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ARTICLE INFO ABSTRACT

Keywords: Normalized difference vegetation index (NDVI), derived from multi-spectral (MS) images, is a metric widely
NDVI used to evaluate the growth status of vegetation in remote sensing. Existing methods for generating high-
Image fusion resolution (HR) NDVI are typically based on pan-sharpening, which often result in huge errors even in case

Attention mechanism
Deep learning
Pan-sharpening

of tiny spectral distortions. To overcome this challenge, from a novel perspective, this paper introduces an
HR vegetation index (HRVI) to realize direct fusion with a low-resolution NDVI rather than pan-sharpening
an HRMS image. In particular, we propose a two-branch network based on the multi-scale and attention
mechanism, termed as NDVI-Net, to obtain the HRNDVI with small distortion. In our network, the multi-scale
channel enhancement blocks are used in both NDVI and HRVI branches, in which multi-scale convolution
is used to capture structural information with different reception fields and channel attention mechanism is
adopted to perform feature selection. Meanwhile, the spatial features are injected unidirectionally from the
HRVI into NDVI branches, so as to further improve the quality of features in the NDVI branch. Subsequently,
the spatial intensify block is adopted only in the NDVI branch to implement selective enhancement for the
previously obtained features along the spatial position, strengthening the retention of local detail features.
Finally, HRNDVI is reconstructed based on the high-representation NDVI features, which contains clear texture
details and precise intensity. Experimental results demonstrate the significant advantage of our method over the
current state-of-the-art in terms of both subjective visual effect and quantitative metrics. Moreover, we apply
the HRNDVI generated by our method to vegetation detection and enhancement, and land cover mapping in
remote sensing, which can achieve the best performance.

1. Introduction the spatial resolution while ensuring spectral richness of the resulting
image. This restriction also indirectly leads to the low-resolution (LR)

Normalized difference vegetation index (NDVI) is proposed in of NDVI, which largely limits the accuracy of subsequent applications,
Tucker (1979) to assess the level of green vegetation, which is calcu- such as vegetation detection (Zhang et al., 2020b). Therefore, it is

lated from the near-infrared (NIR) band and the red (R) band in the desirable to develop a technique to generate HRNDVL

multi-spectral (MS) image according to the following equation: The existing methods for obtaining HRNDVI are based on pan-

NDVI = NIR-R o) sharpening (Wang et al., 2016; Rahmani et al., 2010; Aiazzi et al.,

NIR+R 2013). In particular, these methods first fuse the HR panchromatic
Because of its excellent vegetation characterization performance, NDVI (PAN) image and the LRMS image to generate the HRMS image, and
has become one of the most important indicators in the field of remote then calculate HRNDVI from the R and NIR bands of the HRMS.
sensing (Carlson and Ripley, 1997; Zhu and Liu, 2015; Yang et al., However, pan-sharpening is very difficult to generate precise HRMS.

2012). However, it is difficult for remote sensing satellites to obtain
high-resolution (HR) MS images, which is caused by the characteristics
of MS sensors. More specifically, the spectroscopic/filter mechanism
in MS sensors requires a large instantaneous field of view (IFOV) to
meet the requirement of signal-to-noise ratio, which means it reduces

Most pan-sharpening methods generally follow the assumption: the
intensity/gradient of the PAN image is a linear combination of the
intensity/gradient of multiple channels in the MS image. Unfortunately,
the problem of accurately solving linear combination coefficients has
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Fig. 1. Small spectral distortion causes huge NDVI errors. From left to right: HRMS generated by LGC (Fu et al., 2019), HRMS reference, NDVI of LGC and NDVI reference.

not yet been solved, which leads to more or less distortion existing in
the obtained HRMS.

Further, the values of NIR and R are very small (i.e., close to 0)
in some regions. In this case, the distortion in HRMS generated by
pan-sharpening will be further amplified by calculating NDVI through
Eq. (1). In other words, a small spectral distortion will cause a huge
NDVI error, which is harmful to subsequent applications. Similarly,
Johnson (2014) also pointed out that the NDVI would suffer from some
spatial information loss due to pan-sharpening. To illustrate this prob-
lem more intuitively, a latest pan-sharpening method, local gradient
constraints (LGC) (Fu et al., 2019), is used as an example in Fig. 1. It
can be clearly seen that, compared with the ground truth, there is slight
spectral distortion in the pan-sharpening result generated by LGC (Fu
et al., 2019), while large errors occur in the calculated NDVI. This error
is not only reflected in the intensity (vegetation coverage), but also in
the details of the texture (the boundary between vegetation), which is
very detrimental to the application of agricultural remote sensing.

To address the above mentioned limitation, in this paper we propose
to implement the fusion directly on the NDVI image for generating
HRNDVI, rather than pan-sharpening an HRMS image, so as to avoid
the error amplification effect of Eq. (1). Nevertheless, there are also
great challenges in direct fusion. First of all, it is difficult to define the
source data fused with LRNDVI. Specifically, the source data should
contain rich spatial texture information to compensate for LRNDVL
Meanwhile, the spatial texture information should be as similar as
possible to NDVI, that is, the new source data should have a similar
physical meaning to NDVI. Second, there are a lot of complex texture
details in NDVI. Some of them are artificial boundaries between vegeta-
tion, such as roads and buildings, and others are transition boundaries
between areas with deep vegetation coverage and areas with shallow
coverage. Preserving these complex and tiny texture details is very
challenging.

To overcome the above challenges, we design a novel two-branch
network based on the multi-scale and attention mechanism for NDVI
fusion, which can generate the HRNDVI with small distortion, termed
as NDVI-Net. In our method, the above considerations are solved from
two aspects.

On the one hand, we introduce the HR vegetation index (HRVI) (Tu
et al., 2009) and modify it to be the source data fused with LRNDVI.
Concretely, the HRVI is defined as:
PAN —R?

PAN +R 1’

where the PAN is the HRPAN, R refers to the red band of the LRMS
and 1 indicates the upsampling function of bicubic. Obviously, the
definition of HRVI is similar to that of NDVI. The difference is that
the HRPAN image is introduced into the definition of HRVI, so as to
contains rich spatial texture information. A visual example isprovided
in Fig. 2. It can be observed that the HRVI has similar but clearer
textures compared with the NDVI, which can therefore provide spatial
information for the reconstruction of HRNDVI. Note that in the original
definition of HRVI in Tu et al. (2009), R is replaced with the average

HRVI = 2
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of the red, green and blue bands of the LRMS image. The newly
defined HRVI in Eq. (2) can introduce spatial information of the PAN
image while ensuring its texture structure to be as close as possible
to that in the NDVI, thus reducing the difficulty of accurate texture
reconstruction. We will show the advantages of our new definition in
the experimental section.

