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Abstract This paper presents a human action recognition

method by using depth motion maps (DMMs). Each depth

frame in a depth video sequence is projected onto three

orthogonal Cartesian planes. Under each projection view,

the absolute difference between two consecutive projected

maps is accumulated through an entire depth video sequence

forming a DMM. An l2-regularized collaborative represen-

tation classifier with a distance-weighted Tikhonov matrix is

then employed for action recognition. The developed

method is shown to be computationally efficient allowing it

to run in real-time. The recognition results applied to the

Microsoft Research Action3D dataset indicate superior

performance of our method over the existing methods.

Keywords Human action recognition � Depth

motion map � RGBD camera � Collaborative

representation classifier

1 Introduction

Human action recognition is an active research area in

computer vision. Earlier attempts at action recognition

have involved using video sequences captured by video

cameras. Spatio-temporal features are widely used for

recognizing human actions, e.g. [1–6]. As imaging tech-

nology advances, it has become possible to capture depth

information in real-time. Compared with conventional

images, depth maps are insensitive to changes in lighting

conditions and can provide 3D information toward distin-

guishing actions that are difficult to characterize using

conventional images. Figure 1 shows two examples con-

sisting of nine depth maps of the action Golf swing and the

action Forward kick. Since the release of low cost depth

sensors, in particular Microsoft Kinect and ASUS Xtion,

many research works have been carried out on human

action recognition using depth imagery, e.g. [7–13]. As

noted in [14], 3D joint positions of a person’s skeleton

estimated from depth images provide additional informa-

tion to achieve action recognition.

In this paper, the problem of human action recognition

from depth map sequences is examined from the perspective

of computational efficiency. These images are captured by an

RGBD camera. Specifically, the depth motion maps (DMMs)

generated by accumulating motion energy of projected depth

maps in three projective views (front view, side view, and top

view) are used as feature descriptors. Compared with 3D

depth maps, DMMs are 2D images that provide an encoding

of motion characteristics of an action. Motivated by the suc-

cess of sparse representation in face recognition [15–18] and

image classification [18, 19], an l2-regularized collaborative

representation classifier is utilized which seeks a match of an

unknown sample via a linear combination of training samples

from all the classes. The class label is then derived according

to the class which best approximates the unknown sample.

Basically, our introduced method involves a spatio-temporal

motion representation based on DMMs followed by an l2-

regularized collaborative representation classifier with a dis-

tance-weighted Tikhonov matrix to perform computationally

efficient action recognition.

The rest of the paper is organized as follows. In Sect. 2,

related works are presented. In Sect. 3, the details of

generating DMMs feature descriptors are stated. In Sect. 4,

the sparse representation classifier (SRC) is first introduced

and then the l2-regularized collaborative representation

classifier is described for performing action recognition.
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The experimental results are reported in Sect. 5. Finally, in

Sect. 6, concluding remarks are stated.

2 Related works

Space–time based methods such as space–time volumes,

spatio-temporal features, and trajectories have been widely

utilized for human action recognition from video sequences

captured by traditional RGB cameras. In [1], spatio-temporal

interest points coupled with an SVM classifier was used to

achieve human action recognition. Cuboid descriptors were

employed in [2] for action representation. In [3], SIFT-feature

trajectories modeled in a hierarchy of three abstraction levels

were used to recognize actions in video sequences. Various

local motion features were gathered as spatio-temporal bag-of-

features (BoF) in [4] to perform action classification. Motion-

energy images (MEI) and motion-history images (MHI) were

introduced in [5] as motion templates to model spatial and

temporal characteristics of human actions in videos. In [6], a

hierarchical extension for computing dense motion flow from

MHI was presented. A major shortcoming associated with

using these intensity-based or color-based methods is the

sensitivity of recognition to illumination variations, limiting

the recognition robustness.

With the release of RGBD sensors, research into action

recognition based on depth information has grown. Skele-

ton-based approaches utilize locations of skeletal joints

extracted from depth images. In [7], a view invariant

posture representation was devised using histograms of 3D

joint locations (HOJ3D) within a modified spherical coor-

dinate system. HOJ3D were re-projected using LDA and

clustered into k posture visual words. The temporal evo-

lutions of these visual words were modeled by a discrete

hidden Markov model. In [8], a Naive-Bayes-Nearest-

Neighbor (NBNN) classifier was employed to recognize

human actions based on Eigen Joints (i.e., position differ-

ences of joints) combining static posture, motion, and

offset information. Such skeleton-based approaches have

limitations due to inaccuracies in skeletal estimation.

