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SLR: Semi-coupled locality constrained
representation for very low resolution face

recognition and super resolution
Tao Lu, Xitong Chen, Yanduo Zhang, Chen Chen and Zixiang Xiong

Abstract—Although face recognition algorithms have been
greatly successful recently, in real applications of very low
resolution (VLR) images, both super resolution (SR) and recog-
nition tasks are more challenging than those in high-resolution
(HR) images. Given the rare discriminative information in VLR
images, the one-to-many mapping relationship between HR and
VLR images degrades the SR and recognition performances. In
this paper, we propose a novel semi-coupled dictionary learning
scheme to promote discriminative and representative abilities
for face recognition and SR simultaneously by relaxing coupled
dictionary learning. Specifically, we use semi-couple locality-
constrained representation to enhance the consistency between
VLR and HR local manifold geometries, thereby overcoming the
negative effects of one-to-many mapping. Given the learned task-
oriented mapping function, we feed these discriminative features
into a collaborative representation-based classifier to output their
labels, and combine a locality-induced approach to hallucinate
the HR images. Extensive experimental results demonstrate that
the proposed approach outperforms a number of state-of-the-art
face recognition and SR algorithms.

Index Terms—Very Low-resolution, semi-coupled locality-
constrained representation, face recognition, face hallucination.

I. INTRODUCTION

RE cently, face recognition algorithms have made sig-
nificant progresses in many real-world applications, for

instance surveillance video, authentication and entertainment.
However, in real scenarios, the resolution of facial images
is often in very low because of the far distance between
cameras and targets, thereby these thumb-size very low reso-
lution (VLR) facial images brings huge challenges to existing
face recognition algorithms. In addition, variations of pose,
illumination and expression make the recognition even more
difficult than high-resolution (HR) images [1], [2], [3], [4]. In
this paper, we define that the resolution of VLR face image is
no more than 10× 10 pixels.

Usually, there are three types of current VLR face recog-
nition algorithms. The first type is downsample-based ap-
proaches, in which HR gallery images are down-sampled,
thereby matching input low-resolution (LR) testing samples.
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The second type is super-resolution (SR) based approaches,
in which the LR probe is upscaled, thereby matching the HR
gallery. The third type is simultaneous super-resolution and
recognition (SRR)-based approaches, which completes SR and
recognition tasks at the same time. Down-sampling HR gallery
image into LR version easily solves the resolution mismatch-
ing problem. However, degradation process of down-sampling
degrades the available information. Then, SR algorithms are
generally applied in magnifying the resolution of LR probe
images to overcome the HR and VLR resolution gap [5].

Generally, we can easily use SR algorithms to enlarge the
VLR features into the size of HR images for VLR face
recognition. In the past few decades, various learning-based
face hallucinations are proposed to render pleasure visual
results, thereby overcoming the resolution gap of HR gallery
images and VLR probe ones. Two types of face SR algorithms
are widely used, namely, vision-based and feature-based.

Baker [6] et al. first proposed the concept of “face hallu-
cination”, which refers a subject-specific SR algorithm. They
used resolution pyramid to match the different resolution small
patches. After this remarkable work, Wang [7] et al. used
“ Eigenface” to transform LR image features into HR space
for reconstruction. Chang [8] et al. first introduced neighbor
embedding which also named as locally linear embedding
(LLE) into face SR algorithms. Then, Ma [9] et al. assumed
same position-patch has similar content similarity and used
least squares representation (LSR) to represent patch prior.
To overcome the over-fitting, Jung [10] et al. used sparse
regularization term to constrain the representation weights
and achieved good subjective results (SRSR). Jiang [11],
[12] et al. used locality-constrained representation (LCR) to
regularize representation weights by exploring the manifold
structure. Shi [13], [14] et al. developed a framework of face
hallucination using global image-level consistency, local patch
sparsity, pixel-level correlation and kernel prior. For the noisy
input images, low-rank representation [15], [16] were used in
promoting the robustness of representation coefficients. Deep
collaborative representation [17] and deep linear mappings
learning [18] extended the representation ability for training
samples. In recent years, Dong [19] et al. firstly proposed
three-layered convolutional neural networks for SR (SRCNN).
Region-based convolutional neural networks [20] leveraged
face super-resolution performance by accurate priors. Shi [21]
et al. discussed the roles of regularization models in HR
feature space. Noise-robust hallucination [22] and nonlocal
structure prior [23] were discussed for better performance.
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The above vision-based SR algorithms have superior subjec-
tive/objective performances by minimization of reconstruction
errors. Nevertheless, they can not fully consider the discrimi-
native ability of features, thereby degrading their recognition
performance capability.

