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ABSTRACT

Deep learning features for video action recognition are usu-
ally learned from RGB/gray images, image gradients, and op-
tical flows. The single modality of the input data can describe
one characteristic of the human action such as appearance
structure or motion information. In this paper, we propose a
high efficient gradient boundary convolutional network (Con-
vNet) to simultaneously learn spatio-temporal feature from
the single modality data of gradient boundaries. The gradient
boundaries represent both local spacial structure and motion
information of action video. The gradient boundaries also
have less background noise compared to RGB/gray images
and image gradients. Extensive experiments are conducted on
two popular and challenging action benchmarks, the UCF101
and the HMDBS1 action datasets. The proposed deep gradi-
ent boundary feature achieves competitive performances on
both benchmarks.

Index Terms— Action recognition, convolutional net-
work, gradient boundary

1. INTRODUCTION

Human action recognition aims to enable computer auto-
matically recognize human action in video through related
features [1, 2, 3, 4, 5]. Action features can be divided into
two categories: hand-crafted features and deep-learned fea-
tures. Significant progress has been achieved in recent years
by hand-crafted features. For example, Wang et al. designed
motion boundary histograms (MBH) feature based on dense
trajectories (DT) [6], and further improved dense trajectories
@iDT) in [7] through camera motion estimation and elimina-
tion. However, the hand-crafted descriptors are not optimized
for visual representation and lack discriminative capacity for
action recognition [8].

Encouraged by the success of deep learning methods in
image classification [9], researchers have exploited the deep-
learned features for video action recognition. Current deep
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learning works for action recognition can be divided into two
categories: (1) ConvNets for action recognition, and (2) tem-
poral structure modeling for action recognition [10].

ConvNets for action recognition. Several researchers
have attempted to design effective ConvNet architectures
for action recognition. Taylor et al. [11] proposed the con-
vGRBM algorithm to learn unsupervised spatio-temporal
features by using Gated Restricted Boltzmann Machine
(GRBM). Ji et al. [12] extended 2D ConvNet to 3D Con-
vNet for action recognition. Karpathy et al. [13] evaluated
several ConvNet architectures based on stacked RGB images
for video classification. Tran et al. [14] explored 3D ConvNet
[12] on realistic and large-scale video datasets. Simonyan and
Zisserman [15] introduced two-stream architecture which ex-
ploits two ConvNets to model static appearance and motion
variation of action respectively. Based on two-stream Con-
vNets and iDT, Wang et al. [8] designed Trajectory-pooled
Deep-Convolutional descriptors (TDD) which enjoy the mer-
its of ConvNets and trajectory based methods. Sun et al. [16]
proposed a factorized spatio-temporal ConvNet and explored
different ways to decompose 3D convolutional kernels. Wang
et al. [17] evaluated the very deep two-stream ConvNets for
action recognition.

Temporal structure modeling for action recognition.
Many works have been devoted to modeling the temporal
structure for action recognition based on ConvNet features.
Recent works [18, 19, 20, 21] utilized the recurrent Long
Short Term Memory (LSTM) architecture to capture tempo-
ral structure of consecutive frames. Wang et al. [22] designed
a novel representation for actions by modeling action as a
transformation which changes the state of the environment
before the action happens (precondition) to the state after the
action (effect). Feichtenhofer et al. [23] utilized 3D convo-
lutional Pooling method to learn correspondences between
highly abstract ConvNet features both spatially and tempo-
rally. Fernando et al. [24] used discriminative hierarchical
rank pooling for encoding the temporal dynamics of video
sequences. Bilen et al. [25] designed dynamic image net-
works to perform end-to-end training from videos combining
both static appearance information from still frames, as well
as short and long term dynamics from the whole video. Zhu
et al. [26] proposed a key volume mining deep framework
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Fig. 1. Illustration of RGB images, image gradients, gradient boundaries, and optical flows for a “flic-flac” action. Compared
to image gradients, gradient boundaries encode motion information and have less background noise. The areas in red boxes
show the double edges at distances proportional to the speed of moving body parts. The gradient boundaries include appearance

structure information compared to optical flows.

to identify key volumes in videos and conducted classifica-
tion simultaneously. Wang et al. [10] introduced temporal
segment network (TSN) for modeling long-range temporal
structure in action video.