On the other hand, we design a specific network to preserve the tiny
and complex textures. It is a two-branch network, namely the NDVI
branch and HRVI branch, to extract features from the LRNDVI and
HRVI and reconstruct HRNDVI. The multi-scale channel enhancement
block is used in these two branches at the first stage. In this block,
we use convolutions of different scales for feature extraction, because
multiple receptive fields can allow more structural information to
be contained in the extracted features. Then, the channel attention
mechanism selectively enhances more important features after each
multi-scale convolution according to the fusion objective. In this pro-
cess, the spatial features filtered at each layer in the HRVI branch
are unidirectionally injected into the NDVI branch to improve the
spatial structure quality of features. At the second stage, we use the
spatial intensify block to selectively weight the features generated by
the previous NDVI-branch network along the pixel position, which
can further enhance the retention of feature information with small
details. Finally, the high-quality HRNDVI can be reconstructed from the
features with high expression ability, which contains clear and accurate
texture details.

To intuitively demonstrate the advantages of our method over
pan-sharpening-based methods, we provide a typical example of our
fused result with comparison to two state-of-the-art methods, i.e., the
generalized Laplacian pyramid-based method MTF-GLP (Aiazzi et al.,
2006) and deep learning-based method PNN (Masi et al., 2016). MTF-
GLP adopts the modulation transfer functions of the multi-spectral
scanner to design the generalized Laplacian pyramid reduction filter,
so as to realize the spatial injection of pan-sharpening. While PNN
trains the neural network under the supervision of reference images
to realize pan-sharpening. The results are shown in the top row of
Fig. 3. Clearly, our NDVI result is more similar to the reference image.
In terms of intensity distribution, our NDVI-Net can provide a relatively
more accurate result, which maintains vegetation growth status better.
In addition, our method maintains the texture details of NDVI more
clearly. It can be seen from the highlighted regions that the dividing
line between vegetation is almost the same in our result and the
reference, while both MTF-GLP and PNN obscure them.

In addition, the HRNDVI generated by our proposed method can
be further applied to the vegetation detection and enhancement of
the HRMS image. The results of different methods are provided in
the bottom row of Fig. 3. Because the accuracy of HRNDVI obtained
by our method is higher than other methods, the effect of enhancing
vegetation is the best, especially the preservation of texture between
vegetation. As a result, when detecting and enhancing vegetation in the
HRMS image, the NDVI generated by our NDVI-Net can be used instead
of that generated by pan-sharpening, which can greatly improve the
accuracy of vegetation detection and enhancement.
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Fig. 2. Visualization of NDVI and HRVI. From left to right: LRMS image (upsampled), PAN image, LRNDVI (upsampled) and HRVI. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Illustration of the characteristic of our method. From left to right in the top row: the LRNDVI, reference NDVI], results of MTF-GLP (Aiazzi et al., 2006), PNN (Masi et al.,
2016) and our proposed NDVI-Net. From left to right in the bottom row: the HRMS and the vegetation enhancement results based on the corresponding NDVI results.

The major contributions of this paper are summarized as follows.
First, we define a new HRVI to achieve direct fusion with NDVI, which
can provide spatial texture information for HRNDVI reconstruction,
thereby making it possible to generate HRNDVI with clear texture
details. Second, we propose a novel two-branch network based on the
multi-scale and attention mechanism to realize NDVI fusion, which
can generate HRNDVI with clearer texture details and more precise
intensity than the traditional pan-sharpening-based methods. Third, the
multi-scale channel enhancement block and spatial intensify block are
designed, which strengthen the preservation of tiny texture details.
Moreover, the unidirectional injection of spatial information between
the two branches is also a valuable means of feature quality improve-
ment. Fourth, we also apply our method to NDVI-based vegetation
detection and enhancement, and land cover mapping, in which our
method can achieve the most consistent results with the reference.

The remainder of this paper is organized as follows. Section 2
describes some related work, including an overview of existing pan-
sharpening methods and attention mechanisms. In Section 3, we de-
scribe our method in detail, including the overview of the frame-
work, loss functions, and network architecture design. In Section 4,
we give the detailed experimental settings and compare our method
with several state-of-the-art methods qualitatively and quantitatively
on publicly available datasets. In addition, we also carry out the
validation of HRVI definition, ablation experiments, visualization of
space injection, generalization experiment, experiment of vegetation
detection and enhancement, and experiment of land cover mapping in
this section. Conclusions are given in Section 5.
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2. Related work

This section describes the background and existing works that
are most related to our research, including the development of pan-
sharpening methods and attention mechanisms.

2.1. Pan-sharpening methods

Pan-sharpening is the most commonly used strategy for obtaining
the HRMS image and then calculating the HRNDVI (Duran et al., 2017;
Tian et al., 2020). It aims to preserve geometric texture details of the
HRPAN image and spectral information of the LRMS image. However,
PAN is a single-channel image and MS is a multi-channel image, which
makes it difficult to define the correspondence between texture or
intensity of them. Most pan-sharpening methods follow the assumption:
the PAN image (or its gradient) can be modeled as a linear combination
among all bands (or their gradients) of the HRMS image, which can be
formalized as:

n
PAN =Y w,- MS,+¢),
b=1

€))

n
VPAN = Y a,- VMS, +é,,
b=1
where PAN and MS represent the HRPAN image and the HRMS
image, b is the index of the spectral band, » is the total number of
spectral bands in HRMS, and V is the gradient operator. In addition,
@, and «, indicate coefficients of linear combination, and ¢, is
the deviation terms. For Eq. (3), many tentative solutions have been

4
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given. In particular, a simple solution is used in the generalized HIS
method (Carper et al., 1990), where the same weights of different bands
are adopted. Subsequently, Aiazzi et al. (2007) adopted the optimized
way to determine these linear combination coefficients. However, these
methods tend to cause severe spectral distortion. Because the response
characteristics of different sensors mounted on satellites to objects are
very different. Specifically, the union of imaging bands of some MS
images is not as extensive as the PAN image. This linear combination
in the intensity of multi-spectral image often fails to synthesize a good
pseudo-panchromatic image, which reduces the intensity fidelity of
HRMS.