Moreover, the skeleton information is not always available

in many applications.

There are methods that involve extracting spatio-tem-

poral features from the entire set of points in a depth map

sequence to distinguish different actions. An action graph

was employed in [9] to model the dynamics of actions and

a collection of 3D points were used to characterize pos-

tures. However, the 3D points sampling scheme used

generated a large amount of data leading to a computa-

tionally expensive training step. In [10], a DMM-based

histogram of oriented gradients (HOG) was utilized to

compactly represent the body shape and movement infor-

mation toward distinguishing actions. In [11], random

occupancy pattern (ROP) features were extracted from

depth images using a weighted sampling scheme. A sparse

coding approach was utilized to robustly encode ROP

features for action recognition and the features were shown

to be robust to occlusion. In [12], 4D space–time occu-

pancy patterns were used as features which preserved

spatial and temporal contextual information coping with

intra-class variations. A simple classifier based on the

cosine distance was then used for action recognition.

In [13], a hybrid solution combining skeleton and depth

information was used for action recognition. 3D joint

position and local occupancy patterns were used as fea-

tures. An actionlet ensemble model was then learnt to

represent each action and to capture intra-class variations.

In general, the above references do not elaborate on the

computational complexity aspect of their solutions and do

not provide actual real-time processing times. In contrast to

the existing methods, in this work, both the computational

complexity and the processing times associated with each

component of our method are reported.

3 Depth motion maps as features

A depth map can be used to capture the 3D structure and

shape information. Yang et al. [10] proposed to project

depth frames onto three orthogonal Cartesian planes for the

purpose of characterizing the motion of an action. Due to

its computational simplicity, the same approach in [10] is

adopted in this work while the procedure to obtain DMMs

is modified. More specifically, each 3D depth frame is used

to generate three 2D projected maps corresponding to front,

side, and top views, denoted by mapv where v 2 f ; s; tf g.
For a point ðx; y; zÞ in a depth frame with z denoting the

depth value in a right-handed coordinate system, the pixel

value in three projected maps is indicated by z, x, and y,

Fig. 1 Examples of depth map sequences for a Golf swing action,

and b Forward kick action
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respectively. Different from [10], for each projected map,

the motion energy is calculated here as the absolute dif-

ference between two consecutive maps without threshold-

ing. For a depth video sequence with N frames, DMMv is

obtained by stacking the motion energy across an entire

depth video sequence as follows:

DMMv ¼
Xb

i¼a

mapi
v �mapi�1

v

�� ��; ð1Þ

where i represents the frame index; mapi
v is the projected

map of ith frame under projection view v; a 2 f2; . . .;Ng
and b 2 f2; . . .;Ng denote the starting frame and the end

frame index. It should be noted that not all the frames in a

depth video sequence are used to generate DMMs. This

point is discussed further in the experimental setup section.

A bounding box is then set to extract the non-zero region as

the foreground in each DMM.

Let the foreground extracted DMM be denoted by DMMv

hereafter. Two examples of DMMv generated from the

Tennis serve and Forward kick video sequences are shown in

Fig. 2. DMMs from the three projection views effectively

capture the characteristics of the motion in a distinguishable

way. That is the reason here for using DMMs as feature

descriptors for action recognition. Since DMMv of different

action video sequences may have different sizes, bicubic

interpolation is used to resize all DMMv under the same

projection view to a fixed size in order to reduce the intra-

class variability, for example due to different subject heights.

The size of DMMf is mf � nf , the size of DMMs is ms � ns,

and the size of DMMt is mt � nt. Since pixel values are used

as features, they are normalized between 0 and 1 to avoid

large pixel values dominating the feature set. The resized and

normalized DMM is denoted by DMMv. For an action video

sequence with three DMMs, a feature vector of size

mf � nf þ ms � ns þ mt � nt

� �
� 1 is thus formed to be h ¼

vec DMMf

� �
; vec DMMs

� �
; vec DMMt

� �� �T
by concatenat-

ing the three vectorized DMMs; vecð�Þ indicates the vec-

torization operator and T the matrix transpose. The feature

vector encodes the 4D characteristics of an action video

sequence. Note that the HOG descriptors of the DMMs are

not computed here as done in [10] and image resizing is

applied to DMMs but not to each projected depth map as

done in [10]. As a result, the computational complexity of the

feature extraction process is greatly reduced.

