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Decomposition Makes Better Rain Removal: An
Improved Attention-guided Deraining Network

Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Zhen Han, Tao Lu, Baojin Huang, Junjun Jiang

Abstract—Rain streaks in the air show diverse characteristics
with different shapes, directions, densities, even the complex
overlapped phenomenon, causing great challenges for the de-
raining task. Recently, deep learning based image deraining
methods have been extensively investigated due to their excellent
performance. However, most of the existing algorithms still
have limitations in removing rain streaks while preserving rich
textural details under complicated rain conditions. To this end,
we propose to decompose rain streaks into multiple rain layers
and individually estimate each of them along the network stages
to cope with the increasing abstracts. To better characterize rain
layers, an improved non-local block is designed to exploit the
self-similarity of rain information by learning the holistic spatial
feature correlations while reducing the calculation complexity.
Moreover, a mixed attention mechanism is applied to guide
the fusion of rain layers by focusing on the local and global
overlaps among these rain layers. Extensive experiments on both
synthetic rainy/rain-haze/raindrop datasets, real-world samples,
the haze, and low-light scenarios show substantial improvements
both on quantitative indicators and visual effects over the current
state-of-the-art technologies. The source code is available at
https://github.com/kuihua/IADN.

Index Terms—Image deraining, layer-wise learning, attention
mechanism, non-local network.

I. INTRODUCTION

High-quality images in the outdoor scenes carry rich infor-
mation, which is crucial for many computer vision tasks [1],
(2], [3]], such as object detection, recognition, and scene anal-
ysis. However, the observed image quality inevitably suffers
from degradations in real-world scenarios due to bad weather
conditions, such as the rain [4], [5], snow, fog [6], [7]], and so
on. Especially for the rainy day, rain streaks greatly affect
the visibility and luminance of scenes, which in turn may
lead to the failure of many computer vision systems [8], [9].
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Fig. 1. Deraining examples. Although the previous stage-wise based deraining
methods, such as RESCAN [20] and PreNet [21]], can work well on the
regions with light or sparse rain streaks, these two methods have limited
ability to cope with the regions corrupted with dense or overlapped rain
streaks, causing obvious color distortion and rain streaks remained. Besides,
the density-estimation based method (UMRL [22]) tends to produce under-
or over-deraining results. Our proposed IADN model can remove rain streaks
more thoroughly and generate clearer and more credible image contents. Best
viewed in color.

Therefore, inferring credible and clear contents from its rain-
contaminated image is a pressing need for numerous vision
tasks.

Given an observed rainy image [.q;,, it can be mathemati-
cally considered as the superposition of a rain component /g
with the corresponding clean background image Ip as follows

Irain :IR+IB~ (1)

Thus the goal of image deraining is to produce the rain-
free output [ from its rain-contaminated counterpart I,.qip,
approaching the clean background image /5. Previous model-
based technologies [10], [11]] tend to learn the rain streak
estimation using hand-crafted priors, e.g., photometric ap-
pearance [12], geometrical features [13], as well as local
structure correlations [[14]. However, since rain streaks are
of various directions, densities, and sizes, these methods are
limited to meet the increasingly complex deraining tasks with
hand-crafted features. More recently, numerous paired training
datasets along with the deep learning frameworks [13]], [16],
have given rise to many promising solutions on image
deraining tasks [18], [19], [4]. These data-driven algorithms
are capable of learning the intrinsic statistical characteristics
with the powerful modeling ability of deep neural networks,
which significantly promote the deraining performance and are
more robust over conventional deraining techniques.
However, rain streaks in different scenarios show diverse
shapes, directions, densities, and even overlaps. Most of the
existing deraining methods [23]], [24], are particularly
good enough in removing light rain, which can not fit real-
world scenarios of complicated and diverse rain characteristics.
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To this end, the authors in [26] use the image-level priors to
learn the rain density estimation jointly and image deraining
based on a density-label-based rainy dataset. However, the
restoration performance overwhelmingly relies on the de-
tection accuracy of rain density, while the dataset is only
for limited rain conditions (heavy, medium, and light rain).
To improve the generality, researchers [22f], [27] propose to
adaptively learn the density map by considering the local
information of rain streaks, which in turn guides the network
for deraining. Although they provide a promising solution to
cope with dense rain streaks, these methods usually generate
under- or over-deraining results because of the low tolerance
to estimate the holistic rain streaks directly. Another effective
strategy to improve deraining performance is the recurrent
learning [20], [28]]. These methods repeatedly learn the residu-
al maps between the predicted deraining image and the ground
truth via recurrent convolution layers. Albeit gaining the ben-
efits, the repeated residual learning using a unified and fixed
framework is unable to deal with the increasingly abstracted
representation of rain layers in rainy images (especially for
the overlaps of rain layers). Usually, it makes deraining results
visually vulnerable and inconsistent with real contents on the
contrast (Please refer to the deraining results by RESCAN [20]
and PreNet [21] in Figure. . To sum up, there remain mainly
two issues in existing methods to produce the high-quality and
high-naturalness rain-free image. First, how to train a unified
model to fit the diversity of rain density? Second, how to deal
with the overlapping phenomenon of rain streaks located at
any position and achieve the high-fidelity restoration?

To deal with these issues, in our previous work [29],
we constructed an attention-guided deraining network (ADN)
to learn multi-level abstractions of rain layers progressive-
ly and used the attention mechanism to guide the fusion
by focusing on the overlapped regions at the channel and
spatial dimensions. Albeit gaining the benefits from these
effective strategies, there is the tremendous growth potential
of ADN on deraining performance. First, ADN constructs a
residual memory block (RMB) for rain streak representation
by combining the recurrent calculation and residual learn-
ing. However, the recurrent structure (residual ConvLSTM
in ADN) is specifically designed for temporal correlations
rather than spatial dependence. Thus the internal correlations
(self-similarity) of rain streaks at spatial dimension are under-
exploited. Moreover, the cascaded residual ConvLSTM in
ADN trades the memory and computational cost for increased
global representation to rain information, hampering the finer
decomposition of rain streaks (more rain layers).

