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Abstract. This paper presents a new method for human activity recognition
using depth sequences. Each depth sequence is represented by three depth
motion maps (DMMs) from three projection views (front, side and top) to
capture motion cues. A feature extraction method utilizing spatial and orienta-
tional auto-correlations of image local gradients is introduced to extract features
from DMMs. The gradient local auto-correlations (GLAC) method employs
second order statistics (i.e., auto-correlations) to capture richer information from
images than the histogram-based methods (e.g., histogram of oriented gradients)
which use first order statistics (i.e., histograms). Based on the extreme learning
machine, a fusion framework that incorporates feature-level fusion into
decision-level fusion is proposed to effectively combine the GLAC features
from DMMs. Experiments on the MSRAction3D and MSRGesture3D datasets
demonstrate the effectiveness of the proposed activity recognition algorithm.

Keywords: Gradient local auto-correlations � Extreme learning machine �
Activity recognition � Depth images � Depth motion map

1 Introduction

Human activity recognition is one of the important areas of computer vision research
today. It has a wide range of applications including intelligent video surveillance, video
analysis, assistive living, robotics, telemedicine, and human computer interaction (e.g.,
[1–4]). Research on human activity recognition has initially focused on learning and
recognizing activities from video sequences captured by conventional RGB cameras.

Since the recent release of cost-effective 3D depth cameras using structured light or
time-of-flight sensors, there has been great interest in solving the problem of human
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activity recognition by using 3D data. Compared with traditional color images, depth
images are insensitive to changes in lighting conditions and provide body shape and
structure information for activity recognition. Color and texture are precluded in the
depth images, which makes the tasks of human detection and segmentation easier [5].
Moreover, human skeleton information can be estimated from depth images providing
additional information for activity recognition [6].

Research on activity recognition has explored various representations (e.g., 3D
point cloud [7], projection depth maps [8], spatio-temporal interest points [9], and
skeleton joints [10]) of depth sequences. In [7], a bag of 3D points was sampled from
depth images to characterize the 3D shapes of salient postures and Gaussian mixture
model (GMM) was used to robustly capture the statistical distribution of the points.
A filtering method to extract spatio-temporal interest points (STIPs) from depth videos
(called DSTIP) was introduced in [9] to localize activity related interest points by
effectively suppressing the noise in the depth videos. Depth cuboid similarity feature
(DCSF) built around the DSTIPs was proposed to describe the local 3D depth cuboid.
Inspired by motion energy images (MEI) of motion history images (MHI) [11], depth
images in a depth video sequence were projected onto three orthogonal planes and
differences between projected depth maps were stacked to form depth motion maps
(DMMs) [8]. Histogram of oriented gradients (HOG) [12] features were then extracted
from DMMs as global representations of a depth video. DMMs effectively transform
the problem in 3D to 2D. In [13], the procedure of generating DMMs was modified to
reduce the computational complexity in order to achieve real-time action recognition.
Later in [14], local binary pattern [15] operator was applied to the overlapped blocks in
DMMs to enhance the discriminative power for action recognition. Skeleton infor-
mation has also been explored for activity recognition, for example [10]. Reviews of
skeleton based activity recognition methods are referred to [10, 16].

Motivated by the success of DMMs in depth-based activity recognition, our method
proceeds along with this direction. Specifically, we introduce the gradient local
auto-correlations (GLAC) [17] descriptor and present a new feature extraction method
using GLAC and DMMs. A fusion framework based on extreme learning machine
(ELM) [18] is proposed to effectively combine the GLAC features from DMMs for
activity recognition. The main contributions of this paper are summarized as follows:

1. We introduce a new feature descriptor, GLAC, to extract features from DMMs of
depth sequences. The GLAC descriptor, which is based on the second order of
statistics of gradients (spatial and orientational auto-correlations of local image
gradients), can effectively capture rich information from images.

2. We present a unified fusion framework which incorporates feature-level fusion into
decision-level fusion for activity recognition.

