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TargefTablets can be detected easily from the background of infrared images due to their significantly discrim- 

inative thermal radiations, while visible images contain textural details with high spatial resolution which are 

beneficial to the enhancement of target recognition. Therefore, fused images with abundant detail information 

and effective target areas are desirable. In this paper, we propose an end-to-end model for infrared and visible 

image fusion based on detail preserving adversarial learning. It is able to overcome the limitations of the manual 

and complicated design of activity-level measurement and fusion rules in traditional fusion methods. Consider- 

ing the specific information of infrared and visible images, we design two loss functions including the detail loss 

and target edge-enhancement loss to improve the quality of detail information and sharpen the edge of infrared 

targets under the framework of generative adversarial network. Our approach enables the fused image to simul- 

taneously retain the thermal radiation with sharpening infrared target boundaries in the infrared image and the 

abundant textural details in the visible image. Experiments conducted on publicly available datasets demonstrate 

the superiority of our strategy over the state-of-the-art methods in both objective metrics and visual impressions. 

In particular, our results look like enhanced infrared images with clearly highlighted and edge-sharpened targets 

as well as abundant detail information. 

1

 

t  

t  

m  

c  

a  

o  

s  

c  

c  

i  

e  

h  

f  

t  

t

x

 

p  

n  

n  

d  

c  

f  

i  

w  

t  

i  

s  

a  

s  

b  

i  

c

h

R

A

1

. Introduction 

Infrared images, which are captured by infrared sensors to record

he thermal radiations emitted by different objects, are widely used in

arget detection and surface parametric inversion. Infrared images are

inimally affected by illumination variations and disguises, and they

an be easily captured at daytime and nighttime. However, infrared im-

ges usually lack texture, which seldom influences the heat emitted by

bjects. By contrast, visible images are captured and used to record the

pectral information reflected by different objects, which contain dis-

riminative characteristic information. Visible images also provide per-

eptual scene descriptions for the human eyes. Nevertheless, the targets

n visible images may not be easily observed due to the influence of

xternal environment, such as nighttime conditions, disguises, objects

idden in smoke, cluttered background, etc. Therefore, the purpose of

usion is to obtain a single complementary fused image that has rich de-

ail information from the visible image and effective target areas from

he infrared image [1–8] . 
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Various infrared and visible image fusion methods have been pro-

osed in recent years, and they can be divided into seven categories,

amely, multi-scale transform [9] , sparse representation [10] , neural

etwork [11] , subspace [12] , saliency [13] , hybrid models [14] , and

eep learning [15] . In general, the current fusion methods involve three

rucial challenges, i.e., image transform, activity-level measurement and

usion rule designing [16] . The three constraints have become increas-

ngly complex, especially for designing fusion rules in a manual way

hich strongly limits the development of the fusion methods. Moreover,

he existing methods typically select the same salient features of source

mages, such as edges and lines, to be integrated into the fused images,

o that the fused images contain more detail information. However, the

bove approaches may not be suitable for infrared and visible image fu-

ion. In particular, infrared thermal radiation information is characterized

y pixel intensities, while textural detail information in visible images is typ-

cally characterized by edges and gradients. These two scenarios differ and

annot be represented in the same manner. 
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Fig. 1. Schematic illustration of image fusion. From left to right: infrared image, visible image, fusion results of a traditional method ADF [17] , FusionGAN [15] , 

and our method. 
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Table 1 

The category of infrared and visible 

image fusion methods. 

Multi-scale transform [18–20] 

Sparse representation [24,25] 

Neural network [11,26] 

Subspace [12,27] 

Saliency [28,29] 

Hybrid [14,30,31] 

Deep learning [4,33,34] 
To address the abovementioned issues, in our previous work [15] ,

e have proposed an end-to-end model, namely FusionGAN, to fuse the

nfrared and visible images based on a generative adversarial network

GAN). It is able to avoid the manual design of complicated activity level

easurements and fusion rules, and the fusion results look like infrared

mages with clear highlighted targets and abundant details. However,

here are two problems still remain. On the one hand, FusionGAN only

elies on adversarial training to increase extra detail information, which

s uncertain and unsteady, resulting in loss of a mount of detail infor-

ation. On the other hand, the content loss in FusionGAN only attaches

mportance to the edge information in the visible image, ignoring that in

he infrared image, and hence the edges of target in fusion results tend

o be fuzzy. To overcome these two challenges, in this paper, we design

wo loss functions, i.e., the detail loss and target edge-enhancement loss,

o improve the quality of detail information and sharpen the edge of in-

rared targets. 

To illustrate the main idea of our method, we present a represen-

ative example in Fig. 1 . The original infrared and visible images are

hown in the left two images. The target, i.e. the bunker, is salient and

asy to detect in the infrared image but difficult to distinguish in the

isible image. However, the visible image has much more background

nformation compared with the infrared one, which is beneficial to the

ccurate recognition of targets. Therefore, fusing these two types of in-

ormation is desirable in achieving a comprehensive understanding of

he captured scene. For qualitative comparison, in addition to Fusion-

AN, we also consider the anisotropic diffusion fusion (ADF) [17] , a

ecently introduced infrared and visible image fusion method based on

he traditional strategy. The fusion results of ADF, FusionGAN and our

ethod are shown in the right three images. Clearly, ADF only preserves

he textural information in the source images but the thermal radiation

nformation is lost, which then leads to a low-contrasted target in the

used image. FusionGAN and our method both can retain thermal radi-

tion distribution and textural details. Nevertheless, the target bound-

ries in our result are more clear than the result of FusionGAN, and the

rees are of more details in our result. 