Based on these analyses above, we extend ADN [29] by
both considering the holistic correlation representation of
rain streaks (self-similarity), as well as layer-wise abstrac-
tion learning of rain layers more efficiently, and construct
an improved attention-guided deraining network (IADN) for
single image deraining. More specifically, unlike embedding
the recurrent learning unit into RMB, we design an improved
non-local block [30] to capture spatial feature dependencies,
and further exploit the holistic self-similarity of rain infor-
mation for a deep representation. It is more effective on
the reduction of computation and GPU memory usage than

recurrent calculation. Thus the burden reduction allows us
to construct a deeper network, which can perform a more
ingenious decomposition of rain streaks to cope with the
finer abstractions (more rain layers), and further to release
the learning difficulty. Moreover, we replace RMB in ADN
with the general channel attention block (CAB) to promote
the feature representation ability, and thus our model is easily
extended. Following ADN, we aggregate these rain layers to
regress the final residual rain image under the guidance of
the content attention maps to alleviating the effects of the
overlaps. Specifically, the concatenated rain layers go through
a mixed attention block (MAB) to distill the final candidate
components by learning the fusion weights among channel and
spatial dimensions. To illustrate the aptitude of our proposed
IADN method, we perform a variety of ablation studies as
well as comparison experiments with state-of-the-art deraining
approaches on common datasets. In summary, parts of this
paper’s results were published originally in this conference
version [29]]. However, this paper extends our earlier work in
several important aspects:

o We extend ADN by considering both the feature represen-
tation and algorithm efficiency, and construct an improved
ADN (IADN) for image deraining task. When compared
with ADN [29], it yields better deraining performance
(by 1.51dB and 0.86dB on Test100 and Testl datasets,
respectively) while enjoying 90% more efficiency both on
inference time and parameters (Table. [I[] and Figure. [7).

e« We exhibit more comparison results on another four
synthetic datasets with more recent deraining algorithm-
s, including PreNet [21], LPNet [31] and ADN [29].
Moreover, more comprehensive analyses composed of the
deraining performance, computational complexity, and
inference time are given, showing that IADN achieves ap-
proximate or better restoration performance with leas the
computational overhead (Table. [[lIHV] and Figure. [8] [9).

o Additional analytical results, as well as the visual repre-
sentation of the rain layers, are presented, showing that
the layer-wise scheme gradually abstracts the feature rep-
resentation of rain information (Table. [lI| and Figure. |3).

o« We exhibit more comparison results on diverse rain
patterns (covering rain-haze and raindrop) and other low-
level vision tasks (including image dehazing and low-
light enhancement) for a comprehensive evaluation (Ta-

ble. and Figure. [14).

II. RELATED WORKS

In the last few years, many image deraining schemes have
been proposed and achieved significant improvements. In what
follows, we briefly review contemporary works closely related
to ours, including the single image deraining [32], [33]], non-
local feature learning [30], [34] and attention mechanism [35]].

A. Image Deraining

The image deraining task is to generate a high-quality rain-
free image from the rain-corrupted input. The early model-
based methods [12], [36], [37] use the hand-crafted priors
to separate the background and rain streaks. For example,
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Luo et al. [38] propose a dictionary learning method for
single image deraining. After that, Li er al. [39] consider
the multiple orientations and scales of the rain streaks, and
propose a prior-based GMM method for rain streak estimation.
However, these methods are powerful limited for the complex
rain conditions, and tend to produce degraded image contents
because of the dependence on the priors. Very recently, deep-
learning-based approaches [40], [41], [42]] have emerged for
rain streak removal and demonstrated impressive restoration
performance. These methods apply the powerful feature rep-
resentation of deep neural networks to learn the mapping
relations between the rainy image and clean background from
numerous paired samples. For example, Fu et al. [23] pioneer a
three-layer deep neural network for the rain streak estimation.
They also present a rain detection and removal network by
recurrently learning the physical characteristics of rain streaks.
To release the learning difficulty, Li er al. [20] decompose
the deraining task into multiple subproblems, and propose a
recurrent squeeze-and-excitation context aggregation network
(RESCAN) to repeatedly learning the residual rain image. To
better model the rain information, Zhang et al. [26] consider
both the density and feature representation of rain streaks, and
present a multi-stream dense connection to model multi-scale
features of rain streaks. Later, Zhang et al. [25] further incor-
porate quantitative, visual, and discriminative performance into
the objective function, and propose a conditional generative
adversarial network (GAN) for rain streak removal. More
recently, Deng et al. [43] propose to view rain removal and
detail recovery as two separate tasks, and further solve these
two parts specifically. To exploit the self-similarity of rain
streaks, researchers [44], [45], [46] integrate the non-local
operation into the multi-scale framework to capture the spatial
correlation of rain information. In [47], the authors provide
a comprehensive survey of deraining methods over the last
decade, dividing them into model-based and data-driven ap-
proaches, and also give insights on the historical development
of deraining methods. At the same time, performance compar-
ison and future directions are provided. In [48]], the authors
present a weakly-supervised technique for rain streak removal
using the unpaired rainy images. More specifically, they con-
struct a two-stage data distillation method for learning the rain
map in the first “rain-to-clean” stage and the rain-free image in
the second “clean-to-rain” stage. In [49], the authors propose
to aggregate the advantages of the conventional model-driven
prior-based and data-driven DL-based methods, and construct
a novel RCDNet for single image deraining. Based on the
sparsity and non-local similarity of rain streaks, they learn
the specific rain kernels at different stages, and apply them to
predict the rain maps while updating the background contents
till the final stage. Unlike [49], we argue that the rain streaks
can be decomposed into multiple rain layers due to the depth
from the camera to the object, corresponding to the progressive
abstractions. Thus we decompose the rain streaks into multiple
rain layers, and individually learn the estimation of each rain
layer, whose solutions can be combined to yield a final solution
for the deraining task. To characterize the rain streaks, we
employ a modified non-local block in the first step to capture
the spatial similarity of rain streaks, and then abstract the

representation of rain layers at different stages of the network.
Finally, we aggregate these rain layers using a mixed attention
block to extract and fuse the candidate components, leading
to a more precise estimation of rain streaks.

B. Non-local Feature Learning

Computing the feature response between the reference
position and other query pixels is a practical and effective
technology to capture the long-range dependencies, which
benefits more to the high-level abstraction representation
of image contents. Buades er al. [S0] propose the patch-
based non-local filter algorithm for image denoising, which
calculates the non-local means as the weighted average of
all the pixels of the image patches. After that, a similar
strategy is applied in BM3D [51]], and achieves the state-
of-the-art restoration performance. More recently, researchers
integrate non-local operation into deep learning framework to
enhance the image content representation and understanding.
For example, Wang et al. [30] propose the non-local network
to capture the long-range dependencies among spatial pixels,
and showcase its efficacy for image classification. Enlightened
by these, there emerge many promising non-local solutions for
image restoration [52]. These methods introduce the non-local
operation to explore the self-similarity of detail information
at spatial dimension [44], [45], [46] or across the temporal
stages [53]. Limited by the great complexity of computing the
holistic response, the standard non-local operation is unsuit-
able to dealing with large resolution images and cope with
real-time tasks. Thus, a series of efficiency-friendly strategies,
such as bottleneck structure [30] and subsampling [30], [54]],
are introduced to save the computation and GPU memory
footprint.

