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ABSTRACT 
 

This paper presents a human action recognition approach by 

the simultaneous deployment of a second generation Kinect 

depth sensor and a wearable inertial sensor. Three data 

modalities consisting of depth images, skeleton joint 

positions, and inertial signals are fused by utilizing three 

collaborative representation classifiers. A database 

consisting of 10 actions performed by 6 subjects is put 

together to carry out two types of testing of the developed 

fusion approach: subject-generic and subject-specific. The 

overall recognition rates obtained from both types of testing 

indicate recognition improvements when fusing all the data 

modalities compared to the situations when data modalities 

are used individually.  
 

Index Terms— Fusion of depth, skeleton and inertial 

data, human action recognition, second generation Kinect 

depth sensor, wearable inertial sensor 
 

1. INTRODUCTION 
 

Research on human action recognition has made significant 

progress in the last decade and is attracting growing 

attention in a number of application domains, e.g. [1-5]. 

Despite much progress made in human action recognition, 

achieving high recognition rates under realistic conditions 

still remains a challenge. In our previous works [6-10] and 

in [11], it has been shown that recognition rates can be 

improved by using the data simultaneously captured from a 

depth camera (e.g., Microsoft Kinect) and a wearable 

inertial sensor compared to situations when each sensor is 

used separately or individually. In these previous works, the 

first generation of Kinect or Kinect v1 sensor was used. 

Furthermore, the skeleton data was not utilized due to jitters 

in skeleton joint positions in the Kinect v1 sensor.   

The second generation of Kinect or Kinect v2 sensor 

that has recently been released not only provides higher 

depth fidelity but also more stable skeleton tracking. The 

Kinect v2 sensor can track 25 joints per person (compared to 

20 with the Kinect v1 sensor), and the tracked positions are 

more anatomically correct and stable. In this paper, a human 

action recognition solution is introduced by simultaneously 

using a Kinect v2 sensor and a wearable inertial sensor via 

fusing depth, skeleton, and inertial data. More specifically, 

in addition to the depth images from the Kinect v2 sensor 

and the acceleration and angular velocity signals from the 

inertial sensor, the skeleton positions from the Kinect v2 

sensor are used to improve the recognition  outcome. This 

work involves the utilization of the three data modalities of 

depth, skeleton, and inertial at the same time for human 

action recognition. Moreover, the dataset collected in this 

work are made available for public use.  

The rest of the paper is organized as follows. Section 2 

describes the sensors used in this work. Section 3 includes 

the collected multimodal dataset. The fusion framework for 

action recognition is then presented in Section 4. The 

experimental results and their discussion are stated in 

Section 5. Finally, the conclusion appears in Section 6. 
 

2. SENSORS UTILIZED 
 

The Microsoft Kinect v2 sensor comprises a color camera 

and an infrared depth camera. A picture of the Kinect sensor 

is shown in Fig. 1(a). This sensor has a depth image 

resolution of 512 × 424 pixels with a field of view of 70 × 

60 degrees. An example depth image is depicted in Fig. 1(c). 

The effective range for depth is from 0.5m to 4.5m. The 

frame rate is approximately 30 frames per second. The 

Kinect for Windows SDK 2.0 [12] is a publicly available 

software package which allows tracking 25 skeleton body 

joints (see Fig. 1(d)) and their 3D spatial positions. 

       The wearable inertial sensor used in this work is a small 

size (1”×1.5”) wireless inertial sensor built in the Embedded 

Signal Processing (ESP) Laboratory at Texas A&M 

University [13]. This sensor captures 3-axis acceleration, 3-

axis angular velocity and 3-axis magnetic strength, which are 

transmitted wirelessly via a Bluetooth link to a laptop/PC. 

Due to a lack of a controlled magnetic field in practice, only 

the signals associated with the 3-axis accelerometer and the 

3-axis gyroscope are used here. This wearable inertial sensor 

is shown in Fig. 1(b). The sampling rate of the inertial 

sensor is 50Hz and its measuring range is ±8g for 

acceleration and ±1000 degrees/second for rotation. For 

practicality reasons or to avoid the intrusiveness associated 

with asking subjects to wear multiple inertial sensors, only 



one inertial sensor is utilized in this work bearing in mind 

that it is possible to utilize multiple inertial sensors if 

intrusiveness of wearing multiple sensors is not of concern. 