This paper is an extension of our previous FusionGAN [15] , and the

rimary new contributions can be summarized as follows. First, the fu-

ion results of FusionGAN tend to be smooth and fuzzy, which is a com-

on problem by optimizing the 𝓁 2 norm. To address this issue, we pro-

ose the detail loss to constrain the fusion results and visible images to

e more similar in semantic level, which can not only make the fusion

esults clearer, but also retain more useful detail information. Second,

usionGAN is designed to preserve the radiation information of infrared

mages, ignoring the detail information that can be reflected by textures

e.g., edges of salient objects) in infrared images. To solve this problem,

e design the target edge-enhancement loss to further optimize the tex-

ures of targets, leading to a sharper representation of targets in the fu-

ion results. The detail loss and target edge-enhancement loss keep the

seful information in source images to a large extent compared with Fu-

ionGAN. Third, we deepen the generator and discriminator in the GAN

ramework. The deeper network has more powerful feature representa-

ion ability with stronger capacity to optimize our loss functions and get

erformance of the fusion results improved. Fourth, we provide qual-

tative and quantitative comparisons between our approach and nine

tate-of-the-art methods on two publicly available datasets. Unlike the
86 
ompetitors, our method can generate fused images with clearly high-

ighted and edge-sharpened targets as well as more textures. 

The rest of the paper is organized as follows. Section 2 introduces

he background and related work. Section 3 describes our method in

etail. Section 4 validates the superiority of our model, especially the

etail loss and target edge-enhancement loss, over other state-of-the-art

ethods on publicly available datasets. Section 5 presents the conclud-

ng remarks. 

. Related work 

In this section, we briefly review the related work on infrared and

isible image fusion and GANs. In addition, the perceptual loss for op-

imization is also discussed. 

.1. Infrared and visible image fusion 

Numerous infrared and visible image fusion methods have been pro-

osed due to the fast-growing demand and progress of image represen-

ation in recent years. According to the theoretical basis, the fusion

ethods can be divided into seven categories, as shown in Table 1 .

ulti-scale transform-based methods [18–20] , the most actively used

or fusion, assume that a source image can be decomposed into several

evels. A final target fused image can be obtained by fusing its layers

ased on certain particular fusion rules. The most popular transforms

sed for decomposition and reconstruction are the wavelet [21] , pyra-

id [22] , curvelet [23] , and their variants. The second category is the

parse representation-based methods [24,25] . It has been found that an

mage can be represented with a linear combination of sparse basis in an

ver-complete dictionary, which is the key factor in ensuring the good

erformance of this kind of method. The third category is the neural

etwork-based methods [11,26] , which have the advantages of strong

daptability, fault-tolerant capability, and anti-noise capacity, and they

an imitate the perceptual behavior system of the human brain when

ealing with neural information. The fourth category is the subspace-

ased methods [12,27] , which aim to project high-dimensional input

mages into low-dimensional subspaces. Given that redundant informa-

ion often exists in an image, low-dimensional subspaces can help cap-

ure the intrinsic structures of the original images. The fifth category is

he saliency-based methods [28,29] . Human visual attention often cap-

ures objects or pixels that are more significant than their neighbors.

or the methods in this category, the intensities of the regions with

alient objects are highlighted, which then improve the visual quality

f the fused image. The sixth category refers to the hybrid methods
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14,30,31] that combine the advantages of the different methods and

hus further improve the image fusion performance. In particular, Liu

t al. [31] introduced an interesting fusion procedure guided by an in-

egrated saliency map under the framework of joint sparse represen-

ation model. Recently, since much attention has been drawn to deep

earning, some deep learning-based fusion methods have been devel-

ped [4,5,32–34] . However, current methods such as [4,5,33,34] typ-

cally only apply deep learning framework to some parts of the fusion

rocess, e.g., extracting features or learning fusion strategies, while the

verall fusion process is still in traditional frameworks and not end-

o-end. In the field of exposure fusion, Prabhakar et al. [32] proposed

n end-to-end model and has achieved promising fusion performance.

owever, the addressed problem is significant different with infrared

nd visible image fusion. 

In general, the abovementioned methods aim at ensuring that the

used images contain abundant detail information. Therefore, they typ-

cally use the same image representations and select the same salient

eatures of source images such as the textures to be fused. This may

e problematic in infrared and visible image fusion, as the thermal ra-

iation in infrared images is characterized by pixel intensity, and the

igh-contrast property will be lost in the result if only textures are con-

idered during fusion. To address this issue, in our previous work [35] ,

e proposed the gradient transfer fusion (GTF) method for image fusion

o preserve the main intensity distribution in an infrared image and the

radient variation in a visible image. The result in [35] is highly simi-

ar to an infrared image with detailed appearance. The detail informa-

ion in a visible image includes gradients, contrast, and saturability, etc .

hus, gradient variation cannot sufficiently preserve the useful detail

nformation contained in visible images. To address this issue, we fur-

her proposed a GAN framework [15] to alleviate the problem with the

oss function designed based on GTF. Nevertheless, only using adversar-

al training may still cause information loss due to its uncertainty and

nstability, and the GTF loss ignores the edge information in infrared

mages, which will blur the targets in fusion results. In this paper, we

ntroduce a new end-to-end model with two specifically designed loss

unctions based on detail preserving adversarial learning to overcome

he abovementioned challenges. 

.2. Generative adversarial network 

GAN was first proposed by Goodfellow et al. [36] to solve the prob-

em of generating more realistic images. The main idea of GAN is to

uild a minmax two-player game between the learning of a generator

nd a discriminator. The generator takes noise as the input and attempts

o transform this input noise into a more realistic image sample. Mean-

hile, the discriminator takes generated samples or realistic samples as

he input, the aim of which is to determine whether the input sample is

erived from the generated sample or the realistic sample. The adver-

arial characteristic between the generator and the discriminator is con-

inued until the generated samples cannot be distinguished by the dis-

riminator. Subsequently, a relatively more realistic image sample can

e produced by the generator. Although the original GAN can be used to

enerate digital images, such as those obtained from MNIST, noise and

ncomprehensible information still exist in the generated results. To im-

rove the quality of the generated images, LAPGAN [37] is utilized with

he Laplacian pyramid to generate a high-resolution image supervised

y the low-resolution image; however, this approach is not suitable for

mages that contain wobbly objects. [38] and [39] succeeded in gener-

ting nature-type images, but they did not leverage the generators for

upervised learning. [40] proposed the application of deeper CNNs to

ANs and drafted a rule to design the CNN architecture of a generator

nd a discriminator for steady training. InfoGAN [41] can learn more

nterpretable representations. To solve the problem of weak GAN sta-

ility during the training process, the objective function of GANs was

odified and WGAN [42] was proposed to relax the GAN training re-

uirement, but the model was slow to converge as opposed to regular
87 
ANs. [43] resolved the problem by using the least square loss function

or the discriminator. 