After realizing this problem, most methods have recently favored
following Eq. (4), which ensures the consistency of the high-pass fil-
tered components of PAN image and HRMS image, instead of inten-
sity. Chen et al. (2015) proposed the SIRF to introduce the dynamic
gradient sparsity, which copies the PAN image to the same channel
number as the MS image and requires them to have the gradient consis-
tency. Similarly, PMGI (Zhang et al., 2020a) requires that each channel
of the MS image has the gradient consistency with the PAN image. It
is worth noting that this definition is still problematic. Because the
PAN image is a wider band imaging, its texture structure is richer
than any channel of the MS image. Therefore, it is unreasonable to
copy PAN images to multiple channels and then constrain the gradient
consistency. A recent work LGC (Fu et al., 2019) innovatively pointed
out that the linear weighting in all the above methods is based on
the global perspective, which cannot well model the local relationship
between MS and PAN. Based on this observation, a variational pan-
sharpening with local gradient constraints is proposed, which can
provide a relatively accurate spatial preservation.

In recent years, neural networks have promoted the great develop-
ment of pan-sharpening. Masi et al. (2016) introduced the supervised
convolutional neural network to realize pan-sharpening, which can
generate promising HRMS. However, the output of the neural network
often has the phenomenon that local details are smoothed under the
constraint of #, loss. The generative adversarial network (GAN) is also
a popular technique to solve the image fusion problem (Xu et al.,
2020; Ma et al., 2020a, 2019). In particular, PSGAN (Liu et al., 2018)
introduces the GAN to the pan-sharpening problem for the first time,
and after continuous adversarial games, the generator can produce
results with richer textures, but these textures are often fake due to
adversarial learning. Pan-GAN (Ma et al., 2020b) further provides an
unsupervised framework for pan-sharpening based on GAN, which does
not require the ground-truth during network training.

2.2. Attention mechanism

Conceptually, the attention mechanism is a bionic technical, which
is inspired by the observation characteristics of animals. Concretely,
when the neural network extracts the features of the viewed target,
it should assign different weights to the feature map according to the
degree of contribution to the current task. Classically, Itti et al. (1998)
proposed a visual attention system, which can quickly realize the scene
understanding. Subsequently, attention mechanisms were introduced
into various visual tasks. The implementation of attention mechanism
has various dimensions, which can be at channel, spatial and temporal.

The attention mechanism along the channel dimension is also called
channel attention, which is to selectively weight different types of fea-
tures extracted by different convolution kernels, so as to achieve feature
enhancement or suppression. These features can be high-frequency and
low-frequency features. The high-frequency feature often reflects the
texture structure of an image, which is more important in some fields.
Conversely, the low-frequency feature indicates more holistic informa-
tion such as the intensity distribution characteristics of image, which is
needed in certain fields. Differently, the spatial attention focuses on the
characteristics of spatial position. The so-called spatial position is from
the length and width of an image, which reflects the spatial relationship
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of the 3D object projected onto the 2D imaging plane. In some cases,
certain regions of an image are more important for specific tasks. For
example, the target is more important than the background in the
detection task. Another example is that in the infrared image, regions
with strong thermal radiation are more important than regions with
weak thermal radiation. Temporal attention is different from the above
two attention mechanisms, which is proposed for time series data. In
some cases, the data features of one moment are more important than
those of another. For example, the importance of words in natural
language processing is different. Also, the contribution of video frames
to action understanding is different, in which frames with changes in
action status are more important than those still ones.

The development and application of some typical attention mech-
anisms are given below. Bahdanau et al. (2014) applied attention
mechanism in the field of natural language processing, which makes
full use of the language context information and improves the perfor-
mance of machine translation. Luong et al. (2015) further considered
the scale of attention and proposed two attention models, namely,
global attention and local attention, which are used in machine trans-
lation. In recent years, some plug-and-play attention blocks have been
proposed one after another, which can be applied to various tasks. Hu
et al. (2018) designed a channel attention module called SI block,
which performs feature selection along the channel dimension. Woo
et al. (2018) proposed the CBAM block, which extends the SI block from
just channel dimension to channel plus spatial dimensions. The effec-
tiveness of SE and CBAM blocks has been widely proven. In SCSCN (Ma
et al., 2020c), the separated channel-spatial attention is adopted to
focus on the edges and high-frequency features of the target to obtain
high-quality 3D reconstruction results. Hua et al. (2019) designed a
class attention learning layer, which aims at capturing discriminative
class-specific features, so as to improve the accuracy of multi-label
aerial image classification. In our NDVI-Net, attention mechanisms are
used to screen important features and enhance tiny texture details for
NDVL.

3. Method

In this section, we give a detailed introduction to our method.
We first introduce the overview of the framework, and then give
the definition of loss functions. Finally, the detailed structure of the
proposed NDVI-Net is provided.

3.1. Overview of the framework

The purpose of our work is to generate HRNDVI, which contains
clear spatial texture and has an accurate intensity distribution. The
intensity distribution characteristics are not difficult to infer from
LRNDVI under the constraint of the reference image, while it is not easy
to change the spatial texture from weak to strong. For this observation,
we introduce the HRVI defined by Eq. (2) to provide adequate spatial
texture information for HRNDVI reconstruction. On this basis, a new
two-branch fusion network is designed to reconstruct clear spatial
texture and accurate intensity distribution. As shown in Fig. 4, the two
branches of NDVI-Net are the NDVI and HRVI branches. The NDVI
branch is the main branch used to recover HRNDVI from LRNDVI, in
which the intensity distribution features can be obtained from LRNDVIL
The role of the HRVI branch is to extract and select spatial texture
features from HRVI and then inject them into the NDVI branch, so that
the HRNDVI with a reasonable intensity distribution and clear spatial
texture can be generated by the NDVI branch.