Motivation and contribution The aforementioned deep
learning approaches learn deep features from multi-modality
data such as RGB/gray images, image gradients, and optical
flows. However, the single modality of the input data can only
describe one characteristic of action: spatial structure or mo-
tion information. For example, the RGB images and RGB
gradients can only describe static appearance of action [15].
The optical flow and its variations, e.g., warped optical flows,
merely represent motion information of action [10]. Can we
encode both spatial structure and motion information of ac-
tion into one single modality? Inspired by the recent works
[27, 15], in this paper we propose the deep gradient boundary
ConvNet to simultaneously learn the spatio-temporal infor-
mation of action based on gradient boundaries. The gradient
boundaries encode both local spacial structure and motion in-
formation of action into a single modality data. Compared
to RGB images and RGB gradients, the gradient boundaries
have less background noise. It is also worth mentioning that
the gradient boundaries are complementary to the above men-
tioned input modalities. The proposed deep gradient bound-
ary ConvNet is extensively validated on two challenging ac-
tion benchmarks, the UCF101 [28] and HMDB51 [29] action
datasets and demonstrates its effectiveness as compared with
the state-of-the-art deep learning approaches.

The rest of this paper is organized as follows. In Section

2, we present the proposed deep gradient boundary feature
in detail. In Section 3, we report the experimental results and
comparisons on the UCF101 [28] and HMDBS51 [29] datasets.
Finally, we conclude this paper in Section 4.

2. THE PROPOSED GRADIENT BOUNDARY
CONVNET

Inspired by [27, 15], we develop the gradient boundary Con-
vNet for learning deep features from gradient boundaries of
video sequences. We first introduce the gradient boundaries
and then provide the details of the gradient boundary ConvNet
architecture.

2.1. Gradient Boundary

In this section, we introduce the gradient boundary. We aim
to encode both local static appearance and motion information
into one modality. For each frame in a video, we follow [27]
and first compute image gradients using simple 1-D [-1,0,1]
Sobel masks on both x and y directions. Then, the [-1, 1]
temporal filter is applied to two consecutive gradient images.
Thus, for each pixel P at the location (u,v) in the gradient
boundary of frame ¢, we have:

P P
PP (u,v) = 0.9 Y 0.9 (1)

= &(%)7 P (u,v) = E(@)

The absolute values of gradient boundaries are discretized
into the interval from O to 255 by a linear transformation.



Therefore, the range of gradient boundaries is the same as
that of the RGB/gray images.

Figure 1 illustrates the comparison of RGB images, image
gradients, gradient boundaries and optical flows. We have
some important observations here. First, the subtraction of
two consecutive images gradients results in the removal of
image backgrounds. The two gradient images show a lot of
background noise, while the gradient boundary images show
clear human shapes with far less background noise. More-
over, gradient boundaries encode the moving human shapes.
As demonstrated by the red bounding boxes in the figure, the
double edges at various distances are proportional to the mov-
ing speed of the human body parts. For example, the distance
between the haunch double edges is larger than the leg dou-
ble edges, because the haunch moves faster than the leg at the
moment. Compared to optical flows, the gradient boundaries
capture local appearance structure information.

2.2. Gradient Boundary ConvNet

We follow optical flow ConvNet in [15] and design the gra-
dient boundary ConvNet. The horizontal and vertical compo-
nents of the gradient boundary, P;* and Pty, can be seen as
gradient boundary channels (as shown in Figure 1). We stack
the gradient boundary channels P, of L consecutive frames
around frame ¢ to form a total of 2L input channels by fol-
lowing [15]. Formally, let w and h be the width and height
of a video frame, a gradient boundary ConvNet input volume
I, € RW*P*2L £or frame ¢ is constructed as:

Ii(u,v,2k — 1) = P (u,v),
I (u,v,2k) = Ptik_l(u, v)

where v = [1,w], v = [L,h], and k = [1,L]. The chan-
nels I;(u, v, ¢), ¢ = [1, 2L] encode the appearance and motion
synchronously over a sequence of L frames. Since the Con-
vNet requires a fixed-size input, we sample a 224 x 224 x 2L
sub-volume from I; and feed it into the ConvNet as input. In
experiments, we set L = 10 by following [15].