3. We demonstrate that ELM has better performance than support vector machine
(SVM) in our proposed method for depth-based activity recognition.

The rest of this paper is organized as follows. Section 2 describes the proposed
feature extraction method. Section 3 overviews ELM and provides details of the unified
fusion framework for activity recognition. Experimental results and discussions are
presented in Sect. 4. Finally, Sect. 5 concludes the paper.
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2 Feature Extraction from Depth Sequences

2.1 Depth Motion Map

To extract features from depth images, depth motion maps (DMMs) discussed in [13]
are used due to their computational efficiency. More specifically, each 3D depth image
in a depth video sequence is first projected onto three orthogonal Cartesian planes to
generate three 2D projected maps corresponding to front, side, and top views, denoted
by mapf , maps, and mapt, respectively. For a depth video sequence with N frames, the
DMMs are obtained as follows:

DMMff ;s;tg ¼
XN�1

i¼1

mapiþ 1
ff ;s;tg � mapiff ;s;tg

��� ���; ð1Þ

where i represents frame index. A bounding box is considered to extract the foreground
in each DMM. Since foreground DMMs of different video sequences may have dif-
ferent sizes, bicubic interpolation is applied to resize all such DMMs to a fixed size and
thus to reduce the intra-class variability. Figure 1 shows two example sets of DMMs.

2.2 Gradient Local Auto-Correlations

GLAC [17] descriptor is an effective tool for extracting shift-invariant image features.
Let I be an image region and r ¼ ðx; yÞt be a position vector in I. The magnitude and

the orientation angle of the image gradient at each pixel can be represented by n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@I
@x

2 þ @I
@y

2
q

and h ¼ arctan @I
@x ;

@I
@y

� �
, respectively. The orientation h is then coded into

D orientation bins by voting weights to the nearest bins to form a gradient orientation
vector f 2 R

D. With the gradient orientation vector f and the gradient magnitude n, the
N th order auto-correlation function of local gradients can be expressed as follows:

Rðd0; . . .; dN;a1; . . .; aNÞ ¼
Z
I
x nðrÞ; nðrþ a1Þ; . . .; nðrþ aNÞ½ �fd0ðrÞfd1ðrþ a1Þ � � � fdN ðrþ aNÞdr;

ð2Þ

where ai are displacement vectors from the reference point r, fd is the dth element of f ,
and xð�Þ indicates a weighting function. In the experiments reported later, N 2 f0; 1g,

Fig. 1. DMMs for the forward kick and high throw depth action video sequences.
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a1x;y 2 f�Dr; 0g, and xð�Þ � minð�Þ were considered as suggested in [17], where Dr
represents the displacement interval in both horizontal and vertical directions. For
N 2 f0; 1g, the formulation of GLAC is given by

F0 : RN¼0 d0ð Þ ¼
X
r2I

n rð Þfd0 rð Þ

F1 : RN¼1 d0; d1; a1ð Þ ¼
X
r2I

min n rð Þ; n rþ a1ð Þ½ �fd0 rð Þfd1 rþ a1ð Þ:
ð3Þ

The spatial auto-correlation patterns of ðr; rþ a1Þ are shown in Fig. 2.

The dimensionality of the above GLAC features (F0 and F1) is Dþ 4D2. Although
the dimensionality of the GLAC features is high, the computational cost is low due to
the sparseness of f . It is worth noting that the computational cost is invariant to the
number of bins, D, since the sparseness of f doesn’t depend on D.

2.3 DMMs-Based GLAC Features

DMMs generated from a depth sequence are pixel-level features. To enhance the
discriminative power and gain a compact representation, we adopt the method in [14]
to extract GLAC features from DMMs. Specifically, DMMs are divided into several
overlapped blocks and the GLAC descriptor is applied to each block to compute GLAC
features (i.e., F0 and F1). For each DMM, GLAC features from all the blocks are
concatenated to form a single composite feature vector. Therefore, three feature vectors
g1, g2 and g3 corresponding to three DMMs are obtained for a depth sequence.