Concretely, we firstly up-sample the LRNDVI to the same size as the
HRVI, which is implemented by transposed convolution. Secondly, the
multi-scale channel enhancement block is separately used in both the
NDVI branch and the HRVI branch to extract and select important fea-
tures. For example, the intensity distribution characteristics of LRNDVI
and the spatial texture characteristics of HRVI should be extracted and
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Fig. 4. Overall fusion framework of our NDVI-Net. We adopt NDVI branch and HRVI branch to obtain intensity distribution and spatial texture information, respectively. MS-CE:

multi-scale channel enhancement; SI: spatial intensify.

selected, because they are important for reconstructing the HRNDVI.
Each multi-scale channel enhancement block consists of a multi-scale
convolution and a channel attention. The multi-scale convolution is to
extract features from different scale receptive fields, which is conducive
to the maintenance of a local structure. The channel attention is to
filter the features extracted by different convolution kernels. After each
multi-scale channel enhancement block, we inject the features from
the HRVI branch into the NDVI branch in a one-way manner, which
can improve the spatial information quality of features in the NDVI
branch. Thirdly, we adopt the spatial intensify block to selectively
weight the features in the NDVI branch along the spatial position,
further strengthening the attention for preservation of tiny textures.
It is worth noting that we perform feature reuse in each stage in our
network to reduce information loss due to convolution. Guided by the
specifically designed loss function, our NDVI-Net can reconstruct the
preliminary HRNDVI. Finally, we perform the post-processing to reduce
the drift of the neural network output. To be specific, we use the
traditional method to decompose the preliminary HRNDVI into base
layer and detail layer, and then perform histogram specification for the
base layer referencing the up-sampled LRNDVI. The final high-quality
HRNDVI is obtained by adding the detail layer and the processed base
layer, which not only has the intensity distribution similar to ground
truth, but also contains fine texture details.

3.2. Loss functions

The loss function is designed based on the intensity distribution
and texture details, which consists of an intensity loss term L£;, and
a gradient loss term Lgp,q:

L=Li+ yﬁgradv (5

where y is used to balance the two loss terms.

The intensity loss term is used to constrain the intensity distribution
of the reconstructed HRNDVI to approximate that of the reference
image. In order to reduce the detail smoothing effect caused by regres-
sion (Zhao et al., 2016), we use ¢, loss instead of #,. The intensity loss
term L;, is formalized as:

1
£int = W |1fused - 1refer|7 (6)

where Ig.q is the HRNDVI generated by the network, I .., is the
ground truth, H and W are the height and width of the image,
respectively.

Only using the intensity loss term still inevitably causes some local
details to be blurred. In order to preserve the tiny details, we introduce

186

the gradient loss term, in which we use the Sobel operator to find the
gradient. It is worth noting that we constrain the gradient consistency
in the X and Y directions between the fused NDVI and the reference
NDVI, instead of merging the gradient of these two dimensions. In other
words, we require their gradients to be numerically equal, and also
want them to be in the same direction. We again choose the #; loss
in the gradient loss term L., which is defined as:

1
£grad = lexlﬁlsed - VxIrefer| + |VyIfused - VyIrefer s (7)

where V, and V, are Sobel gradient operators in X and Y directions.
3.3. Network architectures

The NDVI-Net we proposed is a two-branch convolutional neural
network, which is shown in Fig. 5. First, two transposed convolution
layers with the 5 x 5 convolution kernel are used in the NDVI branch
to up-sample the LRNDVI to the same size as HRVI. Second, both NDVI
and HRVI branches use four multi-scale channel enhancement blocks
to extract and select the required features. The detailed structure of
the multi-scale channel enhancement block is shown in the lower right
corner of Fig. 5. In particular, three convolution layers with 3 x 3,
5 x 5, and 7 x 7 convolution kernels are first used, and then the output
of them is concatenated. Based on the concatenated result, a channel
attention map can be generated, then we multiply the concatenated
features and the attention map to obtain enhanced features. After each
multi-scale channel enhancement block, we unidirectionally inject the
features in the HRVI branch into the NDVI branch to improve the
spatial quality of the features in the NDVI branch. Third, we adopt
four spatial intensify blocks in the NDVI branch to strengthen the
preservation of tiny details. The spatial intensify block consists of a
convolution layer with 5 x 5 convolution kernel and spatial attention,
which is also shown in the lower right corner of Fig. 5. In detail,
based on the features extracted by this convolutional layer, a spatial
attention map is generated, and then the spatially enhanced features
are obtained by multiplying the feature and the spatial attention map.
Finally, two convolutional layers with 5 x 5 convolution kernel are used
to reconstruct the HRNDVI. Except for the last layer, all convolutional
layers use the Leaky ReLU as the activation function, while the last
convolutional layer adopts the Tanh as the activation function.

4. Experiments

In this section, we verify the performance of our NDVI-Net. Firstly,
we introduce the experimental settings including datasets, training
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Fig. 5. Network architecture of the proposed NVDI-Net. The structural diagrams of MS-CA block and spatial enhancement block are located in the lower right corner.

details and evaluation metrics. Then, we provide qualitative and quan-
titative results on two datasets. In addition, we compare different
definitions of HRVI to prove the rationality of our modified HRVI in
reconstructing HRNDVI. We also perform some ablation experiments
to demonstrate the role of the HRVI branch and the effectiveness of
the spatial intensify block and multi-scale channel enhancement block.
Subsequently, the generalization experiment is provided. Finally, we
conduct additional applied experiments, namely vegetation detection
and enhancement, and land cover mapping.

4.1. Experimental settings

4.1.1. Datasets

To fully validate the performance of our method, we use the Quick-
Bird and GF-2 datasets for evaluation. The spatial resolutions of high-
resolution NDVI in these two satellites are 0.61 m and 1 m. We follow
Wald’s protocol (Wald et al., 1997) to down-sample the original high-
resolution NDVI to low-resolution NDVI and then the high-resolution
NDVI is used as the reference. In other words, the spatial resolution
of low-resolution NDVI in these two satellites are 2.44 m and 4 m,
respectively. On these two datasets, the number of image pairs used
for testing is both 25. For training, in order to obtain more training
data, we adopt the expansion strategy of tailoring and decomposition.
Specifically, for the QuickBird, we crop the rest of data to 43,940 image
patch pairs for training; for the GF-2, we crop the rest of images to
60,840 image patch pairs for training. It should be noted that in these
training data, the size of LRNDVI is 25 x 25, and the size of HRVI is
100 x 100. In addition, the data input into the network conform to the
definitions of NDVI and HRVI, which are in the range of [-1, 1].

4.1.2. Training details

The batch size is set to b, and it takes m steps to train one epoch.
The total number of training epochs is M. In our experiment, we set
b =232, M =65, and m is set as the ratio between the whole number of
patches and b. In addition, the ratio of intensity loss term and gradient
loss term in the loss function is 1 : 5, that is to say, y is set to 5. The
parameters in our NDVI-Net are updated by AdamOptimizer. All deep
learning-based methods run on the same GPU RTX 2080Ti, while other
methods run on the same CPU Intel i7-8750H.