@)

3. EXPERIMENTAL RESULTS

In this section, we first introduce the two evaluation datasets
and the implementation details used in the experiments. Then,
we compare the gradient boundary with RGB image, optical
flow, and warped optical flow as input modalities to ConvNet
to demonstrate its effectiveness. We also compare the perfor-
mance of our method with the state-of-the-art action recogni-
tion approaches.

3.1. Datasets and Implementation Details

We evaluate the proposed method on two popular action
recognition datasets: UCF101 [28] and HMDBS51 [29]. The
UCF101 dataset contains 101 action classes and there are

at least 100 video clips for each class. The whole dataset
contains 13,320 video clips. The HMDBS51 dataset is a large
collection of realistic videos from movies and web videos.
The dataset is composed of 6,766 video clips from 51 ac-
tion categories, with each category containing at least 100
clips. We follow the original evaluation scheme of three
training/testing splits and use the average accuracy over three
splits as the final recognition performance.

We select recent BN-Inception [30] for gradient bound-
ary ConvNet architecture by following [10]. The mini-batch
stochastic gradient descent algorithm is used to learn the net-
work parameters. The batch size is set to 256 and the mo-
mentum is set to 0.9. The initial network weights of the Con-
vNet come from the pre-trained models from ImageNet [31].
We set a smaller learning rate in the experiments by follow-
ing [10]. For RGB image networks, we initialize the learning
rate at 0.001, which decreases to its 1/10 every 2000 itera-
tions. The whole training procedure stops at 4500 iterations.
For gradient boundary and optical flow networks, the learn-
ing rate is initialized as 0.005 and reduces to its 1/10 after
12,000 and 18,000 iterations. The maximum iteration is set
to 20,000. We follow [10, 15] and use the techniques of loca-
tion jittering, horizontal flipping, corner cropping, and scale
jittering for data augmentation. The action recognition sys-
tem is implemented with Caffe [32] and OpenMPI to speed
up the training process.

3.2. Evaluation of Gradient Boundary ConvNet

In this section, we focus on the evaluation of the gradient
boundary ConvNet. We compare it in terms of computational
efficiency and recognition accuracy with the RGB image, op-
tical flow, and warped optical flow ConvNet. We select the
TVLI [33] for computing optical flow. According to [7],
we extract the warped optical flow by estimating homogra-
phy matrix and compensating camera motion.

Computational efficiency. We analyze the speed of com-
puting the input modality data since the same ConvNet archi-
tecture is used in the experiments. The speed is measured as
frames per seconds (fps) on a single-core CPU (E5-2640 v3)
and a Titan X GPU. The results are reported in Table 1. We
see that the speed of RGB image is very fast because it only
depends on the speed of image decoder. Based on RGB im-
age, the calculation of gradient boundary only adds a few sim-
ple operations such as Sobel and subtraction. So the speed of
gradient boundary is also fast (695fps on UCF101 and 679fps
on HMDB51), and satisfies the requirement of real-time ap-
plications. Optical flow calculation is a time-consuming op-
eration, even it runs on the GPU (23fps on UCF101 and 19fps
on HMDBS51). The speed of warped optical flow is about half
of optical flow since it doubles the process of optical flow cal-
culation.

Action recognition accuracy. We evaluate the accuracy
performance of gradient boundary ConvNet from three as-



Table 1. Speed comparison of computing the input modality
data. UCF101: 320 x 240, HMDBS51: 360 x 240.

Modality UCF101 HMDBS1
RGB image (CPU) 15331ps 13581ps
Gradient boundary (CPU) 695fps 6791ps
Optical flow (GPU) 23fps 19fps
Warped optical flow (GPU) 111ps Ofps

Table 2. Accuracy comparison. RGB: RGB image, OF: opti-
cal flow, WOF: warped optical flow, GB: gradient boundary.

Network Architecture(Modality) UCF101 HMDBS1
ConvNet(RGB) 83.9% 49.6%
ConvNet(OF) 87.5% 58.2%
ConvNet(WOF) 87.0% 57.5%
ConvNet(GB) 89.3% 60.8%
ConvNet(GB+RGB) 91.3% 63.7%
ConvNet(GB+OF) 91.8% 65.4%
ConvNet(GB+WOF) 91.4% 65.1%
ConvNet(GB+RGB+OF+WOF) 93.2% 68.5%
TSN(RGB+OF+WOF) [10] 94.2% 69.4%
TSN(GB+RGB+OF+WOF) 95.3% 71.9%

pects: single modality, combination of multi-modalities, com-
bination of multi-modalities plus TSN [10] for modeling tem-
poral information among frames. The experimental results
are reported in Table 2.