4 l2-regularized collaborative representation classifier

Sparse representation (or sparse coding) has been an active

research area in the machine learning community due to its

success in face recognition [15–18] and image classification

[18, 19]. The central idea of the SRC is to represent a test

sample according to a small number of atoms sparsely

chosen out of an over-complete dictionary formed by all the

available training samples. Consider a dataset with C classes

of training samples arranged column-wise A ¼ A1;½
A2; . . .; AC� 2 R

d�n, where Ajðj ¼ 1; . . .;CÞ is the subset

of the training samples associated with class j, d is the

dimension of training samples and n is the total number of

training samples from all the classes. A test sample g 2 R
d

can be represented as a sparse linear combination of the

training samples, which can be formulated as,

g ¼ Aa; ð2Þ

where a ¼ a1; a2; . . .; aC½ � is an n� 1 vector of coefficients

corresponding to all the training samples and ajðj ¼
1; . . .;CÞ denotes the subset of the coefficients associated

with the training samples from the jth class, i.e. Aj. From a

practical standpoint, one cannot directly solve for a since

(2) is typically under-determined [17]. To reach a solution,

one can solve the following l1 norm minimization problem,

â ¼ arg min
a

g� Aak k2
2þh ak k1

n o
; ð3Þ

where h is a scalar regularization parameter which balances

the influence of the residual and the sparsity term. The

class label of g is then obtained via,

classðgÞ ¼ arg min
j

ej

� �
ð4Þ

where ej ¼ g� Ajâj

		 		
2
. The reader is referred to [15] for

more details.

As described in [20], it is the collaborative representation,

i.e. use of all the training samples as a dictionary, but not the

Fig. 2 DMMv generated from a Tennis serve, and b Forward kick

depth action video sequences
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l1-norm sparsity constraint, that improves the classification

accuracy. The l2-regularized approach generates comparable

results but with significantly lower computational com-

plexity [20, 21]. Therefore, here the l2-regularized approach

is used for action recognition. As mentioned in Sect. 3, each

depth video sequence generates a feature vector

h 2 R
mf�nfþms�nsþmt�nt , therefore the dictionary is A ¼

h1; h2; . . .; hK½ � with K being the total number of available

training samples from all the action classes. Let yq 2
R

mf�nfþms�nsþmt�nt denote the feature vector of an unknown

action sample. Tikhonov regularization [22] is employed

here to calculate the coefficient vector according to,

â ¼ arg min
a

yq � Aa
		 		2

2
þk Lak k2

2

n o
; ð5Þ

where L is the Tikhonov regularization matrix and k is the

regularization parameter. The term L allows the imposition

of prior knowledge on the solution. Normally, L is chosen

to be the identity matrix. The approach proposed in [23] is

adopted here by giving less weight to the situations which

are dissimilar from the unknown sample than those which

are similar. Specifically, a diagonal matrix L in the

following form is considered.

L ¼
yq � h1

		 		
2

0

. .
.

0 yq � hK

		 		
2

2

64

3

75: ð6Þ

The coefficient vector â is calculated as follows [24]:

â ¼ AT Aþ kLT L
� ��1

AT yq: ð7Þ

The class label for each unknown sample is then found

from (4). Algorithm 1 provides more details of the l2-reg-

ularized collaborative representation classifier utilized

.

5 Experimental setup

In this section, it is explained how our method was applied

to the public domain Microsoft Research (MSR) Action3D

dataset [9] with the depth map sequences captured by an

RGBD camera. Our method is then compared with the

existing methods.