C. Attention Mechanism

Attention mechanism has become a popular technique to
promote the discriminative learning ability by guiding the
network to focus on the most valuable components. It has
been successfully applied to computer vision tasks, including
localization and understanding of images [S5]. In previous
studies [56], researchers utilize visual attention to pay close
attention to the related regions concerning the classification
target. For example, Fu et al. [57] propose to recursively learn
the discriminative region attention and region-based feature
representation at multiple scales in a mutually reinforcing way,
and construct a recurrent attention network for fine-grained
image recognition. After that, Hu ef al. [58] present a squeeze-
and-excitation (SE) block to rescale the channel responses with
attention mechanism, which achieves significant performance
improvements for image classification. More recently, atten-
tion mechanism has also bee applied for low-level vision tasks,
such as image super-resolution [59]], [60]], denoising [61],
and deraining [32]. These methods use the convolutions and
sigmoid activations to learn the attention map through explicit
supervision to capture the direction-aware features to guide
the network optimization, and significantly promote the feature
presentation efficiency and model performance.
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Fig. 2. Outline of the proposed improved attention-guided deraining network (IADN). IADN decomposes the learning task into N (NN is set to 3 as an
example.) stages, corresponding to estimate N rain layers (I ¢, I o, 155 3)- By fusing these rain layers through a mixed attention block (MAB), we produce

the optimal approximation I, of the residual rain image I g.

III. METHODS

An observed rainy image I,.4;, can be described as a linear
combination of the background image Ip and its residual rain
image Ir. As the diversity of rain characteristics, containing
various rain shapes, directions, and densities, the distribution
of Ip is complex and irregular in the air. To better model rain
streaks, researchers [62]], [28] regard Ir as the accumulation
of multiple rain layers Ip; (i € [1,N]). They thus neglect
the discrepancy of learning tasks for different rain layers
since these methods progressively remove rain streak layers
through multiple recurrent stages under a unified framework.
Furthermore, the simple summation among stages to regress
the predicted residual rain image usually causes the loss of
image details due to the overlap among rain layers. To solve
these issues, we follow the decomposition strategy in [62]],
[28]] by dividing the deraining task into multiple subproblems,
corresponding to multiple rain layers, and estimate each rain
layer at a specifical stage of the network to match their
increasing abstraction. Moreover, we apply a mixed attention
block (MAB) to rescale the feature responses to guide the
fusion of these rain layers by focusing on the overlap regions
among channel and spatial dimensions. The outline of our
proposed IADN is shown in Figure.

A. Architecture and Model Optimization

The final goal of designing IADN is to produce a high-
quality rain-free image from its rainy observation I,.,;,. Moti-
vated by [35]], we utilize one initial convolutional layer H;,; ()
to extract the shallow features F{, while projecting the input
I,qin from the image space into feature space through the
following formulation

2

Unlike the ADN where Fy is directly passed through the
first stage to estimate the first rain layer, we apply a non-local
operation to explore the self-similarity of rain information by

FO = Hini(Irain)-

calculating the spatial feature dependencies. In this way, the
redundant information among similar rain patterns in a rain
image (e.g., similar appearance) can be aggregated to charac-
terize the referenced rain streaks. The non-local representation
of current object pixel I(z,y) can be expressed as

I(x,y) =3 I(wi,x)g(ws ) + I(@,y).

Vi Vi

3)

In Equation (3), I(z;,z;) denotes the representation of the
query positions except for I(x,y), and g(z;,x;) is the simi-
larity matrix, denoting the pair-wise relationship between the
reference position I(x,y) and other position I(xz;,x;). Thus,
we obtain the non-local representation F,,, of the initial
features. Then, F,,,, passes through the first stage to make a
step towards deep extraction of rain information. Meanwhile,
a reconstruction layer H,eq1(-) with filter size of 3 x 3 is
applied to regress the first rain layer, denoted as IF, ;. These
procedures above can be defined as

Fl = Hstage,l(Fnon)a (4)

(&)

In Equation @), Hstage,1(-) denotes the feature extraction
functions, essentially several cascaded channel attention blocks
(CABs) used to encode rain streak features. Following that, a
reconstruction layer Hp 1(-) takes F; as input to predict the
first rain layer. Next, F} is concatenated with the non-local
representation F),,,, along the channel dimension, and then go
through the second stage to regress the next rain layer. Similar
to the first stage, the regression procedures of the iy, rain layer
It ; (i € [2, N]) can be formulated as

Iy = Hrega (F1).

Fi - Hstage,i(Hconcat (Fnon7 Fi—l)a (6)

IEJ' = Hreg,i(Fi)~ (7)
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Fig. 3. Visual representation of rain layers. For better visualization, the pixel values are projected into [0, 255]. These rain layers contain rain information at
different feature levels. From left to right, the network gradually abstracts the feature representation of rain information. (Best viewed in color.)

Consequently, we generate N predicted rain layers Iy,
(¢t € [1,N]) from N stages, shown in Figure. 3, which are
regarded as the aggregated elements of the final residual rain
image. In the previous works [62]], [28]], the authors tend to
regress the final residual rain image via the commonly used
pixel-wise summation. It is efficient and practical, but ignores
the overlap among these rain streak layers, thus causing the
redundancy or loss of information due to the diverse over-
lapped phenomenons. In particular, the overlapped strengths
vary with the spatial regions and rain layers, which matter
for the accurate model of rain streaks. Thus it is beneficial
to make the network have the discriminative ability for these
overlapped regions and layers and pay more attention to the
grievously overlapped regions. Inspired by previous studies to
estimate the rain density maps [22]], [27]], we construct a mixed
attention block (MAB) using the attention mechanism [33],
which can provide the network with powerful discriminative
capability in focusing on the overlapped areas to learn the
fusion weights adaptively. The fusion procedures are expressed
as