3 Classification Fusion Based on ELM

3.1 Elm

ELM [18] is an efficient learning algorithm for single hidden layer feed-forward neural
networks (SLFNs) and has been applied in various applications (e.g., [19, 20]).

Let y ¼ ½y1; . . .; yk; . . .; yC�T 2 R
C be the class to which a sample belongs, where

yk 2 f1;�1g (1� k�C) and C is the number of classes. Given n training samples
fxi; yigni¼1, where xi 2 R

M and yi 2 R
C, a single hidden layer neural network having L

hidden nodes can be expressed as

Fig. 2. Configuration patterns of ðr; rþ a1Þ.
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XL
j¼1

bjh wj � xi þ ej
� � ¼ yi; i ¼ 1; . . .; n; ð4Þ

where hð�Þ is a nonlinear activation function, bj 2 R
C denotes the weight vector con-

necting the jth hidden node to the output nodes, wj 2 R
M denotes the weight vector

connecting the jth hidden node to the input nodes, and ej is the bias of the jth hidden
node. (4) can be written compactly as:

Hb ¼ Y; ð5Þ

where b ¼ ½bT1 ; . . .; bTL � 2 R
L�C, Y ¼ ½yT1 ; . . .; yTn � 2 R

n�C, and H is the hidden layer

output matrix. A least-squares solution b̂ to (5) is

b̂ ¼ HyY; ð6Þ

where Hy is the Moore-Penrose inverse of H. The output function of the ELM clas-
sifier is

fLðxiÞ ¼ hðxiÞb ¼ hðxiÞHT I
q
þHHT

� 	�1

Y; ð7Þ

where 1=q is a regularization term. The label of a test sample is assigned to the index of
the output nodes with the largest value. In our experiments, we use a kernel-based ELM
(KELM) with a radial basis function (RBF) kernel.

3.2 Proposed Fusion Framework

In [14], both feature-level fusion and decision-level fusion were examined for action
recognition. It was demonstrated that decision-level fusion had better performance than
feature-level fusion. To further improve the performance of decision-level fusion, we
propose a unified fusion framework that incorporates feature-level fusion into
decision-level fusion.

In decision-level fusion, each feature (e.g., g1, g2, and g3) is used individually as
input to an ELM classifier. The probability outputs of each individual classifier are
merged to generate the final outcome. The posterior probabilities are estimated using
the decision function of ELM (i.e., fL in (7)) since it estimates the accuracy of the
output label. fL is normalized to ½0; 1� and Platt’s empirical analysis [21] using a
Sigmoid function is utilized to approximate the posterior probabilities,

p yk xjð Þ ¼ 1
1þ exp AfL xð Þk þB

� � ; ð8Þ
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where fL xð Þk is the kth output of the decision function fL xð Þ. In our experiments,
A ¼ �1 and B ¼ 0. Logarithmic opinion pool (LOGP) [20] is used to estimate a global
membership function:

logP yk xjð Þ ¼
XQ
q¼1

aqpq yk xjð Þ; ð9Þ

where Q is the number of classifiers and aq

 �Q

q¼1 are uniformly distributed classifier

weights. The final class label y	 is determined according to

y	 ¼ argmax
k¼1;...;C

P yk xjð Þ: ð10Þ

To incorporate feature-level fusion into decision-level fusion, we stack g1, g2, and
g3 (feature-level fusion) as the fourth feature g4 ¼ g1; g2; g3½ �. Then these four feature
vectors are used individually as inputs to four ELM classifiers. Note that principal
component analysis (PCA) is employed for dimensionality reduction of the feature
vectors. For a testing sample x, five sets of probability outputs including four sets of

probability outputs pq yk xjð Þ
 �4
q¼1 corresponding to the four classifiers and a set of

fusion probability outputs P yk xjð Þ by using (9) can be obtained. The class label of the
testing sample x is assigned based on P yk xjð Þ.