4.1.3. Evaluation metrics

We evaluate the fused results from two aspects, i.e., qualitatively
and quantitatively. Qualitative evaluation relies on human subjective
visual perception. A good fused result should have similar intensity
distribution and fine texture details as the reference HRNDVI. Quan-
titative evaluation refers to the statistical calculation of fused images,

using some statistic values to represent the fusion quality. We select six
statistics as objective metrics to measure the fused results, such as the
root mean square error (RMSE), gradient magnitude similarity devia-
tions (GMSD) (Xue et al., 2013), structural similarity index measure
(SSIM) (Wang and Bovik, 2002), correlation coefficient (CC) (Desh-
mukh and Bhosale, 2010), visual information fidelity (VIF) (Sheikh
and Bovik, 2006) and information fidelity criterion (IFC) (Sheikh
et al., 2005). All the six metrics are calculated based on the reference
HRNDVI. Concretely, RMSE and GMSD measure the pixel difference
and gradient difference between the fused result and the reference
HRNDVI, respectively. The smaller the RMSE and GMSD, the better
the quality of the fused result. On the contrary, SSIM, CC, VIF and
IFC respectively evaluate the structural similarity, correlation, visual
fidelity and information fidelity between the generated HRNDVI and
reference HRNDVI. The larger these four metrics, the better the image
quality.

4.2. Comparative experiments

We evaluate our NDVI-Net with comparison to seven state-of-the-
art methods including BDSD (Garzelli et al., 2007), PRACS (Choi et al.,
2010), PMGI (Zhang et al., 2020a), MTF-GLP (Aiazzi et al., 2006),
PNN (Masi et al., 2016), LGC (Fu et al., 2019) and NTV (Zhang et al.,
2020b).

4.2.1. Qualitative comparison

Two typical image pairs from QuickBird and GF-2 are selected to
qualitatively demonstrate the characteristics of our proposed method,
as shown in Figs. 6 and 8. From these results, we see that our NDVI-
Net has clear advantages over other methods. First of all, compared
with other methods, our method can maintain a more accurate intensity
distribution. The intensity of NDVI represents the growth status of
vegetation, so the intensity accuracy of fusion results is very important
to vegetation detection. The overall intensity distribution of the NDVI
images obtained by our method is closer to that of the reference
HRNDVI, while other comparative methods have more or less intensity
distortion. Second, our method has high fidelity to local texture details.
The local texture details of NDVI are often the basis for the division of
vegetation areas, and its fidelity directly determines the accuracy of the
division of each area. As highlighted in Fig. 6, our method is effective
in maintaining the boundaries between houses, roads and vegetation.
In Fig. 8, our method can effectively maintain the texture details of
the pond vegetation connection, which cannot be achieved by all other
comparative methods.

In addition, we provide residual images between the results of
each method and the reference HRNDVI to demonstrate the degree of
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Fig. 6. Qualitative comparison of different methods for NDVI fusion on the data from QuickBird. The images are HRMS image, reference NDVI, fused results of BDSD (Garzelli
et al.,, 2007), PRACS (Choi et al., 2010), PMGI (Zhang et al., 2020a), MTF-GLP (Aiazzi et al., 2006), PNN (Masi et al., 2016), LGC (Fu et al., 2019), NTV (Zhang et al., 2020b)

and our NDVI-Net.

BDSD

LGC NTV

PMGI
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PNN

MTF-GLP
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Fig. 7. The residual NDVI by the absolute error between the fused result and reference NDVI in Fig. 6.

distortion, as shown in Figs. 7 and 9. We also highlight the same regions
as in Figs. 6 and 8 for comparison. Obviously, the residual image of our
method is the darkest compared with other methods, which shows the
high fidelity characteristics of our NDVI-Net. In general, our NDVI-Net
performs better than other methods in terms of subjective perception,
which not only has a more accurate intensity distribution, but also
contains richer local texture details.

4.2.2. Quantitative comparison

In order to assess our method more comprehensively, we further
provide quantitative comparisons of the seven comparative methods
on the two datasets from QuickBird and GF-2. The six metrics RMSE,
GMSD, SSIM, CC, VIF and IFC all need the reference HRNDVI to
calculate. The statistical results are shown in Tables 1 and 2.

From the results, we see that our NDVI-Net is able to achieve much
better average values than all the other competitors on all the six
metrics on both datasets. The RMSE and GMSD metrics show that the
results of our method have minimal intensity and gradient differences
from reference HRNDVI. In addition, SSIM, CC, VIF and IFC show that
our NDVI-Net can maintain the structural similarity and correlation
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degree with reference HRNDVI to the greatest extent, and has the best
visual information fidelity. All of them are consistent with the visual
perception of our results. Overall, our NDVI-Net performs significantly
better than all other methods in objective evaluation.

4.3. Validation of HRVI definition

In this work, we introduce the HRVI (Tu et al., 2009) and mod-
ify it to be the source data fused with LRNDVI. Compared with the
original HRVI, the modified HRVI has the texture more similar to
NDVI, which facilitates the reconstruction of fine textures. To verify
this point, a comparative experiment is provided in Fig. 10. It can be
seen that our modified HRVI has a distribution similar to the reference
NDVI, especially the texture details. On the contrary, the HRVI defined
in Tu et al. (2009) is visually different from the reference NDVI, and
some tiny textures are quite weak. The corresponding fused results
further demonstrate this difference. In the HRNDVI generated by fusing
LRNDVI and our modified HRVI, the tiny intervals between vegetation
can be well reconstructed. But these intervals are weak in the HRNDVI
generated by fusing LRNDVI and the origin HRVI. As a result, our
modified HRVI is more reasonable in generating HRNDVIL
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Fig. 8. Qualitative comparison of different methods for NDVI fusion on the data from GF-2. The images are HRMS image, reference NDVI, fused results of BDSD (Garzelli et al.,
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Fig. 9. The residual NDVI by the absolute error between the fused result and reference NDVI in Fig. 8.

4.4. Ablation experiments

In order to verify the effectiveness of the specific designs in this
paper, we perform relevant ablation experiments, including the HRVI
branch, multi-scale channel enhancement block and spatial intensify
block.