The most widely used variant of GAN is the conditional GAN [44] ,

hich applies GANs in the conditional setting and forces the output to be

onditioned on the input. Many studies based on conditional GANs, in-

luding image inpainting [45] , image style transferring [46] , image-to-

mage translation [47] , product photo generation [48] , etc ., have been

eported. The method presented in this paper is also mainly based on

onditional GANs. 

.3. Perceptual loss for optimization 

The pixel-wise loss function, such as mean square error (MSE), is

idely used in image generation. However, this loss function typically

enders the generated results over-smoothed, which then results in poor

erceptual image quality. An increasing number of researchers in re-

ent years have used perceptual loss to solve problems related to image

tyle transferring and image super-resolutions. Perception loss is gener-

lly used to compare the high-level feature extracted from convolutional

etworks rather than by examining the pixel itself. [39] compared the

eature extracted from neural networks, and the results showed that

his loss can solve the ill-posed inverse problem caused by nonlinear

epresentations. [49] and [50] replaced the low-level pixel-wise error

easures with Euclidean distances between features extracted from a

re-trained VGG network. [51] adopted the perceptual loss and subse-

uently generated superior images. Inspired by the advantages of using

erceptual loss, we introduce a detail item in our loss function to pro-

ote fusion performance. However, unlike the usual perceptual loss that

s computed by a pre-trained VGG network, we use a discriminator as

he feature extractor to compute the detail loss in our study. 

. Method 

This section describes our proposed method. We first discuss the mo-

ivation of our method, and then present the network architectures and

ntroduce the designed loss functions. Finally, we list some details in

etwork training. 

.1. Motivation 

Given a pair of infrared and visible image, our goal is to fuse both

mage types and construct a fused image that preserves both the saliency

f targets in the infrared image and the abundant detail information in

he visible image. Using CNN to generate fused image can overcome the

ifficulty of designing the activity level measurement and fusion rule

n a manual way. However, two challenges exist with this approach.

n the one hand, in the field of deep learning, training an excellent

etwork requires a large number of labeled data. In other words, ground

ruth is essential for supervision during the CNN training procedure.

owever, a truly fused image does not exist in the image fusion problem.

o address this issue, we convert the fusion problem into a regression

roblem, in which a loss function is required to guide the regression

rocess. Given our fusion purpose, the objective function of GTF, which

ims to preserve both thermal radiation information and visible textural

etails, is a good choice. On the other hand, the detail information in

TF is only represented as a gradient variation, which suggests that

ther important detail information, such as contrast and saturability,

re abandoned. Nevertheless, such detail information usually cannot be

haracterized as a mathematical model. 

Inspired by recent works about style transferring, GAN which builds

 minimax game between a generator and a discriminator could be a

etter solver. We initially generate a fused image which looks like the

esult of GTF by solving the objective function in GTF using the gener-

tor. The result with the visible image is then sent to the discriminator

o judge whether the image comes from source data or not. By building
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Fig. 2. The framework of our proposed method for infrared and visible image 

fusion. 
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he adversarial between generator and discriminator, when the discrim-

nator cannot distinguish the fused image from the visible image, then

e assume that our fused image contains sufficient detail information.

y using this method, the detail information is represented and chosen

utomatically by a neural network rather than the manually designed

ules. Moreover, our loss function contains an additional detail loss and

 target edge-enhancement loss apart from adversarial loss. These items

nable our model to be steady during the adversarial procedure, with

reatly promising fusion performance. 

The framework of our method is schematically illustrated in Fig. 2 .

uring the training phase, we first stack infrared image I r and visible

mage I v in the channel dimension and then place the stacked image

nto the generator G similar to that in ResNet [52] . Guided by the loss

unction, we can then obtain the original fused image I f from G . Sub-

equently, we input I f with I v into discriminator D whose architecture

pproximates that of the VGG-Net [53] to judge which of the samples
ig. 3. Network architectures of generator and discriminator. The generator basic un

nator is similar to VGG11 network. 

88 
s from the source data. The above training process is repeated until D

annot distinguish the fused image from the visible image. Finally, we

btain the G that has a strong ability to generate the fused image with

 highlighted sharpening-edged targets and more abundant textures. 

.2. Network architecture 

The proposed model is composed of a generator and a discrimina-

or based on different network architectures, as shown in Fig. 3 . Com-

ared to our previous FusionGAN [15] , we deepen the generator and

iscriminator which possess more powerful feature representation abil-

ty to improve the fusion performance. In particular, the generator is

esigned based on the ResNet [52] . In our generator network, the acti-

ation function of the residual block is a parametric rectified linear unit

RELU) [54] rather than the typical RELU. The parametric RELU is the

ame as leaky RELU [55] except that the slope is an adaptively learned

arameter via back propagation. Furthermore, we use 1 ×1 convolution

ayer to replace the fully connected layer and build the fully convo-

uted network, which is not restricted by the size of an input image.

n the fusion task, the aim is to extract valuable information from the

ource infrared and visible images. This approach therefore differs from

he general GAN because our model does not contain deconvolution or

ooling layers. Pooling layers will drop out some detail information,

hile deconvolution layers will insert extra information into the input,

nd both scenarios suggest inaccurate depiction of the real information

f source images. 