IE:FMAB(I?%,UI;%,QW" ’I}k{,N)' 3

To obtain the optimal solution, most of the existing de-
raining methods tend to minimize the mean squared error
(l2 loss) to generate a rain-free result approximating the
ground truth. However, they usually produce blurry and over-
smoothing visual effects by missing high-frequency textures
since the squared penalty. In this study, we introduce the
Charbonnier penalty function [63] to train the network to
perform successive approximation, which is more tolerant of
small errors and holds better convergence during training. The
function is expressed as

L= \/(IDerain - IGT)2 + 52- (9)

In Equation (EI) IDperain refers to the rain-free image by
subtracting the predicted residual rain maps I, from the rainy
input Irqqn. The penalty coefficient € is empirically set to
1073,

B. Non-local Block

Context information contributes more to the accurate feature
representation [64]. Especially for rain removal research, rich
context information helps the network to distinguish rain
streaks from the background. In ADN [29], a residual memory

| 2= UpW,y; +x))
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Fig. 4. Structure of the improved non-local block. When compared with
the traditional non-local block [30], it introduces the spatial pyramid pooling
operation to reduce the computation and GPU memory usage (S < W H/4)
while maintaining the excellent modeling capability as the standard non-
local module to capture the global correlated information. Meanwhile, the
bottleneck design of the feature channels and the up-down architecture only
require 1/16 of the original computational overhead (W x H x C = W/2x
H/2 x C x0.25,).

block is designed to capture the textural dependency across
spatial series for its powerful ability in excavating strongly
correlated information in spatiotemporal series. It is some-
what effective, but requires extensive calculation and memory
cost. Another commonly used way to capture long-range
dependence is the non-local operation [30]. More specifically,
non-local block allows the network to compute the global
response at a position as a weighted sum of the features
at all spatial positions, thus allowing the network to exploit
the complementary information from the similar and repeated
patterns. However, the time and space complexities of the
standard non-local operation are both quadratic to the number
of positions W x H compared to normal operations since
attention maps are computed for each query position via matrix
multiplication.

Inspired by [63], the authors have demonstrated that the
distance between the attention maps of different query posi-
tions is very small. In this work, we integrate the up-down
structure, spatial pyramid pooling, and bottleneck layer into
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the non-local block to save the memory footprint by sampling
several channels and sparse anchor points instead of feeding
all the spatial points by referring to [34]. As depicted in
Figure. ] we first sample the input with a strided convolution
layer to select the query positions. We have experimentally
verified that the up-down structure with strided convolution
and deconvolution gains better performance by 0.1-0.2dB than
that of the pooling operation or wavelet transform. Then,
the embedding operations (1 x 1 convolution layer) in the
standard non-local block is replaced with a bottleneck layer
to rescale the channel response via a scaling factor. Thus for
the arbitrary input features (B x W x H x (') and the given
integer factor r and sampling factor (0.5), the input is rescaled
into B x W/2 x H/2 x C/r. Moreover, before calculating the
pair-wise relationship between the reference position z; and
other position x;, we introduce the spatial pyramid pooling to
sample several sparse anchor points instead of feeding all the
spatial points. Thus given output pooling sizes, the outcome of
the spatial pyramid pooling operation is a vector with the size
of B x S x C/r, where S is much smaller than W/2 x H/2.
Thus the space complexity could be considerably reduced
(e.g.. W/2x H/2 — S in Figure. [d]). The procedures of the
improved non-local block can be defined as

f(xi,x;) = 69(‘1074)”(301'))FSPP(<15(ﬂloum($j))T)7
1 (10)
y(mi) = WZ f(l‘l, xj)FSpp(g(down(xj))T)T.
Vi

In Equation (T0), down(-) is the strided convolution to sam-
ple the input with factor of 0.5. 6(-) and ¢(-) denote two
bottleneck layers with different learned parameters, Wy and
Wy. Fspp(-) refer to the spatial pyramid pooling operation.
f (x4, ;) represents the attention map for each query position.
Afterward, a normalization (softmax function) is applied to
f(x;,x;) to get a unified similarity matrix. g(-) is the unary
function that computes the representation of f while C(f) is
the normalization factor, defined as C(f) = > y, f(zi, 2;).
In this way, the feature representation is non-locally enhanced
via considering all positions (V7) for each location :. Finally,
a 1 x 1 convolution layer is implemented, acting as weighting
parameter to adjust the importance of the non-local operation
w.r.t. the original input z and moreover, rescale the channel
dimension to C, while a deconvolution layer up(-) is used to
magnify the feature maps by the following formula

zi = up(Wy y(x;) + ;). an

C. Mixed Attention Block

Shown in Figure. 3] the rain layers estimated by differ-
ent stages in IADN represent the diverse abstracts of rain
information and contain redundancy information due to the
overlapping phenomenon. Fusing these rain layers by a pixel-
wise summation [62] is efficient, but inevitably causes the
details missing. In this work, we design a mixed attention
block (MAB), shown in Figure. 5] to conveniently cope with
the overlap by performing a recalibration on feature responses.
More concretely, MAB provides the network with discrimina-
tive learning capability by considering the overlapping of rain
layers among channel and spatial dimensions.
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Fig. 5. Pipeline of the proposed mixed attention block (MAB).
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Fig. 6. Visual representation of the residual maps in the channel and spatial
attention units. The residual maps of the second and third columns denote
the residual components between the input and the output of the channel and
spatial attention units, respectively (Please zoom in to see more details.).

Before passing the rain layers I}, ; (i € [1, N]) into MAB, a
channel-wise concatenation is performed to obtain I},,. After
that, a channel attention unit (CAU) takes I, as input, and
then is used to exploit the channel inter-dependence through

the following function

Foav = Hoav(12y,)- (12)

Thus the network can adaptively distill the most informative
components of rain layers by considering the contribution to
the predicted residual rain image and the global overlapped
strength.

Although CAU can provide a reasonable fusion scheme
by rescaling feature responses at the channel dimension, the
overlapped strength varies with local regions at the spatial
dimension. Therefore, it is crucial to provide the network
with the discriminative ability to cope with the overlap at any
position and pay more attention to the grievously overlapped
regions. Besides CAU, we apply a spatial attention unit (SAU)
to improve the fusion quality of rain layers. This procedure
can be expressed as

Fsav = Hsav(Foav), (13)

where Fsay denotes the candidate components of N rain
layers. With SAU, the distilled features Fo 4y via CAU are
adaptively modulated at the spatial dimension, providing a
substantive supplement for the components selection of rain
layers. After that, a reconstruction layer is adopted to project
Fs 4y into image space:

Ij*z = Hrec(Fsa)~ (14)

For a better understanding of our proposed mixed attention
block, we provide the residual maps (the residual components
between the input and the output) of the spatial and channel
attention units in Figure. [f] For convenience, the first three
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channels of the residual components are selected for the visual-
ization. We can see that the spatial attention unit focuses on the
local overlaps of rain layers. In contrast, the channel attention
unit tends to cope with the global overlap of rain layers by
performing a recalibration on channel feature responses.