It is worth mentioning that both types of sensors, namely 

depth and inertial, are widely available commercially and 

are capable of generating 3D data of human actions. 

 

 

Fig. 1. (a) Microsoft Kinect v2 sensor. (b) Wearable inertial sensor. 

(c) An example depth image with the mapped 2D skeleton. (d) An 

example 3D skeleton with 25 tracked skeleton joints. 

 

3. DATASET COLLECTION 
 

Since there is no publicly available dataset that contains data 

from a Kinect v2 sensor and a wearable inertial sensor, the 

first task in this work involved collecting a multimodal 

dataset using the simultaneous utilization of these sensors. 

The actions considered correspond to the 10 similar actions 

in the Microsoft Research (MSR) Action3D dataset [14]. 

These  actions are listed in Table 1. Note that the similarity 

of these actions makes the recognition task more 

challenging. Six subjects (3 female and 3 male subjects) 

were asked to perform these 10 actions. Each subject 

repeated an action 5 times, which resulted in a total of 300 

action samples. The collected dataset incorporate intra-class 

variations due to different subject heights and subjects 

performing the same action differently.  

During the data collection, subjects were standing in 

front of the Kinect v2 sensor with the wearable sensor worn 

on their right wrists noting that the 10 actions considered 

were hand type of movements. The experimental setup used 

for the data collection is illustrated in Fig. 2. 

Three data modalities of depth images, skeleton joint 

positions, and inertial sensor signals (3-axis acceleration and 

angular velocity signals) were recorded in two channels or 

threads. One channel was used for capturing of depth images 

and skeleton positions, and one channel for the simultaneous 

capturing of inertial sensor signals. Each action sample was 

generated in one recording. The background of the depth 

images was removed during recording using the body 

tracking functionality provided in the Kinect SDK 2.0. 

As reported in [7], for data synchronization, a time 

stamp for each action sample was utilized. Since the frame 

rate of the Kinect sensor and the sampling rate of the 

wearable inertial sensor were different, the start and end of 

an action were synchronized by using the time stamps of the 

depth images to serve as references.  
 

Table 1. 10 actions used in the experiments. 

1. Right hand high wave 

2. Right hand catch 

3. Right hand high throw 

4. Right hand draw X 

5. Right hand draw tick 

6. Right hand draw circle 

7. Right hand horizontal wave 

8. Right hand forward punch 

9. Right hand hammer 

10. Hand clap (two hands) 

 

 

Fig. 2. Experimental setup for the dataset collection. 

 

The dataset collected is made available for public use 

and can be downloaded from the link: 

http://www.utdallas.edu/~kehtar/UTD-MHAD.html. 
 

4. ACTION RECOGNITION VIA SENSOR FUSION 
 

4.1. Feature extraction 
 

To extract features from depth images, depth motion maps 

(DMMs) discussed in [15] are used due to their 

computational efficiency. Each 3D depth image in a depth 

sequence is first projected onto three orthogonal Cartesian 

planes to generate three 2D projected maps corresponding to 

front, side, and top views, denoted by fmap , smap , and 

tmap , respectively. For a depth sequence with N  frames, 

the DMMs are obtained as follows: 
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where i  represents frame index. A bounding box is 

considered to extract the foreground (non-zero region) in 

each DMM. Since foreground DMMs of different video 

sequences may have different sizes, a bicubic interpolation 

is applied to resize all such DMMs to a fixed size and thus 

to reduce the intra-class variability.  

For the skeleton feature extraction, the method 

described in [16] is used due to its low computational 

complexity. Each skeleton sequence is partitioned into K  

temporal windows. Four statistical features of mean, 

variance, standard deviation, and root mean square are 

computed for the skeleton joint positions along three axes 

per temporal window. Since the 10 actions in our dataset 

involve hand type movements, only the position data from 

the upper body joints are used. More specifically, these 13 



skeleton joints are used: left elbow, right elbow, left hand, 

right hand, left hip, right hip, left shoulder, right shoulder, 

base of the spine, middle of the spine, spine at the shoulder, 

left wrist, and right wrist. All the features from the temporal 

windows are then concatenated to form a single skeleton 

feature vector of dimensionality 4 3 13 156K K    . 