Since each set of probability outputs is able to make a decision on the class label of
the testing sample x, we could use the label information (five class labels) from the five
sets of probability outputs to reach a more robust classification decision. Here, we
employ the majority voting strategy on the five labels. If at least three class labels are
the same, we consider there is a major certainty among the five sets of probability
outputs and use the majority voted label as the final class label; otherwise, we use the
label given by P yk xjð Þ. By introducing a majority voting step in the decision-level
fusion, we not only consider the classification probability but also the classification
certainty.

4 Experiments

In this section, we evaluate our proposed activity recognition method on the public
MSRAction3D [7] and MSRGesture3D [22] datasets which consist of depth sequences
captured by RGBD cameras. Some example depth images from these two datasets are
presented in Fig. 3. Our method is then compared with the existing methods. The
source code of our method will be available on our website.

4.1 MSRAction3D Dataset

The MSRAction3D dataset [7] includes 20 actions performed by 10 subjects. Each
subject performs each action 2 or 3 times. To facilitate a fair comparison, the same
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experimental setup in [23] is used. A total of 20 actions are employed and one half of
the subjects (1, 3, 5, 7, 9) are used for training and the rest subjects are used for testing.

First of all, we estimate the optimal parameter set ðD;DrÞ for the GLAC descriptor
using the training data via five-fold cross validation. The recognition results with
various parameter sets for the MSRAction3D dataset are shown in Table 1. Therefore,
D ¼ 10 and Dr ¼ 8 are chosen in terms of the activity recognition accuracy.

A comparison of our method with the existing methods is carried out. The outcome
of the comparison is listed in Table 2. We also report the results of feature-level fusion
and decision-level fusion using only g1, g2, and g3. These two methods are denoted by
DMM-GLAC-DF and DMM-GLAC-FF. As we can see that our method achieves an
accuracy of 92.31 %, only 0.78 % inferior to the state-of-the-art accuracy (93.09 %) of
SNV [5]. Moreover, the proposed unified fusion method outperforms DMM-GLAC-FF
by 1.83 %, which demonstrates the benefit of incorporating the concatenated feature g4
into decision-level fusion. The confusion matrix of our method for the MSRAction3D
dataset is shown in Fig. 4(a). The recognition errors concentrate on similar actions, e.g.,
draw circle and draw tick. This is mainly because the DMMs of these actions are
similar.

(a) MSRAction3D 

(b) MSRGesture3D 

Fig. 3. Sample depth images of different actions/gestures.

Table 1. Recognition accuracy (%) of GLAC with different parameter sets D;Drð Þ for the
MSRAcion3D dataset using training data

D
Δr

1 2 3 4 5 6 7 8 9 10 11 12

1 79.0 84.5 87.8 90.7 90.4 90.0 90.4 91.5 92.2 92.2 92.6 91.8
2 78.3 84.2 87.1 89.6 91.1 90.7 91.5 91.1 91.1 90.7 91.8 91.5
3 79.4 82.7 86.7 89.6 90.7 90.4 91.8 91.5 91.5 91.8 91.1 91.8
4 79.8 82.0 84.9 88.9 88.9 88.5 90.7 91.1 91.1 90.0 91.5 91.1
5 81.2 84.5 85.6 90.4 90.4 91.8 92.2 92.2 92.9 92.9 92.6 92.6
6 83.1 86.0 86.3 90.7 91.5 91.1 92.6 91.8 92.9 92.9 92.9 92.9
7 83.8 86.7 86.3 90.4 90.4 92.6 91.8 92.9 92.9 93.7 92.9 92.6
8 84.2 86.0 86.3 90.4 91.5 92.6 92.9 93.3 93.7 93.7 93.7 92.9
9 84.2 83.8 85.6 89.6 90.0 90.7 91.8 91.8 92.6 92.9 92.9 92.9
10 82.3 85.3 85.6 89.3 90.0 90.7 91.5 91.8 92.6 92.6 92.6 92.2
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4.2 MSRGesture3D Dataset