IV. EXPERIMENTS

This section evaluates our proposed deraining model I-
ADN and seven other representative deraining methods on
six synthetic and one real-world datasets qualitatively and
quantitatively. These methods contain the typical CNN-based
models (RESCAN [20] and DIDMDN [26]) and the more
recent deraining algorithms UMRL [22], PreNet [21], LP-
Net [31] and ADN [29]]. For the sake of fairness, we retrain
these aforementioned models on the unified dataset with
publicly available codes provided by authors. In addition,
we also evaluate IADN on rainy datasets with different rain
patterns (including rain-haze and raindrop scenarios) as well
as other low-level vision tasks (including image dehazing and
low-light enhancement) for comprehensive verification. The
widely used evaluation metrics [66], including the reference-
based indexes (Peak Signal to Noise Ratio (PSNR), Feature
Similarity (FSIM), and Structural Similarity (SSIM)), as well
as the reference-free indicators (Naturalness Image Quality
Evaluator (NIQE) [67] and Spatial-Spectral Entropy-based
Quality (SSEQ) index [68]) are applied as comparison criteria
to evaluate the deraining performance in this study.

A. Implementation Details

1) Data Collection: Enlightened by [25], [39], [69], we
collect about 13700 clean/rain image pairs for training, varying
with various streak orientations and magnitudes under distinct
rain conditions. The last 100 samples in dataset Rain800 pro-
vided by [235] are used for evaluation as Test100 in this work.
Besides, the synthetic rain dataset (Testl) commonly used
in [26], [22], composed of a total of 1,200 rain images with
different orientations and scales of rain streaks, is also adopted
for another comparison. Rain100H [70] and Rain100L [70]]
are two rainy datasets enjoying the same background images
but with distinctly different rain characteristics, heavy and low
rain conditions respectively, and are also used for evaluation.
Moreover, the novel rainy datasets BDD350 and COCO350
provided by [46]] are also considered for comparison, where
rainy images are of diverse streak orientations and magnitudes,
and at the same time have complex imaging conditions such
as night scenes. Furthermore, a real-world rainy dataset [26]],
[71], termed as (Reall27), is used to estimate the generaliza-
tion capability of our proposed deraining model.

2) Experimental Setup: In our baseline, the rain streaks are
divided into 10 rain layers (M = 10), corresponding to 10
stages in IADN, each of which comprises N = 3 channel
attention blocks (CABs) and one reconstruction layer. It is
expressed as that the proposed IADN simultaneously estimates
10 rain layers, and further fuses them to regress the predicted
residual rain image. Before packing the training samples into
IADN, the training samples are conveniently cropped into
small image patches with a unified size of 96 x 96 pixels

to obtain the sample pairs. During training, the batch size is
set to 32, and the learning rate is initialized as 5 X 10~* with
the decay rate of 0.9 every 10000 steps till 1 x 1076, After
60 epochs on training datasets, we obtain the optimal solution
with the above settings (Only one NVIDIA Titan Xp GPU and
an Intel 17-8700 CPU).

B. Ablation Study

1) Ablation Study on Basic Components: Since our baseline
IADN is composed of several incorporative components, in-
cluding non-local feature learning (NFL), layer-wise learning
scheme (LWLS), and mixed attention fusion (MAF), we
conduct ablation experiments on Testl dataset to analyze the
effects of these strategies on the final deraining performance.
Using our baseline IADN, we construct the first comparison
model (Modell) by removing the NFL to evaluate the non-
local feature representation. To demonstrate the layer-wise
learning strategy, we design Model2 by directly estimating the
rain streaks without adopting the rain layer decomposition. To
evaluate the mixed attention fusion, we construct Model3 by
replacing MAF with the pixel-wise summation to aggregate M
rain layers. Another comparison model (Model4) is obtained
by removing the NFL and LWLS. We obtain the last com-
parison model (Model5) by removing the NFL and MAF. For
the sake of fairness, we keep these models with approximately
equal parameters and the same settings during training.

Quantitative evaluation results, including PSNR, SSIM, and
FSIM, are tabulated in Table[l] From these scores, it is obvious
that the complete model IADN exhibits great superiority
over its incomplete substitutes, surpassing them by a large
margin. For example, compared with Model4, IADN achieves
better scores over Model4 (removing the NFL, LWLS, and
MAF from IADN) by 0.66dB and 0.05 in PSNR and SSIM,
respectively. We may attribute these advantages to the effective
non-local feature fusion and layer-wise learning strategy of
rain layers. The former allows the network to exploit the
holistic self-similarity of rain information by learning the long-
range dependency of global positions. The latter provides an
effective scheme to aggregate multiple rain layers by rescaling
feature responses, which is more effective and practical to cope
with the overlapping phenomenon of heavy rain conditions.
Besides, we also compare IADN with our previous work
ADN [29], showing that IADN yields better deraining per-
formance while it is 97.5% more efficient in model efficiency
and 90.0% in inference time. These improvements over ADN
have provided sufficient arguments on the effectiveness and
efficiency of our proposed MSHFN further. Visual comparison
results are shown in Figure. [/} It is evident that combining
the non-local feature learning strategy with the layer-wise
learning scheme to characterize the rain streak via a mixed
attention block produces better restoration results, enjoying
clearer image contents, richer details, and less color distortion.
It is also noted that Model3 can benefit from the holistic
feature representation and layer-wise learning, but still fails to
recover credible image textures since it is limited to cope with
the overlapped phenomenon among rain layers with the simple
pixel-wise summation. From these ablation experiments, we
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TABLE I
INVESTIGATIONS OF NON-LOCAL FEATURE LEARNING (NFL), LAYER-WISE LEARNING SCHEME (LWLS), MIXED ATTENTION FUSION (MAF) AS WELL
AS THE BASIC MODULES (CHANNEL ATTENTION BLOCK (CAB) IN IADN AND RESIDUAL MEMORY BLOCK (RMB) IN ADN [29]]) ON SYNTHETIC
DATASET T'estl. WE OBTAIN THE MODEL PARAMETERS (MILLION) AND AVERAGE INFERENCE TIME (SECOND) OF DERAINING ON IMAGES WITH THE
SIZE OF 512X 512. IT IS NOTED THAT REMOVING LWLS FROM THE BASELINE, MAF WILL ALSO BE REMOVED IN THE COMPARISON MODEL. ADN
DENOTES THE DERAINING MODEL PROPOSED IN OUR PREVIOUS CONFERENCE VERSION.