For the inertial sensor, the same feature extraction 

method used for the skeleton data is utilized. Each 

acceleration and gyroscope signal sequence is partitioned 

into M  temporal windows as reported in [7, 16]. The four 

statistical features are computed for each direction per 

temporal window. All the features from the temporal 

windows are concatenated to form a single inertial feature 

vector of dimensionality 4 3 2 24M M    . 
 

 

Fig. 3. Example data for the action right hand high throw: (a) 

DMM features, (b) skeleton joint features, and (c) inertial signal 

features. 
 

An example of the three different types of features for 

the action right hand high throw is shown in Fig. 3. To gain 

computational efficiency, principal component analysis 

(PCA) is performed to reduce the dimensionality of features 

by retaining 95% of the total variation of the data.  
 

4.2. Recognition using decision-level fusion 
 

For action recognition, the collaborative representation 

classifier (CRC) [17], previously reported in [15], was 

utilized due to its computational efficiency and good 

classification performance. This classifier is briefly 

described here. Let 1 2[ , , , ] D n

C

  X X X X  denote n  

training samples from C  classes and jD n

j


X  denote jn  

training samples that are associated with class j . In CRC, a 

test sample 
Dy  is encoded on X  via 2l -minimization   
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where 
nα  is a coefficient vector corresponding to all the 

training samples and   is a regularization parameter. The 

solution of this minimization problem is given by 
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The classification decision is made according to the class 

which minimizes the reconstruction error, i.e. 
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where ˆ
jα  is the coefficient vector related to jX  and  je y  

is the corresponding reconstruction error. 

To fuse the three sets of features (e.g., depth features, 

skeleton features, and inertial features), a decision-level 

fusion scheme is adopted here by passing each set of 

features through a CRC classifier. Hence, for a test action 

sample y , three CRC classifiers are used, each handling one 

type of features. Then, a logarithmic opinion pool (LOGP) 

[18] is applied to achieve fusion at the posterior-probability 

level. LOGP uses the individual posterior probability 

 qp  y  of each classifier to estimate this global 

membership function 
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where m  is the number of classifiers and q  is a uniformly 

distributed classifier weight ( 1/q m  ). Here, the Gaussian 

mass function denoted below is considered 

                              expq jp e  y y                          (6) 

This function indicates that a smaller reconstruction error 

 je y  yields a higher probability  qp  y . The final class 

label for y  is then assigned to be the one with the largest 

probability  P  y . 

 

5. EXPERIMENTAL RESULTS AND DISCUSSION 
 

To examine the effectiveness of sensor fusion for action 

recognition, the following experiments involving two 

different settings were conducted. The first experimental 

setting is named subject-generic. This setting involved the 

leave-one-out subject  test, i.e., each time a subject was 

assigned as the testing subject (the action samples associated 

with this subject were regarded as testing samples) and the 

remaining five subjects were assigned as the training 

subjects (the action samples associated with these five 

subjects were regarded as training samples). The second 

experimental setting is named subject-specific. This setting 

involved dividing the samples from only one specific subject 

into a training and a testing set. Since each subject had 

performed an action 5 times, the first two repetitions of an 

action were used to form the training set and the remaining 

repetitions to form the testing set. In this case, all the 

training and testing samples were associated with the same 

subject.  
 

5.1. Parameter setting 
 

In the experiments, the sizes of fDMM , sDMM  and 

tDMM  were set to 170×86, 170×72 and 72×86, 

respectively, which were the average sizes of fDMM , 



sDMM  and tDMM  from all the action samples as discussed 

in [15]. As shown in Fig. 4, the number of windows 

generating the best recognition outcome was used for the 

subsequent experimentations. The number of windows being 

10 generated the best outcome when using the skeleton 

features (i.e., 10K  ) and the number of windows being 3 

generated the best outcome when using the inertial features 

(i.e., 3M  ). The parameter   in the CRC was set to the 

value that maximized the training accuracy via a five-fold 

cross-validation. 
 

 

Fig. 4. Recognition rates (%) with different number of windows 

for skeleton and inertial features in the leave-one-subject-out test. 
 

