 290
Beach 400 meadow 280 river 410
bridge 360 medium residential 290 school 300
center 260 mountain 340 sparse residential 300
church 240 park 350 square 330
commercial 350 parking 390 stadium 290
dense residential 410 playground 370 storage tanks 360
desert 300 pond 420 viaduct 420

with sizes of 600 x 600 pixels. This data set is a challeng-
ing one because all these scenes are extracted from very large
satellite images on Google Earth, where the illumination, ap-
pearances of objects, and their locations vary significantly, with
frequent occlusions. For more information, see [18] and visit
http://dsp.whu.edu.cn/cn/staff/yw/HRSscene.html.

The third dataset is made up of 30 aerial scene types and all
the images are collected from the Google Earth. The number of
different aerial scene types varies a lot, see Table I, from 220
up to 420, and a total number of 10 000 images. As far the 30-
class scene is the largest annotated aerial image datasets which
is available online from http://www.Imars.whu.edu.cn/xia/AID-
project.html. Since the images in this scene are from different
remote imaging sensors and extracted at different time and sea-
sons under different imaging conditions, which increases the
intraclass diversities of the dataset as well as low interclass dis-
similarity, thus this brings more challenges for scene classifica-
tion than the single source images. Different from two previous
image scenes, the 30-class has multiresolutions ranging from
about 8 m to about half a meter, and thus the size of each aerial
image is fixed to be 600 x 600 pixels to cover a scene with
various resolutions.

Note that the original images in these three datasets are color
images; the images are converted from the RGB color space to
the YCbCr color space, and the Y component (luminance) is
used for scene classification.

The parameter settings in our experiments are given as
follows.
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For training set generation, we adopt two different settings
for each tested dataset in the supervised classification pro-
cess. For 21-class dataset, the ratios are set to be 50% and
80%. For 19-class dataset, the ratios are fixed at 40% and
60%, while for 30-class dataset, we fix the ratio of the
number of training set to be 20% and 50%, and the left for
testing. We randomly split the datasets into training sets
and testing sets for evaluation.

For features inclusion and transformation, different local
feature descriptors (i.e., global salM>LBP and local CLM)
are employed to exploit the discriminative feature infor-
mation and fuse for scene classification. Specifically, in
global LBP feature extraction, for multiresolution analy-
sis, the sampling points are empirically fixed as p = 16
for all three scene datasets, and 8 radii (i.e., r = [1 : 8])
are used for the salM>LBP; for multiscale analysis, three
scales of down-sampled images including {1, 1/2, 1/3}
with 1 being the original image are considered. Mean-
while, both circular and elliptical structures are exploited
for extended LBP sampling, while for elliptical sampling,
the LBP histograms from four different rotational angles
6 € {0°,45°,90°, 135°} in each ellipse are extracted, then
averaged and stacked with isotropic (circular-sampling)
features as an LBP feature vector. All this results in a rel-
atively small feature sizeof 2 x 2 x 3 x 8 x 18(1728)
global features. As for local CLM feature extraction, dense
local descriptor eSIFT using a single patch size is em-
ployed to generate high-dimensional local features that
further can be reduced by joint low-ranking learning with
linear SVM. Consequently, a final feature representation
via fusing global salM*LBP and local CLM is achieved.
The local patch size of 32, 32, and 64 on a dense grid of
step size 2 is utilized for 21-class, 19-class, and 30-class
scenes, respectively, and typically found that achieves the
respective best classification performances.

For classification, we report the overall accuracy (OA),
kappa statistic (x), standard deviation (SD), confusion
matrix, and computational time (in seconds). OA is de-
fined as the number of correctly predicted images divided
by the total number of predicted images. It is an effec-
tive measure to reveal the classification performance on
the whole dataset. Confusion matrix is a specific table
layout that allows direct visualization of the performance
on each class. Each column of the matrix represents the
instances in a predicted class, and each row represents the
instances in an actual class. To compute the OA and «, ten
individual runs are conducted and the average results are
reported as the means and SDs of OA and x. To compute
the confusion matrix, we fix the training set by choos-
ing the same images for fair comparison on each datasets
and the ratio of the number of training set of the 21-class
dataset, the 19-class dataset, and 30-class dataset to be
50%, 40%, and 20%, respectively, whereas for plotted
classification performance, 80%, 60%, and 50% are used,
respectively.