[ Model | Rain Image | Modell | Model2 | Model3 | Model4 | Model5 | ADN | TADN |
NFL X X v v X X X v
LWLS X v X v X v v v
MAF X v X X X X v v
RCAB X v v v v v X v
RMB X X X X X X v X
PSNR 22.15 32.02 31.75 32.07 31.63 31.89 3143 32.29
SSIM 0.732 0.913 0912 0914 0.911 0.912 0914 0.916
FSIM 0.881 0.957 0.956 0.957 0.956 0.956 0.955 0.958
Par.(M) - 0.978 0.953 0.945 0.981 0.990 31.55 0.980
Time (S) - 0.103 0.123 0.128 0.094 0.101 1.314 0.132

Model3

Rain Image Modell Model2

Fig. 7. Evaluation of the basic components on the Testl dataset.

validate the effectiveness of each component in our proposed
improved attention-guided deraining network (IADN) for rain
streaks removal.

2) Ablation Study on Parameters M and N: We assess
the influence of the number of rain layers (M) and the depth
of CAB (N) in each stage on deraining performance. Based
on the baseline (M 10, N 3), we construct three
comparison models, termed as IADN ;16n1, [ADN /1282 and
IADNjssn4, while keeping approximately the equal model
parameters. As shown in Table [lI} we obtain the best scores
when M and N are set to 10 and 3 respectively. It indicates that
using a reasonable decomposition strategy and network design
contributes to better prediction results. Moreover, when simply
increasing the number of CAB (IADN 1054, IADNas10n3)
or the decomposition level of rain layers (IADNjasi0n4,
IADNssn4), the deraining performance yields a slight gain
(0.06dB and 0.14dB), but with additional 19% and 24% of
the parameters respectively. Considering the tradeoff between

Model4 Model5 IADN Ground Truth

efficiency and deraining performance, we set M and N to 10
and 3 respectively in the following experiments.

TABLE II
EVALUATION OF THE NUMBER OF STAGES (N) AND RESIDUAL ATTENTION
BLOCKS (M), AS WELL AS MODEL PARAMETERS AND AVERAGE
INFERENCE TIME (SECOND) ON TEST1200 DATASET. IADN n¢ b
DENOTES THE MODEL WITH N = a AND M = b.

[ Model [ PSNR | SSIM | FSIM | Par(M) | Time (S) |
[ TADNy1oara | 3235 | 0917 | 0958 | 1170 | 0.148 |
[ TADNw16ar1 | 3220 | 0913 | 0957 | 0962 | 0.161 |
[ TADNy1aar2 | 3225 | 0915 | 0958 | 0946 | 0.143 |
[ TADNysara | 3221 | 0915 | 0958 | 0941 | 0.123 |
[ TADNw10ar3 | 3229 | 0916 | 0.958 | 0980 | 0.132 |

C. Comparisons with State-of-the-arts

1) Synthesized Data: To verify the deraining performance
of our TADN method, we compare IADN with six other repre-
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TABLE III
THE COMPARISON RESULTS OF AVERAGE PSNR, SSIM AND FSIM ON TEST100/TEST1 DATASETS. WE OBTAIN THE MODEL PARAMETERS (MILLION)
AND AVERAGE INFERENCE TIME (SECOND) OF DERAINING ON IMAGES WITH SIZE OF 512X 512. * DENOTES THE RECURSIVE NETWORK USING THE
PARAMETER SHARING STRATEGY.

| Methods | RESCAN™ [20] | DIDMDN [26] | UMRL [22] | PreNet™ [21] | LPNet [31] | ADN [29] | IADN (Ours) |
[ Dataset | Test100/Test1 |
[ PSNR | 25.00/30.51 | 22.56/29.65 | 24.41/30.55 24.81/31.36 | 23.39/25.00 | 25.20/31.43 | 26.71/32.29 |
[ SSIM [ 0.835/0.882 | 0.818/0.901 [ 0.829/0.910 0.851/0.911 | 0.743/0.782 | 0.857/0.914 | 0.865/0.916 |
| FSIM | 0.909/0.944 | 0.899/0.950 | 0.910/0.955 0.916/0.955 | 0.861/0.899 | 0.920/0.955 | 0.924/0.958 |
| Par.(M) | 0.150 | 0.372 | 0.984 0.169 | 0.007 | 31.55 | 0.980 |
| Time (S) | 0.546 | 0.315 | 0.112 0.163 | 0.027 | 1.314 | 0.132 |
TABLE IV
THE COMPARISON RESULTS OF AVERAGE PSNR, SSIM AND FSIM ON RAIN100H/RAIN100L DATASETS.
| Methods | RESCAN [20] | DIDMDN [26] | UMRL [22] | PreNet [21] | LPNet [31] | ADN [29] | IADN (Ours) |
| Dataset | Rain100H/Rain100L |
| PSNR | 26.36/29.80 | 17.35/25.23 | 26.01/29.18 | 26.77/32.44 | 16.00/25.57 | 26.86/28.32 | 27.86/32.53 |
| SSIM | 0.786/0.881 | 0.524/0.741 | 0.832/0.923 | 0.858/0.950 | 0.517/0.728 | 0.824/0.870 | 0.835/0.934 |
| FSIM | 0.864/0.919 | 0.726/0.861 | 0.876/0.940 | 0.890/0.956 | 0.699/0.832 | 0.872/0.889 | 0.875/0.942 |
TABLE V
THE COMPARISON RESULTS OF AVERAGE PSNR, SSIM AND FSIM oN COCO350/BDD350 DATASETS.
| Methods | RESCAN [20] | DIDMDN [26] | UMRL [22] | PreNet [21] | LPNet [31] | ADN [29] | IADN (Ours) |
| Dataset | COCO0350/BDD350 |
| PSNR | 17.04/16.71 | 17.12/16.85 | 17.68/17.36 | 17.53/16.90 | 15.43/14.87 | 17.37/17.02 | 18.18/17.91 |
| SSIM | 0.745/0.646 | 0.753/0.658 | 0.769/0.679 | 0.765/0.652 | 0.677/0.520 | 0.766/0.671 | 0.790/0.719 |

sentative deraining methods on six synthesized rainy dataset-
s, including Rain100H [70], Rain100L [70], Test100 [25],
Test1 [26], BDD350 [46]] and COCO350 [46]. The competing
methods include RESCAN [20], DIDMDN [26], UMRL [22],
PreNet [21]], LPNet [31] and ADN [29].