For improved recognition rates, feature-based SR approach-
es are proposed, thereby obtaining resolution-robust features
that can ameliorate the resolution gap between LR and HR
features. Li [24] et al. aligned different resolution features
into a consistent manifold feature space for enhancing feature
representation ability. Jiang [25] et al. used coupled discrim-
inant multi-manifold to analyses (CDMMA) the VLR face
features for enhancing the difference of different manifolds.
This approach learns two discriminant projective matrices to
transfer VLR and HR features into a common feature space.
A resolution-invariant image representation scheme had been
proposed to match the LR image patch to an HR one [26].
Wang [27] et al. reviewed different deep structures of deep
networks for LR recognition. Maeng [28] proposed a cross-
mode matching method to perform VLR image recognition.
Shi [29] et al. learned a latent subspace for aligning HR and
LR features for improving recognition performance. Ma [30],
[31] et al. used robust matching to improve registration. Fast
matching for non-rigid image feature with probabilistic infer-
ence was proposed for UAV [32]. Low-rank supported extreme
learning machine yielded robust performance against noise
and outliers [33]. Although these feature-robust based SR
methods indicate satisfactory performance in recognition, they
do not consider image reconstruction because they consider
HR features instead of HR images.

To rectify the above shortcomings, several algorithms focus
on the recognition and hallucination tasks at the same time.
They aim to improve the recognition rate and the visual
performance simultaneously. Hennings-Yeomans [34] et al.
combined SR and recognition tasks in one algorithm (S2R2)
for promoting VLR face image recognition performance.
Biswas [35], [36] et al. introduced multi-dimensional scaling
(MDS) to preserving the distance in HR feature space. For far
distance observed small image, Yang [37] et al. used sparse
regularization two times for both VLR face recognition and
hallucination (FRH). Huang [38] et al. modeled the mapping
relationship of VLR and HR features by canonical correlation
analysis (CCA). Jian [39] et al. used LR and HR singular
values to build a feature relationship.

Most simultaneous SR and recognition algorithms assume
that VLR and HR features have similar manifold geometry
structure. However, in VLR scenario, using this assumption is
difficult. As shown in Fig. 1, we list the structure preservation
rate [40], [41] of three types of resolution face images, from
which, the structure preservation rate decreases from 95%
to 73% for 2× downsampling to 8× downsampling (where
K = 4). Structure preservation rate measures the neighbor-
hood relationship between HR and LR images, i.e., for images
that are neighbors in HR image space, their LR versions are
also neighbors as well. One-to-one mapping indicates a 100%
structure preservation rate. This phenomenon illustrates that
LR and HR structure mismatching degrades the VLR recogni-
tion performance. Thus, VLR has weak ability to distinguish

Fig. 1. Discriminative feature preservation rate indicates degree of LR and HR
structural matching. K is the number of subclass in gallery for AR database.

the identity of different individuals by limited features. The
credible discriminative information of VLR images are lost
during degradation process. Many works [42], [43], [44]
have pointed out that image resolution is not the vital factor
in face recognition systems. By contrast, the discriminative
features learned from dictionary is the dominant factor. In
fact, both upsampling- and downsampling-based algorithms
can not perfectly extract the discriminative features. Thus,
the one-to-many complex mapping function between HR and
VLR features degrade both the reconstructive and discrimi-
native performances of images. Most VLR face recognition
approaches obey the manifold consistency assumption. They
simplify the complex relationships between HR and VLR into
linear models. However, these complex mapping functions
between VLR and HR images are very hard to represent
in the full coupled learning scheme. Recently, semi-coupled
dictionary learning methods [45], [46] have been developed
for revealing the complex relationship of VLR-to-HR features.

Motivated by the above studies [45], [46], we use a semi-
coupled locality-constrained representation (SLR) to revise the
one-to-many mapping functions for improving representation
ability. First, we replace sparse regularization term by locality-
constrained representation (LCR) term which has powerful
discriminative feature representation ability. Then, we propose
a novel semi-couple framework to learn a dictionary pair to
transform the VLR features into their HR version. When the
mapping functions are ready, the transformed VLR features
are robust to varying resolution. Finally, we use a collaborative
representation-based classifier to perform the recognition task.
Extensive experiments show that SLR outperform many state-
of-the-art VLR face recognition methods.

We have extended our preliminary work [47] to simultane-
ous recognition and SR. First, a VLR face image SR algorithm
is added into the semi-coupled learning scheme to further
prove the proposed method. Second, we provide additional
experimental result details about the proposed semi-coupled
learning scheme. Finally, we introduce methods of parameter
selection to guide fine-tuning by maximum a posteriori proba-
bility estimation. We summarize the contributions of this paper
as follows:

1) We proposed a semi-coupled dictionary learning method
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for VLR face image feature representation and mapping.
The learned LR features are transformed into HR space
for simultaneously recognition and hallucination.

2) We comprehensively analyzed the role of locality-
constrained representation in recognition and SR tasks
including selection of parameters and optimization of its
semi-coupled version.