4.4.1. HRVI branch analysis

The role of the HRVI branch is to extract spatial texture features
from the HRVI image and inject it into the NDVI branch, thereby
enhancing the reconstruction quality of HRNDVI. To validate its ef-
fectiveness, we train our NDVI-Net without the HRVI branch. The
difference of the results is shown in Fig. 11. It can be clearly seen that
the result with the HRVI branch contains richer spatial texture details,
which are closer to those in the reference HRNDVI. On the contrary,
the result without the HRVI branch suffers from blurred details. As a
result, this proves the importance of the NDVI branch in reconstructing
the texture.
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4.4.2. MS-CE block analysis

The multi-scale channel enhancement block is used to extract and
screen important features in two branches in the first stage. Specifically,
what we need is the intensity distribution characteristics in LRNDVI and
the spatial texture features in HRVI In order to verify the role of the
MS-CE block, we replace it with the ordinary convolutional layer. The
results are shown in Fig. 12. When there is no MS-CE block, artificial
white shadows appear in the local blocks. Conversely, the result with
the MS-CE block contains no such distortion, which is closer to the
reference HRNDVI. This experiment shows that the MS-CE block is
important in preliminary feature extraction, which can observe the
input from different scales and cooperate with the channel attention
mechanism to select more favorable features and suppress invalid or
negative features, such as white shadows in highlighted regions.

4.4.3. SI block analysis

The small details of NDVI are very important in vegetation detec-
tion, because they are usually dividing lines between vegetation, such
as roads, buildings and so on. The spatial intensify block is to selec-
tively enhance or suppress all the features of the corresponding spatial
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Fig. 10. Validation of HRVI definition. We use the original HRVI (Tu et al., 2009) and our modified HRVI. The corresponding fused results are provided.

Table 1

Quantitative comparison of eight methods on 25 test images from the QuickBird dataset. Bold indicates the best result.
Method RMSE GMSD SSIM cC VIF IFC
BDSD (Garzelli et al., 2007) 10.850 + 3.130 0.115 + 0.033 0.352 + 0.147 0.929 + 0.047 0.245 + 0.056 1.231 + 0.472
PRACS (Choi et al., 2010) 7.739 + 2.047 0.093 + 0.024 0.342 + 0.147 0.948 + 0.042 0.246 + 0.050 1.355 + 0.525
PMGI (Zhang et al., 2020a) 8.494 + 1.847 0.113 + 0.023 0.267 + 0.120 0.939 + 0.043 0.199 + 0.028 1.106 + 0.360
MTF-GLP (Aiazzi et al., 2006) 9.931 + 1.723 0.126 + 0.027 0.286 + 0.120 0.925 + 0.042 0.232 + 0.042 1.222 + 0.425
PNN (Masi et al., 2016) 15.492 + 2.298 0.131 + 0.017 0.353 + 0.158 0.905 + 0.035 0.223 + 0.050 1.138 + 0.472
LGC (Fu et al., 2019) 6.238 + 2.319 0.064 + 0.027 0.474 + 0.173 0.964 + 0.035 0.385 + 0.078 2.243 + 0.811
NTV (Zhang et al., 2020b) 6.528 + 1.311 0.083 + 0.030 0.403 + 0.154 0.965 + 0.022 0.301 + 0.052 1.648 + 0.601
NDVI-Net 4.724 + 1.048 0.043 + 0.014 0.513 + 0.210 0.982 + 0.012 0.417 + 0.088 2.303 + 0.890

Table 2

Quantitative comparison of eight methods on 25 test images from the GF-2 dataset. Bold indicates the best result.
Method RMSE GMSD SSIM cC VIF IFC
BDSD (Garzelli et al., 2007) 11.047 + 2.199 0.118 + 0.024 0.456 + 0.087 0.908 + 0.032 0.278 + 0.043 1.548 + 0.153
PRACS (Choi et al., 2010) 6.938 + 0.990 0.087 + 0.014 0.498 + 0.096 0.946 + 0.017 0.307 + 0.033 1.946 + 0.313
PMGI (Zhang et al., 2020a) 7.536 + 1.190 0.105 + 0.017 0.438 + 0.092 0.937 + 0.019 0.272 + 0.027 1.788 + 0.166
MTF-GLP (Aiazzi et al., 2006) 7.550 + 0.967 0.095 + 0.013 0.465 + 0.096 0.937 + 0.015 0.287 + 0.030 1.816 + 0.272
PNN (Masi et al., 2016) 12.555 + 2.957 0.124 + 0.026 0.500 + 0.076 0.895 + 0.052 0.327 + 0.066 1.768 + 0.234
LGC (Fu et al., 2019) 6.449 + 1.524 0.061 + 0.022 0.592 + 0.073 0.953 + 0.024 0.418 + 0.047 2.738 + 0.282
NTV (Zhang et al., 2020b) 5.923 + 1.030 0.064 + 0.019 0.601 + 0.082 0.961 + 0.013 0.392 + 0.037 2.500 + 0.273
NDVI-Net 4.340 + 0.683 0.036 + 0.010 0.740 + 0.100 0.979 + 0.006 0.549 + 0.034 3.450 + 0.387

position along the pixel, so it can further strengthen the preservation of
small details on the basis of the previous MS-CE block. We conduct an
ablation experiment to verify this point, and the results are shown in
Fig. 13. Obviously, the result with SI block can better retain those tiny
textures, such as gaps and edges between vegetation as highlighted,
while the result without SI block cannot.

4.5. Visualization of spatial injection

The spatial texture features in the HRVI branch are injected unidi-
rectionally into the NDVI branch, thereby providing spatial information
for HRNDVI reconstruction. In order to show this process intuitively, we
randomly select two channels from the feature maps of spatial injection

in the HRVI branch and from the features maps before and after the
injection in the NDVI branch for visualization, which are shown in
Fig. 14.

It can be seen that the features injected into the NDVI branch
from the HRVI branch contain very rich spatial texture information.
In addition, the output features of the NDVI layer 1 of the NDVI
branch have the checkerboard effect caused by transpose convolution,
and the texture details are blurred. With the input of spatial features
from the HRVI branch, the texture details of features in the NDVI
branch are gradually enriched, and the checkerboard effect is gradually
eliminated. The visualization experiment further proves the important
role of the HRVI branch for HRNDVI reconstruction.
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Fig. 11. Ablation experiment of HRVI branch. From left to right: reference NDVI, the result without HRVI branch and the result with HRVI branch.
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Fig. 12. Ablation experiment of MS-CE block. From left to right: reference NDVI, the result without MS-CE block and the result with MS-CE block.
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Fig. 13. Ablation experiment of SI block. From left to right: reference NDVI, the result without SI block and the result with SI block.