Qualitative results are tabulated in Table [ITI} [[V] and [V} On
the Test100 and Testl datasets, our proposed IADN method
gains the best scores among all indicators over all compet-
ing models with acceptable model complexity. For example,
the deraining performance shows significant improvements
over the recurrent deraining technologies (RESCAN [20] and
PreNet [21]), surpassing them by 1.78dB and 0.93dB on
PSNR respectively while enjoying less inference time. In
addition, when compared with more recent deraining methods,
including the uncertainty guided multi-scale residual learning
architecture (UMRL) [22], the light-weight deraining algorith-
m (LPNet) [31]] as well as our previous work (ADN) [29],
IADN is still very competitive by achieving better scores in all
indexes. Moreover, Table tabulates the comparison results
on Rain100H/Rain100L datasets, indicating that most of the
deraining technologies obtain impressive performance on light
rain condition, showing high consistency. However, only our
IADN still performs favorably on the heavy rain condition,
exhibiting great superiority over other competing methods
in terms of PSNR. Moreover, in the novel rainy datasets
(BDD350 and COCO0350), which are more challenging due to

diverse rain conditions and night scenarios, our proposed IAD-
N method still gains the best-evaluated scores. These results
further demonstrate the effectiveness of our proposed layer-
wise learning strategy and mixed attention fusion scheme,
which are more suitable to characterize rain streaks under
complex rain conditions, such as heavy and/or overlapped rain
streaks.

Visual comparison results on Test100/Test1 are reported in
Figure. [8] Obviously, only our proposed IADN algorithm can
recover clear and credible image textures while wiping out
main rain streaks in these scenarios. For more convincing
evidence, we also provide additional visual comparisons on
Rain100H/Rain100L datasets, shown in Figure. El All can
see that IJADN can remove more rain streaks and better keep
the image fidelity than these competing methods. Especially
for the heavy rain condition, our proposed IADN method
shows significant superiority in generating high-quality image
contents. In contrast, other deraining methods fail to remove
the rain streaks, and with obvious color distortion. We guess
that these visible improvements on restoration quality may
benefit from the elaborate design of the framework, including
non-local residual learning, layer-wise learning strategy, and
mixed attention fusion. These effective strategies are integrated
into a unified framework, allowing the network to exploit the
holistic spatial dependency to characterize rain streaks in a
layer-wise manner effectively. Besides, it provides a novel and
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Fig. 8. Comparison results on T'est100/Test1 datasets with six representative deraining methods, including RESCAN [20], DIDMDN [26], UMRL [22],

PreNet [21]], LPNet [31] and ADN [29].

TABLE VI
COMPARISON RESULTS OF AVERAGE NIQE AND SSEQ ON 127 REAL-WORLD SAMPLES. THESE TWO METRICS CAN EFFECTIVELY EVALUATE THE
RESTORATION QUALITY WITHOUT REFERENCE. IN PARTICULAR, A LOWER VALUE INDICATES A HIGHER QUALITY IMAGE.

[ Methods | RESCAN [20] | DIDMDN [26] | UMRL [22] | LPNet [ PreNet [21] | ADN [ TADN (Ours) |

[ NIQE | 3852 | 3929 | 398

[ 3989 | 3835 | 3782 [ 3769 |

[ SSEQ | 3009 | 3242 | 2948

[ 2962 | 2961 | 2882 | 2902 |

effective scheme for the restoration tasks with overlaps among
rain streaks.

2) Real-world Data: To better estimate the robustness and
generality of our proposed IADN model, additional experi-
ments are performed on real-world scenarios. Inspired by [26]],
[71], we collect 127 real-world rainy samples, which are
diverse in terms of contents as well as rain intensity and scales.
Since the ground truth is unavailable, we thus introduce two
additional quantitative indicators without reference, such as
Naturalness Image Quality Evaluator (NIQE) [67]] and Spatial-
Spectral Entropy-based Quality (SSEQ) [68], to distinguish
from pixel-based evaluation fashion. In particular, smaller s-
cores of SSEQ and NIQE indicate better perceptual quality and
clearer contents. Qualitative results are tabulated in Table
Still, our proposed IADN method has the lowest and second-
lowest average values on NIQE and SSEQ, respectively. These

results give additional evidence that our method generates an
image with greater quality improvement. Moreover, the visual
comparison results are reported in Figure. [0} Our proposed
IADN recovers the clear and credible contents in the first two
scenarios while effectively removing the main rain streak and
snow. However, other competing methods generate results with
visible rain streaks and snow reminded, and tend to blur the
visual effect.

3) Rain-haze and Raindrop Data: To further verify the
effectiveness of the proposed IADN method, we perform com-
parison experiments with the representative deraining methods
(RESCAN [20], UMRL [22], and PreNet [21]]) on multiple rain
patterns, including the rain-haze and raindrop conditions. The
RainCityscapes provided by [72] is a commonly used rain-
haze dataset covering 30 scenarios and 1080 rainy samples
with diverse rain-haze effects. The raindrop samples are col-
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Rain Image DIDMDN RESCAN UMRL PreNet ADN IADN (Ours)  Ground Truth

Fig. 9. The restoration results on Rain100H/Rain100L datasets various with different orientations and scales of rain streaks.

Rain Image DIDMDN RESCAN UMRL PreNet LPNet ADN IADN (Ours)

Fig. 10. Restoration results on real-world scenarios covering different rain or snow conditions.
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RESCAN UMRL PreNet IADN (Ours) Ground Truth

RESCAN UMRL PreNet IADN (Ours) Ground Truth

Fig. 11. Restoration results on rain-haze scenarios.