For performance comparison, some strongly related low-
level feature methods including BoVW, SPM, multiscale

TABLE 11
OVERALL ACCURACY (%) AND STANDARD DEVIATION FOR THE DIFFERENT
METHODS WITH DIFFERENT TRAINING RATIOS ON THE
21-CLASS LAND-USE DATASET

Methods 80% labeled samples 50% labeled samples
per class per class

Proposed salM>LBP-CLM 95.75 + 0.80 94.21 + 0.75

Proposed salM>LBP 93.14 4 1.00 89.97 +0.85

Proposed MLBP 90.95 + 1.03 87.49 £ 1.41

salCLM (eSIFT) 94.52+ 0.79 92.93 + 0.92

CLM (eSIFT) 93.62 + 0.85 91.88 + 1.06

Combing Scenarios I and IT [33] 98.49

Fine-tuning GoogleNet [31] 97.10

CaffeNet [49] 95.02 + 0.81 93.98 + 0.67

GoogLeNet [49] 94.31 + 0.89 92.70 + 0.60

VGG-VD-16 [49] 95.21 + 1.20 94.14 + 0.69

OverFeat [28] 9091 + 1.19

MS-CLBP+FV [48] 93.00 + 1.20 88.76 + 0.79

Gradient boosting random CNNs [27] 94.53

Partlets-based [22] 91.33 £ 1.11

Multifeature concatenation [50] 92.38 4+ 0.62

Pyramid of spatial relations [51] 89.10

Saliency-guided feature learning [25] 8272 £ 1.18

Unsupervised feature learning [3] 81.67 £1.23

BoVW [31] 76.81

completed LBP with FV representation (MS-CLBP+FV)
[48], multifeature concatenation and deep CNNs [31],
[33], [49] have been implemented. The reader is referred
to those papers for additional details. As the basic classi-
fier, KELM is adopted for classification due to its general
superiority and low computational cost.

5) For implementation details, to make the comparisons as
meaningful as possible, we use the same experimental
settings in [1], [18], [31], [33], and [49] for 21-class,
19-class, 30-class and all results are originally reported.
It should be noted that each sample is normalized to be
zero mean, unit SD, and all the results are reported over
ten random partitions of the training and testing sets. All
the implementations were carried out using MATLAB
R2016a in a desktop PC equipped with an Intel Core i7
CPU (3.4 GHz) and 32 GB of RAM.

B. Classification of 21-Class Land-Use Scene

We perform a comparative evaluation of the proposed
salM?*LBP-CLM approach against several state-of-the-art scene
classification methods mentioned above on 21-class land-use
scene, as shown in Table II. As can be seen from Table II, our
method consistently outperforms almost all other scene clas-
sification approaches except for two recent CNNs [31], [33]
based on the average accuracies and SD obtained by ten trials
of random partition of this dataset, with an increase in OA of
0.54%, 0.07% over the second best method, VGG-VD-16, using
80%, 50% labeled samples per class as training ratio on 21-class
test set, respectively. This is due to the fact that proposed global
salM>LBP feature and local CLM are complementary and fused
together to contributing to better performance. Moreover, local
CLM features are modeled by a single Gaussian model while
preserve the geometry structure of Gaussian models. To our best
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Fig. 5. Classification performance on 21-class land-use scene.

knowledge, this classification result is remarkable on this data
set, which adequately shows the effectiveness and superiority of
the proposed approach for land-use scene classification. Fig. 4
shows the confusion matrix for the proposed salM*LBP-CLM
on 21-class test set. From the confusion matrix, we can observe
the consistent phenomenon that our approach obtains a clean
confusion matrix. Most of scene types on this scene dataset can
achieve the classification accuracy close to or even equal to 1 us-
ing the proposed approach, some of them are natural scene types
and thus easy to be differentiated, for instance, beach, chaparral,
forest, etc. Some difficult classes such as airplane, buildings,
dense residential, medium residential, sparse residential, and
tennis court are all improved by the proposed salM*LBP-CLM.
Meanwhile, relatively high accuracies for some compound ob-
jects with spatial recurrent patterns such as harbor, golf court,
and storage tanks are also achieved. In addition, the subfeatures
of salM>LBP and salCLM (eSIFT) all obtain relatively good ac-
curacies, which validates the effectiveness of our saliency-based
subfeature methods.