The design of the discriminator is based on the VGG11 network [53] .

ive convolution layers and five maxpooling layers are used in VGG11.

y contrast, each convolution layer in our network is followed by a batch

ormalization layer, which has been proven to effectively accelerate

etwork training. For the activation function, we replace the general

ELU with parametric RELU to adjust the degree of leakiness during

ack propagation. Then, we add another convolution layer (1 ×1 fil-

ers) to reduce the dimension, which implies that the fully connected

ayers in VGG can be neglected. The discriminator is used to classify

hether the image is a visible one or not, and thus, the large-scale fully

onnected network can be replaced with a simple convolutional layer.

herefore, both generator and discriminator networks can be regarded
it is a residual block proposed in ResNet. The network architecture of discrim- 
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1 http://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029 . 
2 https://www.ino.ca/en/video-analytics-dataset/ . 
s fully convolutional networks that are robust for different sizes of in-

ut images. 

.3. Loss function 

Generator loss consists of content loss, detail loss, target edge-

nhancement loss, and adversarial loss, and they are expressed as fol-

ows: 

𝑜𝑠𝑠 total = 𝐿 image + 𝛼𝐿 gradient 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

content loss 

+ 𝛽𝐿 detail + 𝛿𝐿 tee + 𝛾𝐿 adversarial , (1)

here the content loss constrains the fused image to one with similar

ixel intensities as those of the infrared image and similar gradient varia-

ion as that of the visible image, which can be analogous to the objective

unction of GTF. The detail loss 𝐿 detail and adversarial loss 𝐿 adversarial 

im at adding more abundant detail information to the fused image.

he target edge-enhancement loss 𝐿 tee is for sharpening the edges of

ighlighted targets in the fused image. We formulate the content loss as

he sum of image loss 𝐿 image and gradient loss 𝐿 gradient . Then, we use the

eight parameters of 𝛼, 𝛽, 𝛿, 𝛾 to control the tradeoffs among different

tems in the generator loss. 

.3.1. Content loss 

The pixel-wise image loss 𝐿 image is defined based on MSE as follows:

 image = 

1 
𝑊 𝐻 

𝑊 ∑
𝑥 =1 

𝐻 ∑
𝑦 =1 

(
𝐼 𝑟 ( 𝑥,𝑦 ) − 𝐼 𝑓 ( 𝑥,𝑦 ) 

)2 
, (2)

here I r is the original infrared image, I f is the final output of the gener-

tor, and W and H denote the width and height of the image. The image

oss renders the fused image consistent with the infrared image in terms

f pixel intensity distribution. Note that we choose 𝓁 2 norm due to that

t is quadratic. Compared with 𝓁 1 norm, 𝓁 2 norm is derivable and easy

o be optimized. 

To fuse rich textural information, we design the gradient loss in-

pired by GTF as follows: 

 gradient = 

1 
𝑊 𝐻 

𝑊 ∑
𝑥 =1 

𝐻 ∑
𝑦 =1 

(
𝐷 𝑣 ( 𝑥,𝑦 ) 

− 𝐷 𝑓 ( 𝑥,𝑦 ) 

)2 
, (3)

here 𝐷 𝑣 ( 𝑥,𝑦 ) 
denotes the gradient of the visible image and 𝐷 𝑓 ( 𝑥,𝑦 ) 

denotes

he gradient of the fused image. Gradient loss is defined as the MSE

etween 𝐷 𝑣 ( 𝑥,𝑦 ) 
and 𝐷 𝑓 ( 𝑥,𝑦 ) 

. 

.3.2. Detail loss 

We define the difference of the discriminator feature map between

he fused image and the visible image as the detail loss as follows: 

 detail = 

𝑁 ∑
𝑖 =1 

𝑀 ∑
𝑗=1 

(
𝜙𝑣 ( 𝑖,𝑗) 

− 𝜙𝑓 ( 𝑖,𝑗) 

)2 
, (4)

here 𝜙 depicts the feature map obtained by the convolution within the

iscriminator, 𝜙v and 𝜙f denote the feature representations of the visible

nd fused images, N and M denote the width and height of the result,

hich is the input image computed by conventional feature maps. 

As for the other computer vision tasks, the perceptual loss produced

y a pre-trained VGG-Net is usually used to improve performance. This

pproach is a good choice when using the VGG-Net to extract high-level

eatures. However, the VGG-Net, which is pre-trained with the ImageNet

ataset, does not contain infrared images. Moreover, the extraction of

igh-level features from the fused images (thermal radiation informa-

ion and visible texture information) is uncertain in VGG-Net. Therefore,

t will be problematic to mix up visible and fused images as VGG-Net

nput. Actually, the discriminator of our network is trained by fused and

isible images. During the training process, the discriminator is able to

xtract relatively better features of fused and visible images, and this
89 
s the reason why the discriminator instead of VGG-Net is used to ex-

ract high-level features (we will validate this point in our experiments).

urthermore, the gradient loss will be decreased when the detail loss is

ptimized. 

.3.3. Target edge-enhancement loss 

We formulate target edge-enhancement loss 𝐿 tee as follows: 

 tee = 

1 
𝑊 𝐻 

𝑊 ∑
𝑥 =1 

𝐻 ∑
𝑦 =1 

(
𝐼 𝑟 ( 𝑥,𝑦 ) − 𝐼 𝑓 ( 𝑥,𝑦 ) 

)2 
⋅ 𝐺 ( 𝑥, 𝑦 ) . (5)

n fact, this item is similar to 𝐿 image . In order to make target boundaries

ore sharpened, a weight map G is designed to pay more attention to

he target boundary area and multiplied to 𝐿 image , where G is defined

s follows: 

 ( 𝑥, 𝑦 ) = 𝑁 𝑘 =3 
(
𝐷 𝑟 ( 𝑥,𝑦 ) 

)
+ 𝑁 𝑘 =5 

(
𝐷 𝑟 ( 𝑥,𝑦 ) 

)
+ 𝑁 𝑘 =7 

(
𝐷 𝑟 ( 𝑥,𝑦 ) 

)
, (6)

here N represents the Gaussian kernel, k corresponds to the kernel ra-

ius, and D r ( x,y ) denotes the gradient of the infrared image. Here we em-

irically use the combination 𝑘 = 3 , 5 , 7 as our default configuration due

o the satisfying visual effect. Obviously, there are three characteristics

n our G map. First, the weights of most regions are 0, because these re-

ions can be optimized well by 𝐿 image , and it does not need to optimize

hem again in 𝐿 tee . Second, the weights in the area of infrared target

oundaries are large, which enables our model to focus on infrared tar-

et boundaries that may be ignored in visible image during training.

hird, the parts close to the edge area can obtain small weights, which

ill achieve a smooth transition on both sides of an edge area. 