Rain Image RESCAN UMRL PreNet IADN (Ours) Ground Truth

Fig. 12. Restoration results on raindrop scenarios.

lected from with a total of 307 scenarios. Quantitative
results in terms of the average PSNR and SSIM are tabulated
in Table [VII] It is obvious that our proposed IADN method
is highly competitive as compared with these top-performing
competitors. For example, IADN surpasses PreNet by 2.32dB
in PSNR on the raindrop dataset. Visual comparisons in
Figure. [T1)and [T2]show that the iterative algorithms (RESCAN
and PreNet) aim at removing the rain streaks or raindrops
that reside in the estimated image via a recurrent strategy,
but tend to obtain over-smoothed results. In contrast, our
proposed IADN model and the UMRL method can promote
the image fidelity and discernibility while removing the main
rain streaks. However, the results produced by UMRL show
obvious color distortion (please refer to the “signboard” in the
second scenario in Figure. [TT]). Besides, our proposed IADN
method is considerably more effective in removing raindrops
than these competitors, producing results with fewer artifacts
and clearer textural details.

TABLE VII
COMPARISON RESULTS OF AVERAGE PSNR AND SSIM ON RAIN-HAZE
AND RAINDROP DATASETS.

[ Methods | RESCAN [20] | UMRL [22] | PreNet [21] | TADN (Ours) |

Rain-haze Dataset
PSNR [ 1773 [ 1803 | 1742 [ 1790
[ SSIM | 089 | 085 | 080 [ 0872 |
Raindrop Dataset
PSNR ‘ 23.27 ‘ 21.96 ‘ 23.32 ‘ 25.65
[ SSIM | 0788 | 0668 | 0797 [ 0824 |

D. Evaluation via Other Low-level Vision Tasks

Due to the generality of the basic modules in feature
representation, we extend our proposed improved attention-
guided deraining network (IADN) to major low-level image
enhancement tasks, such as image dehazing [81], [82] and
low-light enhancement [78]. For the dehazing task, inspired
by DADN [73], we choose 6000 synthetic paired hazy images
provided by [83]] to train both our proposed IADN as well as
other representative dehazing methods, including AOD [73],

TABLE VIII
COMPARISON RESULTS OF IMAGE DEHAZING AND LOW-LIGHT
ENHANCEMENT TASKS IN TERMS OF PSNR/SSIM. * DENOTES THAT THE
RESULTS ARE OBTAINED WITH THE RELEASED TEST CODES DIRECTLY.
ALTHOUGH MSBDN GAINS BETTER EVALUATION SCORES ON THE
DEHAZING TASK, IT TAKES MORE THAN 31 TIMES THE PARAMETERS AND
APPROXIMATELY 3 TIMES TRAINING SAMPLES THAN OUR PROPOSED

TADN MODEL.
Methods [ AOD [ EPDN [74] [ DADN | MSBDN* [ TADN (Ours)
Image Dehazing
SOTS 20.35/0.896 24.17/0.944 23.29/0.859 32.38/0.973 26.48/0.951
TestSet A 18.10/0.849 20.33/0.918 20.08/0.837 26.94/0.956 22.91/0.927
Par. (M) 0.002 17.38 54.59 31.35 0.980
Methods Zero-DCE RetinexNet DeepUPE* Kind TIADN (Ours)
Low-light Image Enhancement

LOL1000 15.53/0.420 18.23/0.792 16.64/0.773 18.93/0.851 18.71/0.839
TEST148 14.42/0.392 15.45/0.758 18.41/0.766 17.27/0.832 18.86/0.840
VOC144 15.42/0.348 18.08/0.749 19.43/0.781 22.19/0.834 19.46/0.781
Par. (M) 0.079 0.445 0.999 8.016 0.980

DADN MSBDN Ground Truth

Haze Image AOD EPDN

IADN (Ours)

Fig. 13. Comparison results of image dehazing on synthetic datasets.

EPDN [74] and DADN [73]. Since MSBDN [76] has not
released the training codes, we directly apply its pre-trained
model, which is trained on 16000 image pairs for evaluation.
To verify our proposed IADN method, we compare it with
other competing methods on two commonly used test datasets
(SOTS and TestSet A). SOTS is the test subset of the RESIDE
dataset which contains 500 indoor hazy images and 500
outdoor hazy images. TestSet A is the test subset of the NYU-
v2 database [84], covering 3169 haze images. Quantitative
results in terms of PSNR, SSIM and the model parameters
are tabulated in Table [VIII} Obviously, our proposed IADN
method has superior performance over the competing models,
surpassing the DADN method by 3.19dB and 2.83dB in
PSNR on the SOTS and TestSet A datasets, respectively.
Although the top-performing method MSBDN gains better
evaluation scores, it is specially designed for image dehazing
with more than 31 times the parameters and approximately
3 times training samples than our proposed IADN model.
Visual comparisons are shown in Figure. [[3] It is clear that our
proposed IADN model achieves comparable results on image
dehazing task against these representative dehazing methods
for producing better visual effects with clearer contents and
more credible textures. Other competitors fail to remove the
haze effect and tend to blur the contents and produce results
with obvious color distortion.

For the low-light enhancement task, inspired by [78], we
use the LOL dataset, which includes 500 low/normal-light
image pairs, to train our proposed IADN model as well as
other representative low-light enhancement methods, includ-
ing RetinexNet [78]], Zero-DCE [77] and Kind [80]. Three
commonly used test datasets (LOL1000 [78], TEST148 [83]
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Zero-DCE

Input RetinexNet DeepUPE Ground Truth

Fig. 14. Comparison results of low-light image enhancement on synthetic
datasets.

and VOC144 [86])) are used for evaluation. Quantitative results
in Table show that our proposed IADN model exhibits
great competitiveness against these representative methods
specially designed for low-light image enhancement task.
Visual comparisons are shown in Figure. [T4] It is clear that
other competitors tend to relight the dark regions but with
obvious color distortion and overexposure, while our proposed
IADN model can restore clear image details while adjusting
the exposure and illumination in a more visually pleasing
manner.

V. CONCLUSIONS

In this paper, we propose a novel improved attention-guided
deraining network (IADN) for rain streak removal. IJADN
especially models multiple rain layers under the stages of
the network, corresponding to the multi-level abstracts of
rain information in one rainy image. Besides, we propose
an improved non-local block to exploit the self-similarity of
similar rain patterns, and further apply the channel attention
blocks (CAB) to extract rich textual information from the non-
local features to represent rain layers at each stage. Moreover,
a mixed attention block (MAB) is constructed to guide the fu-
sion of rain layers by focusing on the overlapped phenomenon
at holistic and local dimensions. Extensive experiments on
several synthetic and real-world rain datasets, as well as other
low-level computer vision tasks (image dehazing and low-
light enhancement) have demonstrated the superiority and
generalization capability of our proposed IADN algorithm over
other state-of-the-art methods.
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