The structure of this paper is as follows: section I introduces
the VLR simultaneous recognition and SR problem. Section
II reviews relevant representation schemes, such as sparse rep-
resentation, locality-constrained representation, and coupled
learning scheme. Section III provides the objective function
and its optimization of semi-coupled locality-constrained rep-
resentation frameworks. Section IV conducts comprehensive
experiments to investigate the proposed approach. The last
section concludes.

II. RELATED WORK

A. Sparse Representation

Given an over-completed dictionary codebook D =
[d1,d2, ...,dM ] ∈ <d×M , M indicates dictionary atoms
amount, for an input d-dimension data vector x ∈ <d×1, the
sparse representation weights can be optimized by objective
function:

arg min
α

= {||x−Dα||22 + λ||α||0}, (1)

here α is the M -dimension coding vector, || · ||0 represents `0-
norm which counts the amount of non-zero atoms, λ is a con-
trolling parameter that contributes to the regularization. Given
the NP-hardness of `0-norm, `1-norm (||α||1 =

∑M
i |αi|)

is typically used to substitute `0-norm in optimization. Most
of existing sparse learning approaches are based on `1-
norm regularization because of its sparsity-inducing property,
convenient convexity, strong theoretical basis, and significant
success in many scenarios, i.e., multi-modal sparse coding was
successfully applied to web ranking [48].

B. Locality-constrained Representation

LCR considers the manifold structure of input signal and
dictionary atoms, thereby resulting in improved recognition
performance. The locality constraint is more significant than
sparsity in revealing the true geometry of a nonlinear manifold
[23]. The objective function incorporates a locality constraint
as follows:

arg min
α
{‖x−Dα‖22 + λ ‖l ◦α‖22}, s.t.1Tα = 1, (2)

here ◦ denotes an element-wise vector product, while
l = [l1, ..., lM ]T is an M -dimensional vector representing the
Euclid distance of query patch and every dictionary atoms.
Specifically,

li = exp(dist(x,D)
σ ), (3)

here dist(x, D) = [dist(x, d1), ..., dist(x, dM )]T , and
dist(x, dj) is the Euclidean distance between x and dj , σ
adjusts the decay speed of the locality adaptor; 1T is an all-
one column vector, and constraint 1Tα = 1 guarantees shift-
invariance. We normalize li between (0, 1]. Furthermore, λ

denotes the regularization controlling parameter. The regular-
ized least squares method is selected to analytically derive α .
Compared with the SR, the LCR improved the reconstruction,
and local smooth sparsity. Moreover, the analytical solution of
LCR are widely used in various computer vision applications.

C. Coupled Sparse Representation

In transfer learning scenario, i.e., face SR, LR recogni-
tion, coupled sparse representation (CSR) is widely used to
ameliorate the information gap between different resolution
data. For Dl and Dh represent LR and HR dictionaries, xl
and xh represent training data vector. The coupled sparse
representation seeks a resolution invariance weights by the
following objective function,

arg min
α

= {||xl −Dlα||22 + ||xh −Dhα||22 + λ||α||1}, (4)

where α is a coupled sparse weighting vector across different
resolution domains. Essentially, CSR follows the manifold
consistency assumption, i.e., LR and HR data share an isomet-
ric local manifold structure (isometric representation weights).
Formula (4) can be solved as a typical SR optimization after
coupling the input vectors x = [xl,xh]T , and dictionaries
D = [Dl, Dh]T together. In many applications, CSR obtains
satisfactory results from image reconstruction to recognition
tasks [46].

III. THE PROPOSED METHOD

Although coupled-learning scheme effectively models one-
to-one mapping and are greatly successful in many applica-
tions, it restricts both representation and reconstruction abil-
ities in different domains. To simultaneously boost represen-
tative and discriminative capabilities, semi-coupled learning
approaches [37], [45], [46] are proposed for overcoming
the limitation of coupled-learning. Inspired by these studies,
we use semi-coupled locality-constrained representation to
enhance the discriminative and representative abilities in both
the VLR and HR domains.

The outline of SLR is shown in Fig. 2. Semi-coupled
learning scheme includes two parts, namely, the training and
testing phases. The aim of training phase is to learn two (VLR
and HR) dictionaries and the mapping matrix W . Given these
clues, an engine integrates simultaneous face recognition and
SR into two algorithms. Thus, the final outputs indicate two
different channels. One is HR image, and the other is the
identity information of the query image. It is believed that
VLR images indicate lower recognition performance because
they contain rare discriminative information. Given the degra-
dation, the LR versions of two totally different HR images
may look similar, thereby leading to one-to-many mapping in
VLR scenarios.