4.6. Generalization experiment

The generalization ability of deep learning-based methods is an
important basis for measuring the performance of a method. In the
field of remote sensing image fusion, the model trained on one dataset
is difficult to transfer to another due to the different imaging sensors
mounted on different satellites. In order to verify the generalization
performance of our NDVI-Net, we train it on the GF-2 dataset and then
test it on the QuickBird dataset. PNN is also processed in the same way.
The experimental results are shown in Fig. 15 and Table 3. It is worth
noting that the “Normal” in Fig. 15 and Table 3 means the training and
testing of the network are both implemented on the QuickBird dataset.

As can be seen from Fig. 15, the test result of transferred PNN on the
QuickBird dataset has a large intensity distortion, and its style is more
similar to the GF-2 data in Fig. 8. In contrast, although our method also
suffers from performance degradation after transferring, it can still get a
relatively good result. The objective indicators in Table 3 are consistent

191

with the qualitative results. Compared with PNN, our NDVI-Net has less
performance degradation.

4.7. Application to vegetation detection and enhancement

The NDVI is widely used to analyze the growth status of vegetation.
We apply the NDVI to vegetation detection and enhancement. The high-
precision HRNDVI generated by our NDVI-Net can overcome the poor
accuracy of vegetation detection and enhancement in the HRMS image.

4.7.1. Application strategy

We first give a specific application strategy of NDVI in vegetation
detection and enhancement. The detailed description of the detection
and enhancement method is shown in Fig. 16.

The value of NDVI is in the range of [—1, 1], which indicates the
status of land covered by vegetation. Therefore, in order to detect
whether a certain pixel position is covered by vegetation, a threshold
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Fig. 15. Visualization of generalization experiment.
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Table 3

Quantitative comparison of generalization on 25 test images from the QuickBird dataset.
Method RMSE GMSD SSIM CcC VIF IFC
PNN normal (Masi et al., 2016) 15.492 + 2.298 0.131 + 0.017 0.353 + 0.158 0.905 + 0.035 0.223 + 0.050 1.138 + 0.472
PNN transfer (Masi et al., 2016) 56.910 + 17.266 0.281 + 0.026 0.014 + 0.066 0.031 + 0.203 0.030 + 0.033 0.127 + 0.172
PNN degradation 41.418 0.150 0.339 0.874 0.193 1.011
Ours normal 4.724 + 1.048 0.043 + 0.014 0.513 + 0.210 0.982 + 0.012 0.417 + 0.088 2.303 + 0.890
Ours transfer 6.577 + 1.390 0.074 + 0.020 0.389 + 0.146 0.965 + 0.022 0.289 + 0.049 1.519 + 0.518
Ours degradation 1.853 0.031 0.124 0.017 0.128 0.784

Weight map

Detectioni .

Original MS

Weight
Generation

Enhanced MS

Fig. 16. Schematic diagram of vegetation detection and enhancement. We use HRNDVI generated by NDVI-Net to detect and enhance vegetation.

can be manually set for NDVI as the dividing line between vegetation
presence and absence. Therefore, the vegetation detection mask can be
obtained by the following rule:

1,

Mask; ; = {
f 0.

where y is the threshold, which is a constant. The value of NDVI is
not only related to the characteristics of the remote sensing imaging
regions, but also related to the response characteristics of sensors.
Therefore, the threshold y can be adjusted according to the actual
situation.

Vegetation enhancement needs to be considered from two aspects.
The first is which regions should be enhanced, and the second is what
rules should be used for this enhancement. For the first consideration,
we should enhance the areas covered by vegetation, while for other
areas their original values should be kept to unchanged. For the second
consideration, this enhancement should be gradual, that is, the texture
structure between vegetation should be strictly maintained. Taking
together these two considerations, the nonlinear weight map based on
the value of NDVI itself can be generated according to:

NDVI; >y,
others,

®

Weight; ; = e NDVIj-Mask;;

©)]

where f is a scaling factor, which can control the degree of enhance-
ment. It is worth noting that § should be controlled not to exceed the
upper numerical limit to avoid truncation errors, and hence it can be
adjusted according to actual needs. The nonlinear weight map based
on NDVI can effectively maintain the texture between vegetation.
Subsequently, the obtained weight map can be used to enhance the

green band of the original MS image, which is formalized as:
Genhanced = Goriginal - Weight, 10$)

in which Gggina is the green band of the original MS image, and
Genhanced 1S €nhanced green band. Finally, the enhanced MS image is
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generated by concatenating the enhanced green band and original blue,
red and near infrared bands.

4.7.2. Results analysis

The vegetation detection and enhancement results based on NDVI
of different methods are provided in Figs. 17 and 18. It is worth noting
that the yw and g in Egs. (8) and (9) are controlled unchanged in all
methods. In particular, we set w =0.3 and f =0.7.

Among the vegetation detection masks of all methods, the mask
obtained by our method is more consistent with the reference mask.
For example, in the highlighted region in Fig. 17, our method can
detect the green belt on the highway and the gap between them more
accurately. In contrast, other methods are either unable to detect them,
or the detected texture is not fine enough. Specifically, BDSD, PRACS,
PMGI, MTF-GLP and NTV are failed to detect the green belt, while the
green belts detected by PNN and LGC are too thick or incomplete. In
addition, the villages and small roads detected by our method are clear
and regular, which are consistent with the reference. The results of
vegetation enhancement in Fig. 18 are generated based on the NDVI
and the vegetation detection results in Fig. 17. It can be seen that
in the results of our method, the transition between the enhanced
vegetation and the villages is very natural. And the green belt on the
highway is also enhanced from invisible to obvious. In contrast, due
to the relatively large distortion of NDVI, other methods have led to
misjudgments in subsequent vegetation detection and enhancement.
In general, compared with other methods, our enhanced result is the
closest to the reference enhanced result. We also provide quantitative
results in Table 4. It can be seen that our method can obtain the
best objective metrics both in vegetation detection and vegetation
enhancement.
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Fig. 17. Qualitative results of vegetation detection. The images are detection masks by reference, BDSD (Garzelli et al., 2007), PRACS (Choi et al., 2010), PMGI (Zhang et al.,
2020a), MTF-GLP (Aiazzi et al., 2006), PNN (Masi et al., 2016), LGC (Fu et al., 2019), NTV (Zhang et al., 2020b) and our NDVI-Net.
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Fig. 18. Qualitative results of vegetation enhancement. The images are HRMS image, enhanced results by reference, BDSD (Garzelli et al., 2007), PRACS (Choi et al., 2010),
PMGI (Zhang et al., 2020a), MTF-GLP (Aiazzi et al., 2006), PNN (Masi et al., 2016), LGC (Fu et al., 2019), NTV (Zhang et al.,, 2020b) and our NDVI-Net. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4