The MSRGesture3D dataset [22] consists of 12 gestures defined by American Sign
Language (ASL). It contains 333 depth sequences. The leave one subject out
cross-validation test [23] is utilized in our evaluation. D ¼ 12 and Dr ¼ 1 are selected
for GLAC based on the parameter tuning experiment for this dataset. Our method
obtains the state-of-the-art accuracy of 95.5 % which outperforms all previous methods
as shown in Table 3. The confusion matrix of our method for the MSRGesture3D
dataset is demonstrated in Fig. 4(b).

4.3 ELM vs. SVM

We also conduct comparison between ELM and SVM for activity recognition. For our
method using SVM as the classifier, LIBSVM [28] toolbox is utilized to provide

Table 2. Comparison of recognition accuracy on the MSRAction3D dataset

Method Accuracy

Bag of 3D points [7] 74.70 %
EigenJoints [10] 82.30 %
STOP [24] 84.80 %
Random Occupancy Pattern [23] 86.50 %
Actionlet Ensemble [25] 88.20 %
DMM-HOG [8] 88.73 %
Histograms of Depth Gradients [27] 88.80 %
HON4D [26] 88.89 %
DSTIP [9] 89.30 %
DMM-LBP-FF [14] 91.90 %
DMM-LBP-DF [14] 93.00 %
SNV [5] 93.09 %
DMM-GLAC-FF 89.38 %
Proposed 90.48 %
DMM-GLAC-DF 92.31 %

Table 3. Comparison of recognition accuracy on the MSRGesture3D dataset

Method Accuracy

Random Occupancy Pattern [23] 88.50 %
DMM-HOG [8] 89.20 %
Histograms of Depth Gradients [27] 93.60 %
HON4D [26] 92.45 %
Action Graph on Silhouett [22] 87.70 %
DMM-LBP-FF [14] 93.40 %
DMM-LBP-DF [14] 94.60 %
SNV [5] 94.74 %
Proposed 95.50 %
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probability estimates for multi-class classification. The comparison results in terms of
recognition accuracy are presented in Table 4. It is easy to see that ELM has superior
performance over SVM for both datasets. The standardized McNemar’s test [20] is
employed to verify the statistical significance in accuracy improvement of our
ELM-based method. A value of Zj j[ 1:96 in the McNemar’s test indicates there is a
significant difference in accuracy between two classification methods. The sign of Z
indicates whether classifier 1 statistically outperforms classifier 2 (Z[ 0) or vice versa.
As we can see that the ELM-based method statistically outperforms SVM-based
method.

5 Conclusions

We have presented a novel framework for activity recognition from depth sequences.
The gradient local auto-correlations (GLAC) features utilize spatial and orientational
auto-collections of local gradients to describe the rich texture information of the depth
motion maps generated from a depth sequence. A unified fusion scheme that combines

Fig. 4. Confusion matrices of our method on (a) the MSRAction3D dataset and (b) the
MSRGesture3D dataset. This figure is best seen on screen.

Table 4. Performance comparison between ELM and SVM in our method

MSRAction3D MSRGesture3D

Accuracy Accuracy

ELM 92.31 % ELM 95.50 %
SVM 86.80 % SVM 92.80 %
Z/significant? Z/significant?
ELM (classifier 1) vs. SVM
(classifier 2)

ELM (classifier 1) vs. SVM
(classifier 2)

3.13/yes 2.04/yes
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feature-level fusion and decision-level fusion is proposed based on extreme learning
machine for activity recognition. Our method is evaluated on two public benchmark
datasets and the experimental results demonstrate that the proposed method can achieve
competitive or better performance compared to a number of state-of-the-art methods.
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