.3.4. Adversarial loss 

The adversarial loss is adopted for our generator network with a dis-

riminator to generate better fused images. The adversarial loss is de-

ned based on the probabilities of the discriminator log 𝐷 𝜃𝐷 
( 𝐺 𝜃𝐺 

( 𝐼 mix ))
ver all the training samples as follows: 

 adversarial = 

𝑁 ∑
𝑛 =1 

(
1 − log 𝐷 𝜃𝐷 

( 𝐺 𝜃𝐺 
( 𝐼 mix )) 

)
, (7)

here 𝐼 mix is the stack of infrared and visible images, log 𝐷 𝜃𝐷 
( 𝐺 𝜃𝐺 

( 𝐼 mix ))
s the probability of the fusion image like a visible image, and N is the

ize of the batch. 

.4. Training detail 

We train our proposed model on the TNO dataset 1 that contains 45

ifferent scenes, and we select 45 infrared and visible image pairs for

raining. The image pairs has been aligned in advance, and image regis-

ration is required for unregistered image pairs [56,57] . We also adopt a

andom crop of 88 ×88 on the original infrared and visible image pairs

n each iteration as the input during training. The input (i.e. the pixel

ntensity) is normalized to the range between −1 and 1. During the train-

ng process, we optimize the loss function using the Adam solver. For

ach iteration, the generator and the discriminator update their param-

ters. In the testing process, we place the whole stacked image into the

enerator and then obtain a fused image with the same size as input. 

. Experiments and evaluations 

To evaluate the fusion performance of our proposed method, we

onduct experiments on two publicly available datasets, such as TNO

nd INO 

2 , and compare them ten other fusion methods, namely, ADF

17] , dual-tree complex wavelet transform (DTCWT) [58] , fourth-order

http://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029
https://www.ino.ca/en/video-analytics-dataset/
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artial differential equation (FPDE) [12] , image fusion using multi-

esolution singular value decomposition (IMSVD) [59] , infrared and vis-

ble image fusion using deep learning framework (IVIFDLF) [33] , two-

cale image fusion based on visual saliency (TSIFVS) [13] , wavelet [60] ,

TF [35] , DenseFuse [34] , and FusionGAN [15] . All these competitors

re implemented based on publicly available codes, and we set their pa-

ameters by referring to their original reports. The experiments are con-

ucted on a laptop with 3.3 GHz Intel Xeon CPU I5-4590, GPU GeForce

TX 1080TI, and 11 GB memory. 

.1. Training settings and fusion metrics 

Our training parameters are set as follows: batch image size is 64,

umber of training iteration is 400, and discriminator training step is 2.

arameters 𝛼, 𝛽, 𝛿 and 𝛾 are set as follows: 𝛼 = 100 , 𝛽 = 0 . 2 , 𝛿 = 5 and

= 0 . 005 . The learning rate is set to 10 −5 . All models are trained with

he TNO dataset. 

It is often difficult to judge the fusion performance by only subjective

valuation. Thus, quantitative fusion metrics are considered for objec-

ive evaluation. In this paper, we select six metrics, namely, entropy

EN) [61] , standard deviation (SD) [62] , correlation coefficient (CC)

63] , spatial frequency (SF) [64] , structural similarity index measure

SSIM) [65] and visual information fidelity (VIF) [66] . Their definitions

re as follows. EN is based on information theory, which defines and

easures the amount of information an image contains. SD is based on

 statistical concept that reflects the distribution and contrast of an im-

ge. CC measures the degree of linear correlation of the fused image and

he source images. SF metric is built based on horizontal and vertical

radients, which can measure the gradient distribution effectively and

eflect the detail and texture of an image. SSIM measures the structural

imilarity between source images and fused image. VIF measures the

nformation fidelity of fused image. For these six metrics, larger values

ndicate better performance. 

.2. Validation of detail loss 

Detail loss plays an important role in our proposed method. By ap-

lying detail loss, our model gets steadier and the fusion performance
90 
ets better. Therefore, in this section, we focus on validating the detail

oss without target edge-enhancement loss added in 𝐿𝑜𝑠𝑠 total . We design

everal experiments to demonstrate how to extract features from image

or computing detail loss and confirm it is actually the detail loss that

an improve the detail information in fused image. 

Perceptual loss has been widely used in image style transferring. The

xisting methods typically consider a pre-trained VGG-Net as a feature

xtractor, and compare the feature map of the pool5 layer extracted

rom a generated image and the target image. Perceptual loss makes the

enerated image similar to the target image not only on pixel level but

lso on semantic level. In our proposed method, the function of detail

oss is nearly the same as perceptual loss. But the pre-trained VGG-Net

nd the feature map of pool5 layer may not suitable for the task of

nfrared and visible image fusion because pre-trained VGG-Net is only

rained on visible images, which almost cannot extract the high-level

eatures of infrared information. In contrast, our discriminator is trained

n the fused image and visible image, and hence infrared information

ay be extracted by the discriminator. To this end, it is more suitable

o use the discriminator as feature extractor for detail loss computing. 

To validate the abovementioned idea, in the following we conduct

xperiments 1 to train two different models. The first one we call VGG-

odel where pre-trained VGG-Net is used as feature extractor. The sec-

nd one we call D-model where discriminator is used as feature extrac-

or. We compare the feature map of pool5 layer between the fused image

nd visible image. As the useful information for infrared and visible im-

ge fusion may not be contained in the feature map of pool5, we also

onduct Experiment 2 to compare the feature maps of different layers,

uch as pool5, pool4, pool3, pool2 in two models. Finally, we conduct

xperiments 3 to verify the role of detail loss in promoting the fusion

erformance. 