The MSR-Action3D dataset includes 20 actions per-

formed by 10 subjects. Each subject performed each action

2 or 3 times. Each subject performed the same action dif-

ferently. As a result, the dataset incorporated the intra-class

variation. For example, the speed of performing an action

varied with different subjects. The resolution of each depth

map was 320 9 240. To facilitate a fair comparison, the

same experimental settings as done in [7–10, 12] were

considered. The actions were divided into three subsets as

listed in Table 1. For each action subset, three different

tests were performed. In Test One, 1/3 of the samples were

used as training samples and the rest as test samples; in

Test Two, 2/3 of the samples were used as training samples

and the rest as test samples; in Cross Subject Test (or Test

Three), half of the subjects were used as training and the

rest as test subjects. In the experimental setup reported in

[9], in Test One (or Two), for each action and each subject,

the first (or first two) action sequences were used for

training; while in Cross Subject Test, subjects 1, 3, 5, 7, 9

(if existed) were used for training. Noting that the samples

or subjects used for training and testing were fixed, they are

referred to as Fixed Tests here.

Another experiment was conducted by randomly

choosing training samples or training subjects corre-

sponding to the three tests. In other words, the action

sequences of each subject for each action were randomly

chosen to serve as training samples in Test One and Test

Two. For Cross Subject Test, half of the subjects were

randomly chosen for training and the rest used for testing.

These tests are referred to as Random Tests here.

For each depth video sequence, the first five frames and

the last five frames were removed and the remaining

frames were used to generate DMMv. The purpose of this

frame removal was two-fold. First, at the beginning and the

end, the subjects were mostly at a stand-still position with

only small body movements, which did not contribute to

the motion characteristics of the video sequences. Second,

in our process of generating DMMs, small movements at

the beginning and the end resulted in a stand-still body

shape with large pixel values along the edges which con-

tributed to a large amount of reconstruction error. There-

fore, the initial and end frame removal was done to remove

no motion condition. Other frame selection methods may

be used here to achieve the same.

To have three fixed sizes for DMMv, the sizes of the

DMMs of all the samples (training and test samples) were
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found under each projection view. The fixed size of each

DMM was simply set to half of the mean value of all the

sizes. For the training feature set and the test feature set,

principal component analysis (PCA) was applied to reduce

the dimensionality. The PCA transform matrix was calcu-

lated using the training feature set and then applied to the

test feature set. This dimensionality reduction step pro-

vided computational efficiency for the classification. In our

experiments, the largest 85 % of the eigenvalues were kept.

5.1 Parameter selection

In the l2-regularized collaborative representation classifier,

a key parameter is k which controls the relative effect of

the Tikhonov regularization term in the optimization stated

in (5). Many approaches have been presented in the liter-

ature—such as the L-curve [25], discrepancy principle, and

generalized cross-validation (GCV)—for finding an opti-

mal value for this regularization parameter. To find an

optimal k, a set of values were examined. Figure 3 shows

the recognition rates with different values of k for Fixed

Cross Subject Test. Random Cross Subject Test was also

performed with the same set of values. For each value of k,

the testing was repeated 50 times. The average recognition

rates are shown in Fig. 4. From Figs. 3 and 4, one can see

that the recognition accuracy was quite stable for a large

range of k values. As a result, in all the experiments

reported here, the value of k ¼ 0:001 was thus chosen.

5.2 Rejection option

An option was added to reject an action which did not

belong to an action set. For example, since action Jump

was not included in the MSR-Action3D dataset, it was

rejected. This was done by setting a rejection threshold

for the minimum reconstruction error calculated from (4).

This threshold was set according to the degree of simi-

larity of the action not included in the recognition set. Let

emin indicate the minimum reconstruction error, the

decision of rejecting or accepting an unknown action

sample was made as follows:

Decision (action) ¼ Reject; if emin [ threshold

Accept; otherwise




ð8Þ

To find an appropriate rejection threshold, Random

Tests on the MSR-Action3D dataset were done by

repeating each test for each subset 200 times. Noting KT

to be the total number of test samples in a subset for a

random test, 200 test trials generated 200� KT minimum

reconstruction errors thus forming a vector E ¼
e1

min; e
2
min; . . .; e200�KT

min

� �
. The mean of E was then

calculated and used as the rejection threshold.