Furthermore, we plot the classification performance of
BoVW, MS-CLBP+FV, and the proposed salM’LBP-CLM
corresponding to ten different trials with randomly selected
training samples as shown in Fig. 5. It is apparent that the
proposed salM*LBP—CLM consistently outperforms the subfea-
ture CLM (eSIFT), MS-CLBP+FV, BoVW, which verifies the

TABLE III
OVERALL ACCURACY (%) AND STANDARD DEVIATION FOR THE DIFFERENT
METHODS WITH DIFFERENT TRAINING RATIOS ON THE 19-CLASS
SATELLITE DATASET

Methods 60% labeled

samples per class

40% labeled
samples per class

Proposed salM’LBP-CLM 96.38 + 0.82 95.35 4+ 0.76
Proposed salM>LBP 92.58 4 0.89 89.74 + 1.84
Proposed M?LBP 91.65 + 1.14 85.47 +£0.95
salCLM (eSIFT) 95.92 + 0.95 93.81 +£ 091
CLM (eSIFT) 94.82 +1.03 92.54 +1.02
Combing Scenarios I and I [33] 98.89

CaffeNet [49] 96.24 + 0.56 95.11 + 1.20
GoogLeNet [49] 94.71 +1.33 93.12 +0.82
VGG-VD-16 [49] 96.05 + 0.91 95.44 + 0.60
Multifeature concatenation [51] 94.53 £ 1.01

MS-CLBP+FV [48] 94.32 £ 1.02

MS-CLBP+BoVW [48] 89.29 + 1.30

Bag of SIFT [51] 85.52 + 1.23

SIFT+ LTP-HF+ color 93.6

histogram [7]

advantages of salM*LBP-CLM as compared to its counterparts.
In addition, we observe that MS-CLBP-+FV is much better than
BoVW because FV contains more information than a single
histogram representation in BoVW. We empirically found that
the proposed salM*LBP—-CLM achieves the highest accuracy
at a small weight of 0.1 for global salM*LBP feature and 0.9
for local CLM, which indicates local feature is assigned with
a larger weight, leading to better discrimination. On the other
hand, when compared with CNNss, it can be found that our meth-
ods are comparable to or slightly lower than two recent CNNs
[31], [33], most likely in part due to the CNNs for learning finer
grained discriminative features for classification. However, with
the increasing depth of the network to the multilayer CNNs
architecture, the classification accuracy may oscillate slightly
because the deep network has more parameters to train, and the
limited number of training samples restricted the performance
of the deep network. Thus, the proposed salMLBP-CLM is
very competitive in terms of the classification performance and
speed (see Table V) trade-off.

C. Classification of 19-Class Satellite Scene

In order to further measure the scene classification per-
formance of the proposed approach, we compare the classi-
fication accuracies with several state-of-the-art classification
methods including deep network [33], [48], [49], [51], [7]
in 19-class satellite scene. As in 21-class scene experiments,
our salM*LBP-CLM yields highly comparable accuracies with
OA of 96.38%, 95.35% using 60%, 40% labeled samples per
class, respectively. As can be seen from Table III, the proposed
salMLBP-CLM is consistently better than almost all the others;
however, the supremacy of the salM*LBP-CLM is challenged
by [33] who have demonstrated that using the combined CNNs
in two scenarios can produce better classification performance,
this is because deep CNN features are more discriminative;
however, the CNN feature learning is computationally expen-
sive. Moreover, there is an exception that our salM’LBP-CLM
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Fig. 7. Classification performance on 19-class satellite scene.

is slightly lower (0.09%) than the best method VGG-VD-16
when 40% training ratio is available. For this case, the pre-
trained CNN may be more effective with limited training data.
In general, the higher the feature level, the better the perfor-
mance, which indicates mid-/high-level feature methods may
be superior to low-level ones. Fig. 6 shows the confusion matrix
for the proposed salM*LBP—CLM. From the confusion matrix
on 19-class satellite scene, we can see that most of classes are
easily distinguished from others that the classification accura-
cies of almost all classes are above 0.92 by our salM* LBP-CLM.
The major confusion occurs between class 9 (i.e., industrial) and
class 17 (i.e., residential), or class 13 (i.e., parking) and class 15
(i.e., port), for their similar structures and spatial patterns. Our
analysis also shows that the subfeatures salM>LBP and salCLM
(eSIFT) can also give relatively good results, as is expected.

Fig. 7 further illustrates the results with ten different trials
with random training samples, where the proposed salM>LBP—
CLM gains the highest accuracy and local feature can present
better than global feature in this satellite scene dataset because
the subfeature CLM still dominates the representation in the
presence of the large scale of satellite images. As a consequence,
a relatively larger weight of 0.15 for global salM3LBP feature
and 0.85 for local CLM is found by cross-validation strategy
using training data. Therefore, our method has improved per-
formance for high-resolution scene classification.