.2.1. Experiment 1 

Fig. 4 illustrates some typical fusion results, where pre-trained VGG-

et and discriminator are respectively used as feature extractor. The

rst two rows present the original infrared and visible images of four

cenes from the TNO dataset such as smoke, men, bench and tree . The

emaining two rows correspond to the fusion results of VGG-model and

-model. From the results, we see that the fusion results of VGG-model
Fig. 4. Comparison of using pre-trained 

VGG-Net and discriminator as feature extrac- 

tor on some typical infrared and visible im- 

age pairs. From left to right: smoke, men, bench 

and tree . From top to bottom: infrared image, 

visible image, fusion results of using VGG-Net 

as feature extractor, and fusion results of us- 

ing Discriminator as feature extractor. 
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Fig. 5. Fusion results of D-model and VGG-model by using feature maps of 

different layers. Left: infrared and visible images. Middle: fusion results with 

highlighted regions (i.e., red boxes) by using feature maps of pool2 layer (top), 

pool3 layer (top middle), pool4 layer (middle bottom) and pool5 layer (bottom) 

in discriminator for computing detail loss. Right: fusion results by using feature 

maps of pool2 layer (top), pool3 layer (top middle), pool4 layer (middle bottom) 

and pool5 layer (bottom) in VGG-Net for computing detail loss. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 7. From left to right: Kaptein_1654, sand path and bush . From top to bottom: 

infrared image, visible image, fusion results of model without detail loss, and 

fusion results of model with detail loss. 

Fig. 6. The results of six fusion metrics on an 

infrared and visible image sequence pair from 

the INO dataset using feature map of pool2, 

pool3, pool4, and pool5 layers in discrimina- 

tor for computing detail loss. 

91 
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Fig. 8. The results of six fusion metrics on 

40 infrared and visible image pairs from TNO 

dataset with detail loss (Ours) and without de- 

tail loss (N-D). 
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early cannot keep the high contrast property of target in the infrared

mage with only texture information in the visible image. For example,

he people behind the smoke in the first example totally cannot be seen,

hile in rest three examples, fusion results can only preserve blurry out-

ines of the people which are not salient anymore. However, the results

f D-model preserve the highlighted targets well and also contain abun-

ant details in visible images, especially the sharpened branches in the

rst two examples. This demonstrates that the pre-trained VGG-Net has

trong ability to extract high-level features in visible image but not in

nfrared image. Therefore, the detail loss in VGG-model makes fusion

esults concentrate on preserving more detail information rather than

ighlighting the targets. By contrast, D-model is more suitable to pre-

erve both thermal radiation and texture detail information. 
Fig. 9. Infrared images and their corresponding highlight target parts, edge map 

92 
.2.2. Experiment 2 

We next test our D-model and VGG-model by using the feature maps

f different layers, such as pool2, pool3, pool4 and pool5 layers, to com-

ute the detail loss. An image pair named sand path is used for evalua-

ion, as shown in Fig. 5 . According to the results, for D-model, all four

used images nearly have the same characteristics that images look like

harpened infrared images with clear highlighted targets and abundant

etail information. However, the fence along with the road is clearer

n the result of pool5 layer. For VGG-model, we observe that no mat-

er which layer of VGG-Net is used for computing detail loss, the fusion

esults cannot keep the high contrast property of target in the infrared

mage. This demonstrates that VGG-Net pretrained on visible image can-

ot extract high-level features of infrared information. To perform a
and G map. From left to right: bunker, bush, Kaptein_1123 and Kaptein_1654 . 
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Fig. 10. Illustration of different kernel radius combinations. From left to right: 

infrared image patch from bunker, bush, Kaptein_1123 and Kaptein_1654 . From 

left to right: infrared image patch, edge map, G map at 𝑁 𝑘 =3 , 𝑁 𝑘 =5 , 𝑁 𝑘 =7 , 𝑁 𝑘 =3 + 
𝑁 𝑘 =5 and 𝑁 𝑘 =3 + 𝑁 𝑘 =5 + 𝑁 𝑘 =7 . 
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Fig. 12. Fusion results of three architectures on three scenes. From top to bot- 

tom: ShallowNet, Ours and DenseNet; from left to right: Kaptein_1123, smoke 

and Kaptein_1654 . 
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omprehensive assessment on selecting the best layer of D-model, we

est these four candidates on an infrared and visible image sequence

air from the INO dataset and compute the six fusion metrics such as

N, SD, CC, SF, SSIM and VIF for comparison. The results are reported

n Fig. 6 . The pool5 layer clearly has the overall best performance for

ost image pairs. Consequently, we use discriminator as feature extrac-

or with feature map of pool5 layer for computing detail loss. 

.2.3. Experiment 3 

We further demonstrate the fusion results of our model with and

ithout detail loss to verify the role of detail loss in promoting the fu-

ion performance. Three different scenes from the TNO dataset such as

aptein_1654, sand path and bush are used for evaluation, as shown in

ig. 7 . As can be seen from the tent in Kaptein_1654 , the fence in sand

ath , as well as the leaves in bush , the detail information is clearly more

bundant in the results of model with detail loss, although both of them

an well preserve the salient targets in the infrared images. 

In addition, we quantitatively evaluate the six fusion metrics on 40

amples from the TNO dataset, and the results are reported in Fig. 8 .

rom the results, we see that our model with detail loss consistently

utperforms the one without detail loss in terms of all the six metrics on
93 
very image pair. Therefore, the detail loss does can enhance the visual

ffect of fused image and improve the quantitative fusion metrics. 

.3. Validation of target edge-enhancement loss 

Next, we explain why we design G map to compute target edge-

nhancement loss, and validate the function of target edge-enhancement

oss based on the D-model. 