Fig. 3 Recognition rates of Fixed Cross Subject Test for various

values of k

Table 1 Three subsets of actions used for msr-action3D dataset

Action set 1 (AS1) Action set 2 (AS2) Action set 3 (AS3)

Horizontal wave (2) High wave (1) High throw (6)

Hammer (3) Hand catch (4) Forward kick (14)

Forward punch (5) Draw x (7) Side kick (15)

High throw (6) Draw tick (8) Jogging (16)

Hand clap (10) Draw circle (9) Tennis swing (17)

Bend (13) Two hand wave (11) Tennis serve (18)

Tennis serve (18) Forward kick (14) Golf swing (19)

Pickup throw (20) Side boxing (12) Pickup throw (20)

Fig. 4 Average recognition rates of Random Cross Subject Test for

various values of k
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5.3 Results and discussion

5.3.1 Recognition results

Our method was compared with the existing methods

using the MSR-Action3D dataset. The comparison results

are reported in Table 2. The best recognition rate

achieved is highlighted in bold. From Table 2, it can be

seen that our method outperformed the method reported

in [9] in all the test cases. For the challenging Cross

Subject Test, our method produced 90.5 % recognition

rate which was slightly lower than the method reported in

[10]. However, it should be noted that our method did not

require the calculation of HOG descriptors and thus it

was computationally much more efficient. The confusion

matrix of our method for Fixed Cross Subject Test is

shown in Fig. 5. For a compact representation, numbers

are used to indicate the actions listed in Table 1. There

are three possible reasons for the misclassifications in the

Cross Subject Test. First, large intra-class variations

existed due to considerable variations in the same action

performed by different subjects. Although the DMMv of

all the samples were normalized to have the same sizes,

the normalization could not eliminate the intra-class

variations entirely. Second, the feature formed by DMMv

did not exhibit enough discriminatory power to distin-

guish similar motions. For example, Hammer was con-

fused with Forward punch and High throw was confused

with Tennis serve since they had similar motion charac-

teristics. In other words, the DMMv generated by these

actions were similar. Finally, since our classification

decision was based on the reconstruction errors of dif-

ferent training classes in (4), the class with the smallest

reconstruction error was favored. Hence, a misclassifi-

cation occurred when two actions were similar and the

wrong class had a smaller reconstruction error.

To verify that our method did not depend on specific

training data, another experiment was done by randomly

choosing training samples or training subjects for the three

tests. Each test was run for each subset 200 times and the

mean performance (mean accuracy ± standard deviation)

was computed, see Table 3. For Test One and Test Two,

the average recognition rate over the subsets was found

comparable with the outcome shown in Table 2. In the

Cross Subject Test, the average recognition rate dropped by

about 10 % mainly due to a large intra-class variation.

However, our method still achieved 80 % recognition rate

overall which was higher than the rates reported in [7] and

[9] using the Fixed Cross Subject Test.

Furthermore, l1- regularized SRC (denoted by L1) and

SVM [27] were considered in order to compare the rec-

ognition performance with our l2-regularized collaborative

representation classifier (denoted by L2). These three

classifiers were tested on the same training and test samples

of the Random Cross Subject Test with 200 trials. The

SPAMS toolbox [26] was employed to solve the optimi-

zation problem in (3) due to its fast implementation. Radial

basis function (RBF) kernel was used for the SVM and its

two parameters (penalty parameter and kernel width) were

tuned for optimal recognition rates. The average recogni-

tion rates using the three classifiers are shown in Fig. 6. As

exhibited in this figure, our l2-regularized collaborative

representation classifier was on par with the SCR and

consistently outperformed the SVM classifier in all the

three subsets. A disadvantage of SVM was also the

requirement to tune its two parameters.

Table 2 Recognition rates (%) comparison of Fixed Tests for msr-action3D dataset

Li et al. [9] Lu et al. [7] Yang et al. [8] Yang et al. [10] Vieira et al. [12] Our method

Test one

AS1 89.5 98.5 94.7 97.3 98.2 97.3

AS2 89.0 96.7 95.4 92.2 94.8 96.1

AS3 96.3 93.5 97.3 98.0 97.4 98.7

Average 91.6 96.2 95.8 95.8 96.8 97.4

Test two

AS1 93.4 98.6 97.3 98.7 99.1 98.6

AS2 92.9 97.2 98.7 94.7 97.0 98.7

AS3 96.3 94.9 97.3 98.7 98.7 100

Average 94.2 97.2 97.8 97.4 98.3 99.1

Cross subject test

AS1 72.9 88.0 74.5 96.2 84.7 96.2

AS2 71.9 85.5 76.1 84.1 81.3 83.2

AS3 79.2 63.6 96.4 94.6 88.4 92.0

Average 74.7 79.0 82.3 91.6 84.8 90.5
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5.3.2 Real-time operation