TABLE IV
OVERALL ACCURACY (%) AND STANDARD DEVIATION FOR THE DIFFERENT
METHODS WITH DIFFERENT TRAINING RATIOS ON THE
30-CLASS AERIAL DATASET

Methods 50% labeled samples 20% labeled samples
per class per class

Proposed salM>LBP-CLM 89.76 + 0.45 86.92 + 0.35
Proposed salM>LBP 87.59 +0.38 82.31 £0.19
Proposed M?LBP 84.80 & 0.56 80.69 £+ 0.33
salCLM (eSIFT) 88.41 + 0.63 85.58 £ 0.83
CLM (eSIFT) 87.33 £ 0.68 84.21 £ 0.89
CaffeNet [49] 89.53 +0.31 86.86 £ 0.47
GoogLeNet [49] 86.39 + 0.55 83.44 £ 0.40
VGG-VD-16 [49] 89.64 + 0.36 86.59 +0.29
MS-CLBP+FV 86.48 £ 0.27

BoVW 78.66 + 0.52
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D. Classification of 30-Class Aerial Scene

The proposed approach is also carried out on 30-class aerial
scene with different resolutions, high intraclass diversity, and
low interclass dissimilarity. The classification results of the pro-
posed methods and baseline algorithms for 30-class aerial scene
with different training ratios are summarized in Table IV. We
observe that the salM*LBP—CLM is superior to the others by
a medium margin and consistently achieves improvements be-
yond the state-of-the-art (e.g., CNN-based methods) with rel-
atively large amount of training data. This result is possibly
explained by the fact that the salM’LBP—CLM has the ability
to learn discriminative features. Specifically, our salM*LBP-
CLM gains a slightly better margin of OA improvements with
0.12%, 0.06% over the second best algorithm, VGG-VD-16
and CaffeNet using 50% and 20% training ratios, respectively.
This holds for interpreting the consistency of the proposed
salM*LBP-CLM. Although our approach performs better than
the others, the proposed method needs more informative fea-
tures to further enhance the representation power. Fig. 8 shows
the confusion matrix for the proposed salM*LBP-CLM on 30-
class test set. As in the previous confusion matrices, we can
see that most scene types can achieve the classification accu-
racy more than 0.9 by the proposed method, some of them are
natural scene types and thus easy to be partitioned, even the
accuracies of these classes such as dense residential, medium
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Fig. 9. Classification performance on 30-class aerial scene.

residential, sparse residential are increased to some extent. The
most difficult scene types are almost newly added types, for
instance, school (0.54), resort (0.57), square (0.63), and center
(0.73). It is interesting from Fig. 8 that two of above four classes
are improved by our method except for class resort (0.6) and
square (0.63) compared with the accuracies of the same classes
from the confusion matrix of [49], which demonstrates that the
proposed salM*LBP-CLM is effective. The obvious confusion
is between resort and park, dense residential and school, which
have the similar appearances and may contain the same im-
age clutter such as green belts and buildings, respectively, and
thus are easily confused. Experimental results with ten trails
with random training samples are illustrated in Fig. 9. It is
apparent that the proposed salM’LBP-CLM outperforms the
subfeature CLM (eSIFT), MS-CLBP+FV, and BoVW. From
the results, it is reasonable that local CLM feature than global
salM’LBP feature does much more contributions to the clas-
sification because of local details in this aerial scene, hence a
smaller weight of 0.1 in global salM*LBP feature and 0.9 in
CLM is achieved, which results in the best accuracy accord-
ing to the cross-validation searching. Visualization of confusion
matrix with different classes on 30-class test set is shown in
Fig. 9. Based on a visual inspection, almost all of the class-
specific accuracies for our proposed method are improved, and
hold for interpreting the consistency of salM>LBP-CLM. All
the results show that our method is very powerful for aerial
scene classification.

Although different features give different performance on dif-
ferent scene datasets, on one hand, which can be explained by the
characteristics of the dataset; on the other hand, we can observe
the consistent improvements by the proposed salM*LBP-CLM
method on three considered scene datasets that indicates the
proposed salM*LBP-CLM is very effective for high-resolution
scene classification. Furthermore, the results on three challeng-
ing image scene datasets demonstrate our salM*LBP-CLM also
can handle images with complex surroundings, such as heavy
background clutters and occlusion.