In order to preserve the edges of infrared targets effectively, the most

ntuitive idea is to design a loss function like 𝐿 gradient , replacing 𝐷 𝑣 ( 𝑥,𝑦 ) 
ith 𝐷 𝑟 ( 𝑥,𝑦 ) 

. However, as can be seen in Fig. 9 , the edge maps of infrared

mages are discrete and clutter because infrared images always contain

ots of noise, which will influence the fusion performance. Therefore,

e choose to adopt Gaussian kernel of different radiuses to filter the

dge map, and then we can obtain a continuous and smooth map called

 map, as shown in Fig. 9 . The radiuses of kernel in our paper are em-

irically set to 3, 5 and 7. In addition, we also provide some qualitative

esults on different kernel radius combinations in Fig. 10 . From the re-

ults, we see that the G map at 𝑁 𝑘 =3 + 𝑁 𝑘 =5 + 𝑁 𝑘 =7 in general could

roduce the best visual effect. Therefore, we set is as the default setting.
Fig. 11. Fusion results of FusionGAN 

(left), D-model (middle), and our approach 

(right), where red boxes highlight infrared 

target boundaries and green boxes highlight 

visible detail information. From top to bot- 

tom: bush, sandpath and Kaptein_1123 . (For 

interpretation of the references to colour in 

this figure legend, the reader is referred to 

the web version of this article.) 
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In Fig. 11 , we present some representative fusion results of Fusion-

AN, D-model (FusionGAN with detail loss) and our approach (Fusion-

AN with detail loss and target edge-enhancement loss). Whether re-

ults of FusionGAN or D-model, it is clear that the edges of infrared

argets contain distinct burrs, such as the forehead edge in bush and

lbow edge in Kaptein_1123 . In contrast, our approach with target edge-

nhancement loss can well address this problem, where the target

oundaries of our results are well preserved and sharpened. In addi-

ion to the sharpened infrared target boundaries, we also find that the

etail loss and target edge-enhancement loss can be optimized simulta-

eously without obvious conflicts. The evidence is that our fusion results
94 
lso contain lots of detail information which is kept in D-model but not

xisted in FusionGAN, such as the leaves in bush , the fence in sandpath

nd streaks in Kaptein_1123 . This demonstrates the effectiveness of our

arget edge-enhancement loss. 

.4. Influence of different architectures 

In this section, we investigate the influence of different architectures

n our framework. On the one hand, we investigate the influence of the

epth of a network. Considering our 5-residual-block network is deep

nough, we choose a shallower network named as ShallowNet, e.g. a
Fig. 13. Qualitative fusion results on five typical infrared and visible im- 

age pairs from the TNO dataset. From left to right: bunker, smoke, lake, 

Kaptein_1123 and sand path . From top to bottom: infrared images, visi- 

ble image, results of ADF [17] , DTCWT [58] , FPDE [12] , IMSVD [59] , 

IVIFDLF [33] , TSIFVS [13] , Wavelet [60] , DenseFuse [34] , GTF [35] , Fu- 

sionGAN [15] and our proposed method. To compare the preserved detail 

information of GTF, FusionGAN and our method in the last three rows, 

we have zoomed in some regions and put them at the lower right corner 

in each subplot. 
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-residual-block network, for comparison. On the other hand, we inves-

igate the influence of applying a different type of architecture named

s DenseNet, e.g., using dense connections. In particular, we add dense

onnections to a 4-residual-blocks network. 

Fig. 12 shows the fusion results of three different architectures on

hree different scenes. We can find that all the three architectures keep

he radiation information well, but exhibit differences on detail informa-

ion preservation. For example, the details in the red boxes in the results

f ShallowNet are difficult to identify, but they are clear in the other two

rchitectures. Moreover, compared with DenseNet, the targets in our

usion results are more salient, such as the people in all three scenes.

herefore, we conclude that both deeper networks and dense connec-

ions can improve the detail quality of fused image, and compared with

ense connections, deeper architectures can preserve infrared informa-

ion better. 

.5. Comparative experiments 

In this section, we demonstrate the efficiency of the proposed method

n publicly available datasets with comparison to other state-of-the-art

usion methods. 

.5.1. Results on TNO dataset 

The TNO dataset contains multispectral (e.g. intensified visual, near-

nfrared, and longwave infrared or thermal) nighttime imageries of dif-

erent military relevant scenarios that have been registered with differ-

nt multiband camera systems. From the dataset, we choose 45 pairs

f infrared and visible images as the training set and 12 pairs as the

esting set. We select five typical pairs, such as bunker, smoke, lake,
95 
aptein_1123 , and sand path , from the testing set for qualitative illus-

ration, as shown in Fig. 13 . 

The first two rows in Fig. 13 present the original infrared and visible

mages. Our fusion results are shown in the last row, while the remain-

ng ten rows correspond to the results of the competitors. All methods

an fuse the information from the two source images to some extent. In

his sense, it is difficult to judge which method is the best. However, the

argets, such as bunker, window, lake, and human, of the other meth-

ds have low saliency in the fused images except those of GTF and Fu-

ionGAN, which suggests that the thermal radiation information in the

nfrared images is not well preserved. The observation can be attributed

o the tendency of the methods to exploit the detail information in the

ource images, which then leads to difficulties in subsequent tasks, such

s target detection and localization. 

The results also show that our method, GTF and FusionGAN can high-

ight the targets in the fused images. However, the fusion results of our

ethod contain much more detail information and sharpened edges of

nfrared targets. For example, in Kaptein_1654 , the outline of the trees

s much clearer and more sharpened in our result compared with GTF,

hile the streaks on the road is distinct in our result, but nearly can-

ot be observed in the result of FusionGAN. In sand path , the fence is

erfectly fused in our result, but it is difficult to recognize in the results

f GTF and FusionGAN. A similar phenomenon can also be observed in

he other three examples. This finding demonstrates that our proposed

ethod performs better than the other state-of-the-art methods when si-

ultaneously preserving thermal radiation information, infrared target

oundaries and texture detail information. 