There are four main components in our method: projected

depth map generation (three views) for each depth frame,

DMMs feature generation, dimensionality reduction

(PCA), and action recognition (l2-regularized collaborative

representation classifier). Our real-time action recognition

timeline is displayed in Fig. 7. The numbers in Fig. 7

indicate the main components in our method. The gener-

ation of the projected map and DMMs are executed right

after each depth frame is captured while the dimensionality

reduction and action recognition are performed after an

action sequence gets completed. Since the PCA transform

matrix is calculated using the training feature set, it can be

directly applied to the feature vector of a test sample. Our

code is written in Matlab and the processing time reported

is for a PC with 2.67 GHz Intel Core I7 CPU with 4 GB

RAM. The average processing time of each component is

listed in Table 4. Note that the average number of depth

frames in an action video sequence (after frame removal) is

about 30.

The computational complexity aspect of the major

components involved in different methods are provided in

(a) (b) (c)

Fig. 5 Confusion matrix of our method for Fixed Cross Subject Test. a Subset AS1. b Subset AS2. c Subset AS3

Fig. 6 Comparison of recognition rates (%) using different classifiers

in Random Cross Subject Test

Table 3 Average and standard deviation recognition rates (%) of our

method for msr-action3D dataset in Random Tests

Test one Test two Cross subject test

AS1 97.4 ± 0.9 98.5 ± 1.1 84.8 ± 4.4

AS2 96.1 ± 1.5 97.8 ± 1.4 67.8 ± 4.3

AS3 97.7 ± 1.2 98.9 ± 1.1 87.1 ± 3.7

Average 97.1 ± 1.2 98.4 ± 1.2 79.9 ± 4.1

Table 4 Average and standard deviation of processing time of the

components of our method

Components Processing time (ms)

1 2.0 ± 0.4/frame

2 3.3 ± 0.6/frame

3 2.5 ± 1.2/action sequence

4 1.8 ± 0.5/action sequence

Fig. 7 Real-time action recognition timeline
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Table 5. In [9], the bi-gram maximum likelihood decoding

(BMLD) for Gaussian Mixture Model (GMM) was adopted

to mitigate the computational complexity with the com-

plexity of O(J 9 KhD2) [28], where J denotes the number

of iterations, Kh the number of samples in the dataset and

D the dimensionality of the state. As was reported in [7],

the complexity is mostly due to the Fisher’s linear dis-

criminant analysis (LDA) and HMM. The computation of

voting of joints into the bins is relatively trivial. The

computational complexity for LDA is O(KhMP ? P3),

where M is the number of extracted features and

P = min(Kh,M). The computational complexity for HMM

is O(NhH2) [29], where Nh denotes the total number of

states and H the length of the observation sequence. In [8],

the computational complexity for PCA [30] and Naive-

Bayes-Nearest-Neighbor (NBNN) classifier is stated as

O(m3 ? m2r) and O[r 9 nc 9 nd 9 log(nc 9 nd)],

respectively, where m denotes the dimension of a sample

vector, r denotes the number of training samples, nc rep-

resents the number of classes, and nd represents the number

of descriptors. In [10], the computational complexity of

SVM is stated as O(r3) [31]. In [12], the computational

complexity of PCA and the classifier are stated as

O(m3 ? m2r) and O(nc 9 r2), respectively. Table 5 pro-

vides the speedup for a typical set of parameters: J = 50,

Kh = 200, D = 30, Nh = 6, H = 27, M = 125, r = 100,

m = 50, nc = 8, nd = 40. As can be seen from this table,

our method is the most computationally efficient one.

6 Conclusion

In this paper, a computationally efficient DMM-based

human action recognition method using l2-regularized col-

laborative representation classifier was introduced. The

DMMs generated from three projection views were used to

capture the motion characteristics of an action sequence. An

average recognition rate of 90.5 % on the MSR-Action3D

dataset was achieved, outperforming the existing methods.

In addition, the utilization of l2-regularized collaborative

representation classifier was shown to be computationally

efficient leading to a real-time implementation.
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