E. Computational Complexity Analysis

The computation time of the proposed approach is listed in
Table V, which is simple to implement (using a PC with Intel

TABLE V
COMPUTATION TIME (IN SECONDS) OF THE PROPOSED METHOD FOR ALL THE
EXPERIMENTAL DATA

Methods 21-class land-use  19-class satellite ~ 30-class aerial
Proposed salM’LBP-CLM 1650.5 7740.6 60062.8
CLM (eSIFT) 1302.1 5423.5 52016.4
MS-CLBP+FV 1871.4 8619.3 70101.5
BoVW 1172.2 5020.4 40033.6

Core i7, 32GB RAM, Windows 10, and MATLAB R2016a).
For example, for the global feature extraction, the salM*LBP
needs about 0.35 s for images not large than 300 x 300 pix-
els and 3 s for an image of size 600 x 600 to build the fea-
ture histogram, whereas the local feature extracting time needs
about 0.15 s for images not large than 300 x 300 pixels and
almost 2.6 s per image with 600 x 600 pixels. It is noticed that
global feature extraction has more complexity than local feature
extraction because of a single patch size and single Gaussian
modeling used in CLM, while the global features computing in
multiple sampling modalities (multiscale, multiresolution, and
multistructure) and stacking. According to our experiments, the
proposed salM°’LBP—-CLM needs to compute both global and
local features, resulting in higher time complexity. Furthermore,
the proposed salM°>LBP—CLM is feasible to achieve faster com-
putation by graphical processing unit; in doing so, computing
complexity will have little side-effect. Therefore, the proposed
approach is effective and efficient for high-resolution scene
classification.

F. Discussion

The design of proper scene classification framework for effec-
tively understanding the semantic content of image scenes is the
first important issue we are facing due to the drastically increas-
ing number of satellite and aerial images, the high intraclass
diversity, and low interclass variations in complex scene. The
proposed salM*LBP-CLM exploits global salM*LBP and local
CLM, then fused as a final representation by cross-validation
searching. An important observation is that CLM is a little sen-
sitive to local descriptors; however, CLM is more effective than
FV and BoVW. Meanwhile, the global salM*LBP is proposed
as complementary to CLM, which leads to substantial improve-
ments in performance while does not increase additional com-
putation time during the testing.

Overall, by comparing the classification performances of
Sections IV-B~IV-D, it is clear that the proposed salM>LBP-
CLM approach is comparable or superior to the competitors in
terms of classification accuracy, this is expected. The improve-
ments mainly come from the discriminative image representa-
tion where the global salM?LBP and local CLM are fused as
scene descriptor, which confirms our former statement. It is in-
teresting to note that for some difficult classes, such as sparse
residential, medium residential, dense residential, and tennis
courtin 21-class land-use scene; industrial, residential, and park-
ing in 19-class satellite scene; sparse residential, medium resi-
dential, and dense residential in 30-class aerial scene, no longer
belong to the difficult ones. The proposed salM’LBP-CLM
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method is compared with the state-of-the-art such as CNN-based
methods and exhibits very good generalization performance
with an OA of above 90% or of 100% increase, which well
validates our observation that salM*LBP-CLM can improve the
performance of the learnt model for difficult classes in the high-
resolution image scenes. Nevertheless, as mentioned above, the
proposed salM*LBP-CLM is being challenged and even outper-
formed by recent deep CNNs. The superiority and challenge in
deep learning is twofold: first, deep CNN features are learned in
deep learning architectures and more powerful representations
of images with multiple levels of abstraction, which leads to dra-
matic performance improvements for scene classification; sec-
ond, it is difficult to train a deep CNN with limited training data,
which typically contains millions of parameters for classifica-
tion task. In total, our saIM>LBP—CLM achieves a good trade-off
between classification accuracy and computational efficiency.

V. CONCLUSION

In this paper, we propose an effective global/local feature
extraction and fused representation method for high-resolution
scene classification. The proposed method combines global fea-
ture based on salM’LBP and local feature based on recent
CLM to generate a fused representation (salM>*LBP-CLM) via
cross-validation strategy. The proposed salM*LBP-CLM can
well explore the complementary attributes of structure and tex-
ture information in image scenes globally and locally, leading
to substantially enhanced feature discrimination. The experi-
mental results on three challenging scene datasets including
the public largest 30-class image scene demonstrated that the
proposed approach has achieved better or comparable perfor-
mance as compared to the state-of-the-art methods. In future
work, we will investigate hierarchical CNN features for high-
resolution scene classification.
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