Quantitative comparison of the vegetation detection and enhancement. Bold indicates the best result.
Method Detection Enhancement

RMSE RMSE GMSD SSIM CcC VIF IFC

BDSD (Garzelli et al., 2007) 0.225 + 0.061 4.786 + 1.056 0.062 + 0.007 0.627 + 0.05 0.908 + 0.024 0.504 + 0.104 4.365 + 0.235
PRACS (Choi et al., 2010) 0.223 + 0.067 4.324 + 1.140 0.055 + 0.010 0.625 + 0.055 0.918 + 0.029 0.464 + 0.082 4.199 + 0.169
PMGI (Zhang et al., 2020a) 0.237 + 0.070 4.735 + 1.177 0.064 + 0.012 0.533 + 0.065 0.902 + 0.032 0.409 + 0.082 3.857 + 0.132
MTF-GLP (Aiazzi et al., 2006) 0.226 + 0.067 4.779 + 0.964 0.060 + 0.009 0.415 + 0.017 0.899 + 0.023 0.382 + 0.037 3.673 + 0.153
PNN (Masi et al., 2016) 0.321 + 0.065 7.023 + 1.115 0.090 + 0.002 0.643 + 0.088 0.844 + 0.025 0.454 + 0.123 3.273 + 0.009
LGC (Fu et al., 2019) 0.194 + 0.062 3.702 + 1.051 0.037 + 0.011 0.737 + 0.061 0.940 + 0.023 0.612 + 0.107 5.278 + 0.435
NTV (Zhang et al., 2020b) 0.224 + 0.059 4.409 + 0.920 0.056 + 0.001 0.743 + 0.068 0.919 + 0.021 0.593 + 0.120 4.969 + 0.414
NDVI-Net 0.176 + 0.055 3.264 + 0.936 0.029 + 0.009 0.797 + 0.047 0.953 + 0.018 0.671 + 0.101 5.467 + 0.278

4.8. Application to land cover mapping

NDVI can also characterize some other types of land cover. Gener-
ally, negative values indicate that the ground is covered by water and
snow; 0 represents that there is rock or bare soil; positive values refer

which the coverings are divided into three categories, saying water,
bare land or buildings, and vegetation. The land cover mapping results
based on NDVI of different methods are provided in Fig. 19. It can
be seen that our results are the most consistent with the reference,

to that there is vegetation, which increases with increasing coverage. which can more accurately classify the three types of coverings. We also
Therefore, we can implement land cover mapping based on NDVI, in provide quantitative results for a more comprehensive comparison, as
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Fig. 19. Qualitative results of land cover mapping. The images are the HRMS, the results by reference, BDSD (Garzelli et al., 2007), PRACS (Choi et al., 2010), PMGI (Zhang
et al., 2020a), MTF-GLP (Aiazzi et al., 2006), PNN (Masi et al., 2016), LGC (Fu et al., 2019), NTV (Zhang et al., 2020b) and our NDVI-Net.

Table 5
Quantitative comparison of the land cover mapping. Bold indicates the best result.

Method RMSE GMSD SSIM CC VIF IFC

BDSD (Garzelli et al., 2007) 24.381 + 2.237 0.097 + 0.005 0.728 + 0.024 0.834 + 0.014 0.568 + 0.040 0.882 + 0.268
PRACS (Choi et al., 2010) 20.734 + 2.944 0.096 + 0.008 0.752 + 0.040 0.884 + 0.008 0.515 + 0.017 0.873 + 0.205
PMGI (Zhang et al., 2020a) 24.160 + 5.135 0.109 + 0.006 0.691 + 0.069 0.846 + 0.039 0.406 + 0.032 0.505 + 0.057
MTF-GLP (Aiazzi et al., 2006) 20.791 + 3.482 0.095 + 0.010 0.752 + 0.050 0.885 + 0.019 0.530 + 0.023 0.906 + 0.177
PNN (Masi et al., 2016) 29.209 + 3.079 0.116 + 0.008 0.663 + 0.047 0.767 + 0.007 0.372 + 0.043 0.441 + 0.071
LGC (Fu et al., 2019) 17.724 + 2.010 0.075 + 0.004 0.812 + 0.016 0.915 + 0.006 0.605 + 0.012 1.315 + 0.285
NTV (Zhang et al., 2020b) 20.656 + 2.734 0.091 + 0.007 0.746 + 0.026 0.888 + 0.013 0.545 + 0.006 0.922 + 0.150
NDVI-Net 16.973 + 3.339 0.074 + 0.007 0.828 + 0.035 0.924 + 0.018 0.604 + 0.016 1.356 + 0.149

shown in Table 5. Our method achieved the best results on five metrics,
which further proves the good performance of our method.

5. Conclusion

In this paper, a novel two-branch NDVI fusion network based on
multi-scale and attention mechanism, called NDVI-Net, is proposed to
generate the high-resolution NDVI with accurate intensity distribution
and clear texture details. The HRVI is introduced to our model to
provide spatial texture information for reconstructing HRNDVI. We
first adopt the multi-scale channel enhancement blocks to extract and
screen features separately from the NDVI branch and HRVI branch.
Meanwhile, the texture detail features in the HRVI branch are unidirec-
tionally injected into the NDVI branch to provide spatial information
for HRNDVI reconstruction. Subsequently, the spatial intensify blocks
are used for pixel-by-pixel feature selection along spatial locations,
which can further enhance the retention of minute details. Under
the constraints of a specific loss function, the high-quality HRNDVI
can be obtained. Extensive qualitative and quantitative experiments
demonstrate the advantages of our NDVI-Net over state-of-the-art meth-
ods in terms of both subjective visual effect and quantitative metrics.
Moreover, our NDVI-Net has good generalization performance, which
can be better migrated to other satellite data. The expanded application
to vegetation detection and enhancement, and land cover mapping
further proves the advantages of our method.

Our NDVI-Net needs the reference HRNDVI during the training
phase to guide the optimization of the network, which may limit its use
on some datasets. For example, in those datasets with a small number
and small image size, the training data obtained by down-sampling
cannot train the network adequately. In the future, we will focus on
the research of unsupervised fusion network for generating HRNDVI,

and apply it to a wider range of remote sensing tasks, such as grain
yield prediction, land-cover change detection and crop identification.
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