From the top of Table 2, we can see that the gradient
boundary ConvNet performs the best among four single in-
put modalities on both datasets since it encodes spatial and
temporal information of action simultaneously. The highest
accuracy improvements occur between the gradient boundary
and the RGB image (i.e., 89.3% vs. 83.9% on the UCF101
and 60.8% vs. 49.6% on the HMDBS51), which verify that the
motion is the most important information of video action.

The complementary nature of the gradient boundary with
other modalities is verified in the middle of Table 2. Com-
pared to single gradient boundary modality, the combination
with other modalities improves the recognition accuracy at
least by 2% on UCF101 and 2.9% on HMDBS51. The com-
bination of all four modalities obviously boosts the perfor-
mances over the combination of any two modalities, which
indicates that the spacial/temporal informations from differ-
ent modalities are still complementary with each other.

We also evaluate the combination performance of the gra-
dient boundary on the recent TSN architecture [10] which
models temporal structure among frames in action video. The
results are listed at the bottom of Table 2. Compare to the
best results in [10], the addition of the gradient boundary fur-
ther improves the recognition performances by 1.1% on the
UCF101 and 2.5% on the HMDBS51. It clearly demonstrates
the flexibility and effectiveness of gradient boundary for any
deep learning framework.

Table 3. Comparison of the proposed method with the state-
of-the-art approaches.

Method UCF101 HMDBS51
iDT [7] 86.0% 60.1%
Two Stream [15] 88.0% 59.4%
TDD [8] 90.3% 63.2%
MDI [25] 89.1% 65.2%
Hierarchical Rank Pooling [24] 91.4% 66.9%
Actions Transformations [22] 92.4% 62.0%
Convolutional Fusion [23] 92.5% 65.4%
Key-volume Mining [26] 93.1% 63.3%
TSN(RGB+OF+WOF) [10] 94.2% 69.4%
ConvNet(GB) 89.3% 60.8%
ConvNet(GB+RGB+OF+WOF)  93.2% 68.5%
TSN(GB+RGB+OF+WOF) 95.3% 71.9%

3.3. Comparison with the State-of-the-art

We also compare the proposed method against the state-of-
the-art approaches in Table 3. The iDT [7] is the best ac-
tion feature in traditional hand-drafted methods. The Two-
Stream ConvNet [15] is the first work to learn the deep spatio-
temporal feature by two-layer ConvNet architectures and has
a great influence on later deep learning methods for action
recognition. The TDD [8] enjoys the merits of deep ConvNets
and hand-crafted dense trajectory. [25, 24,22, 23, 26, 10] rep-
resent the latest and state-of-the-art deep learning approaches
for action recognition.

Our ConvNet(GB) outperforms the Two Stream Con-
vNet [15] (using RGB image and optical flow), since we
employ a deeper ConvNet architecture. This implies deeper
network architectures are better than shallow networks. Con-
vNet(GB) also achieves competitive performances as com-
pared with the state-of-the-art methods, e.g., MDI [25] and
TDD [8]. However, by incorporating other data modalities
(e.g., RGB, OF and WOF), the performance can be further
improved. Specifically, ConvNet(GB+RGB+OF+WOF) out-
performs other methods such as [24, 22, 23]. This is also
verified by the comparison of TSN(RGB+OF+WOF) [10]
and TSN(GB+RGB+OF+WOF) using the same TSN net-
work, where TSN(GB+RGB+OF+WOF) obtains the new
state-of-the-art results on both datasets.

4. CONCLUSION

In this paper, we proposed a high efficient gradient boundary
ConvNet for action recognition. As an input modality, the
gradient boundaries represent both local spacial structure and
motion information of action. The gradient boundaries are
also complementary to RGB images and optical flows. Exper-
imental results on two public databases have demonstrated the
superiority of the proposed method over some state-of-the-art
methods.
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