Furthermore, we perform a quantitative comparison of the eleven

ethods on all the 12 infrared and visible image pairs in the testing set.
Fig. 14. Quantitative comparison of six fu- 

sion metrics on the TNO dataset. The ten 

state-of-the-art methods such as ADF [17] , 

DTCWT [58] , FPDE [12] , IMSVD [59] , IVIFDLF 

[33] , TSIFVS [13] , Wavelet [60] GTF [35] , 

DenseFuse [34] and FusionGAN [15] are used 

for comparison. 
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Fig. 15. Schematic illustration of low SSIM. From left to right: infrared image, 

visible image, and our fusion result. 
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o

he results for the six metrics are shown in Fig. 14 . Our method clearly

btains the best EN, SD, SF and VIF for most image pairs, and the average

alues for five evaluation metrics including CC are the largest relative

o the other methods. The largest EN demonstrates that our fused image

as much more abundant information than the other seven competi-

ors. The largest SD suggests that our fused image has the best image

ontrast. The largest CC demonstrates that our fused image is strongly

orrelated with the two source images. The largest SF indicates that our

used image has richer edges and textures. The largest VIF means our

usion results are more consistent with the human visual system. Never-

heless, our method typically generates relatively low SSIM. This is due

o that in order to preserve the radiation information and gradient infor-

ation simultaneously, the pixel intensities of some areas in the fused

mage may be changed during training, and these areas will look nei-

her like infrared image nor like visible image, leading to low structural

imilarity between source images and fused image. A typical example

s illustrated in Fig. 15 , where the stop line is white in visible image

nd cannot be visible in infrared image; however, in order to preserve
96 
he radiation information of ground and the edge texture of stop line,

he area of stop line in the fused image gets black, which looks neither

ike infrared image nor like visible image. Similar phenomenon can be

bserved in the areas of truck and guide board. Therefore, the goal of

imultaneously retaining the thermal radiation and abundant textural

etails will inevitably decrease the SSIM index. 

.5.2. Results on INO dataset 

To verify its generalizability, we test our method on the INO dataset,

hich is trained on the TNO dataset. The INO dataset is provided by the

ational Optics Institute of Canada and contains several pairs of visible

nd infrared videos that represent different scenarios captured under

ifferent weather conditions. We captured 90 infrared and visible image

airs from the video named trees and runner for comparison. 

The results of the quantitative comparison of the six fusion metrics

re reported in Fig. 16 . Our method has the best SD, CC, SF and VIF

or all image pairs. Clearly, the average values of the evaluation metrics

re the largest relative to those of the other ten methods. For the EN

etric, our method is second to GTF by a narrow margin; limited by

he content loss, we cannot get best SSIM, either. Moreover, we observe

hat the metrics of IVIFDLF [33] change greatly among different frames,

specially for SSIM and VIF. This is due to that image reconstructions

fter downsampling operation in IVIFDLF will lead to misregistration

etween fusion results and source images, and this misregistration varies

rom frame to frame, which causes unsteady results. 

We also present the run-time comparison of the eleven methods

n Table 2 . Our method has achieved comparable efficiency compared

ther ten methods. 
Fig. 16. Quantitative comparison of six fu- 

sion metrics on the INO dataset. The seven 

state-of-the-art methods such as ADF [17] , 

DTCWT [58] , FPDE [12] , IMSVD [59] , IVIFDLF 

[33] , TSIFVS [13] , Wavelet [60] GTF [35] , 

DenseFuse [34] and FusionGAN [15] are used 

for comparison. 
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Table 2 

Run time comparison of eleven methods on the TNO and 

INO datasets. The IVIFDLF, DenseFuse, FusionGAN and Our 

methods are performed on GPU while all the others are per- 

formed on CPU. Each value denotes the mean of run time of 

a certain method on a dataset (unit: second). 

Method TNO INO 

ADF [17] 6 . 47 × 10 −1 1 . 82 × 10 −1 

DTCWT [58] 3 . 32 × 10 −1 1 . 30 × 10 −1 

FPDE [12] 5 . 02 × 10 −1 9 . 22 × 10 −2 

IMSVD [59] 5 . 19 × 10 −1 1 . 58 × 10 −1 

IVIFDLF [33] 7.52 3.40 

TSIFVS [13] 3 . 08 × 10 −2 1 . 16 × 10 −2 

Wavelet [60] 2 . 23 × 10 −1 1 . 04 × 10 −1 

DenseFuse [34] 5 . 26 × 10 −1 4 . 25 × 10 −1 

GTF [35] 4.82 1.00 

FusionGAN [15] 4 . 61 × 10 −2 4 . 50 × 10 −2 

Ours 2 . 54 × 10 −1 7 . 16 × 10 −2 

5

 

o  

m  

a  

m  

s  

l  

p  

e  

e  

t  

t  

d  

l  

t  

o  

d  

l  

i

A

 

o

R

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

[  

 

[  

[  

[  

[  

[  

 

[  

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

[  

 

 

[

[  

 

[  
. Conclusion 

We propose a novel infrared and visible image fusion method based

n GAN that can simultaneously retain the thermal radiation infor-

ation in infrared images and the rich textural details in visible im-

ges. The proposed method is an end-to-end model, and can avoid the

anual and complicated design of activity-level measurement and fu-

ion rules of traditional fusion strategies. In particular, we design two

oss functions i.e. detail loss and target edge-enhancement loss to im-

rove the fusion performance. The detail loss is introduced to better

xploit the textural details in the source images, while the target edge-

nhancement loss aims to sharpen edges of infrared targets. Benefit from

hese two loss functions, our results can simultaneously well preserve

hermal radiation information, infrared target boundaries and texture

etail information. We demonstrate the effectiveness of using detail

oss and target edge-enhancement loss in our experiments. The qualita-

ive and quantitative comparisons reveal the superiority of our strategy

ver the state-of-the-art methods. Moreover, our method not only pro-

uces comparatively better visual effects, but also generally retains the

argest or approximately the largest amount of information in the source

mages. 
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