5.2. Recognition rates and processing time 
 

In this sub-section, the recognition rates of the developed 

fusion approach are reported. Under the two experimental 

settings, i.e. subject-generic and subject-specific, the 

recognition rates were obtained using only the depth features 

(D), only the skeleton features (S), only the inertial features 

(I), the combination of the depth and inertial features (D+I), 

the combination of the skeleton and inertial features (S+I), 

and the combination of the depth, skeleton and inertial 

features (D+S+I). Table 2 lists the average recognition rates 

per class and the average overall recognition rate over the 6 

subjects in the subject-generic test. As can be seen from this 

table, the action recognition performance was noticeably 

improved by the simultaneous utilization or fusion of the 

data from the Kinect sensor and the wearable inertial sensor 

(e.g., D vs. D+I and I vs. S+I). By fusing the three modalities 

of depth, skeleton and inertial data, the overall recognition 

rate reached a relatively high accuracy of 93.7% for the 

subject-generic test. 

We also conducted experiments reflecting different 

combinations of features for the subject-specific test. The 

outcome of these experiments is provided in Table 3. As 

evident from this table, the fusion approach led to higher 

recognition rates compared to situations when each set of 

features was used individually. In general, the recognition 

rates in subject-specific experiments would be higher than 

those in subject-generic experiments because of the fact 

there exist smaller intra-class variations in subject-specific 

experiments.  

All the coding was done in MATLAB on a laptop 

equipped with a 2.6 GHz Intel quad-core i7 CPU with 8 GB 

RAM. The processing time of the major components of the 

recognition program is listed in Table 4. As evident from 

these processing times, the recognition program runs in real-

time by being able to process 30 frames per second. 
 

Table 2. Action recognition rates (%) using different feature 

combinations for the subject-generic test. 

Action D S I D+I S+I D+S+I 

1 96.7 96.7 73.3 96.7 100 100 

2 50.0 56.7 80.0 76.7 80.0 90.0 

3 50.0 86.7 73.3 76.7 80.0 80.0 

4 63.3 80.0 66.7 80.0 80.0 80.0 

5 86.7 100 76.7 100 96.7 100 

6 50.0 86.7 90.0 83.3 93.3 93.3 

7 53.3 83.3 53.3 76.7 96.7 93.3 

8 93.3 96.7 73.3 90.0 100 100 

9 86.7 90.0 96.7 96.7 100 100 

10 100 100 83.3 96.7 100 100 

Overall 73.0 87.7 76.7 87.3 92.7 93.7 
 

Table 3. Action recognition rates (%) using different feature 

combinations for the subject-specific test. 

Action D S I D+I S+I D+S+I 

1 83.3 100 94.4 100 100 100 

2 50.0 94.4 94.4 100 100 100 

3 100 100 100 100 100 100 

4 83.3 88.9 88.9 88.9 88.9 94.4 

5 72.2 100 100 100 100 100 

6 77.8 94.4 100 100 100 100 

7 72.2 100 100 94.4 100 100 

8 83.3 100 88.9 100 100 100 

9 77.8 94.4 100 100 100 100 

10 94.4 100 100 100 100 100 

Overall 79.4 97.2 96.7 98.3 98.9 99.4 
 

Table 4. Processing times (in ms) of the major components of the 

fusion recognition program. 

Code components Average processing time (ms) 

DMMs computation  

Skeleton feature computation 

Inertial feature computation 

PCA dimensionality reduction 

Fusion classification 

11.2  

8.4  

0.6  

6.4 

7.9 

 

6. CONCLUSION 
 

In this paper, a data fusion approach for human action 

recognition has been developed by using a second 

generation Kinect depth sensor and a wearable inertial 

sensor. Depth images and skeleton joint positions from the 

Kinect sensor are collected together with the acceleration 

and angular velocity signals from the inertial sensor. These 

multimodality data are then used to carry out a decision-

level fusion via collaborative representation classifiers. The 

extensive experimentations performed have indicated the 

effectiveness of the fusion approach for action recognition 

compared to the situations when using each data modality 

individually. Possible extensions of this work include 

examining adaptive weights for combining features instead 

of using equal weights as done in this work and utilizing 

multiple inertial sensors for more complicated actions.  
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