Based on manifold learning, HR and LR images share
isometric geometric structures as per the manifold consistency
hypothesis. Traditional sparse representation approaches [10],
[49], [50] used the coupled learning model to support the
hypothesis. However, in the VLR scenario, the hypothesis
is difficult to support; the semi-coupled learning scheme
relaxes the strict and strong constraints on coupled learning
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Fig. 2. Flowchart of the proposed semi-coupled locality-constrained representation method for face simultaneous recognition and SR. The blue arrows indicate
training process and the red arrows represent testing steps.

for flexible and accurate representation ability. Furthermore,
category information in dictionaries promote discriminative
and representative abilities by transforming mapping function
W by correcting the degraded manifold structure as shown in
Fig. 2.

A. Semi-coupled Locality-constrained Representation

We use LCR to represent the HR and VLR samples pairs in
the same time, thereby enhancing the representation capability
of discriminative features.

Let Xl = [x1
l , ...,x

n
l ] ∈ Rd×n represents the VLR d-

dimension image dataset, n is the number of VLR images;
Dl = [d1

l , ...,d
M
l ] ∈ Rd×M is the VLR dictionary; M is the

amount of dictionary atoms; Λl = [α1
l , ...,α

n
l ] ∈ RM×n is the

VLR coefficient matrix. Correspondingly, Xh = [x1
l , ...,x

n
l ] ∈

Rt×n , Dh = [d1
h, ...,d

M
h ] ∈ Rt×M and Λh = [α1

h, ...,α
n
h] ∈

RM×n represent the HR dataset, dictionary, and LCR rep-
resentation coefficients matrices. Furthermore, t = d × s2

and s is the amplification factor. To obtain the LR and HR
representation coefficients and their relationship regression
function, different from LCR, we design four regularization
terms named as VLR dictionary term EL, HR dictionary term
EH , mapping term EM and as mapping constrain term ER.
Thus, total objective function is represented as following:

arg min
Λl,Λhf(·)

{EL (Xl, Dl) + EH (Xh, Dh)

+EM (Λh, f (Λl)) + ER (f (·)) }
, (5)

where EL and EH indicate the image reconstruction error;
EM represents the mapping error between the VLR and HR
representation coefficients. ER represents the regularization of
the mapping matrix, and f (·) is the mapping function between
the VLR and HR features matrices.

To simplify the complex mapping function, we use f (·) as
a linear mapping and rewrite it as W . Then, objective function
(5) can be represented by:

arg min
Dh,Dl,Λh,Λl,W

{(||Xl −DlΛl‖2F + ‖Xh −DhΛh‖2F

+λ1

n∑
i=1

∥∥lil ◦ αil∥∥2

2
+ λ2

n∑
i=1

∥∥lih ◦ αih∥∥2

2
+ λ3 ‖Λh −WΛl‖2F

+λ4 ‖W‖2F ) }

,

(6)
where αil and αih are the i−th VLR and HR representation

coefficients vectors; ◦ represents element-wise vector product,

lil and lih are M -dimensional weighted vectors that represents
the Euclidean metric of input patch and their representation
dictionary atoms in different resolution domains respectively.
Four λs are the balance parameters to adjust the contributions
ratios of the four regularization terms. In the proposed semi-
coupled learning scheme, we simultaneously learn represen-
tation dictionaries and their coefficients mapping functions.
First, VLR images will represented by VLR dictionary. Then
with the learned mapping function, the LR coefficients will
be projected into their HR coefficients as features. Thus
these learned features can been known as having resolution-
robust and discriminative abilities. We use alternating iteration
algorithm to solve the above objective function.

B. Optimization of SLR scheme

Given two training datasets, the purpose of SLR is to learn
the semi-coupled dictionary pair Dl , Dh ,and the mapping
relationship W . First, we use VLR and HR data matrices as
initial DL , Dh. W is initialized as an identity matrix, and
λ1, λ2 are initialized at 0. We iteratively update Λh and Λl,
Dl and Dh, W as following steps.

Updating Λl and Λh: When HR Xh and LR Xl, the
dictionary pair Dl, Dh and λ are ready. Then, we solve the
LCR coefficients Λl, Λh individually as follows:

arg min
αi

l

n∑
i=1

{
∥∥xil −Dlα

i
l

∥∥2

2
+ λ1

∥∥lil ◦αil∥∥2

2
+

λ3

∥∥αih −Wαil∥∥2

2
},

(7)

arg min
αi

h

n∑
i=1

{
∥∥xih −Dhα

i
h

∥∥2

2
+ λ2

∥∥lih ◦αih∥∥2

2
+

λ3

∥∥αih −Wαil∥∥2

2
}.

(8)

To resolve the above two formulas, we rewrite locality reg-
ularization terms into matrix forms, Lil = diag(lil) indicates
the Euclidean distance of input xil and dictionary atom djl . We
use the solution of LR representation matrix Λl as an example,
Formula (7) can be replaced as:

arg min
αi

l

{
n∑
i=1

∥∥xil −DlΛl
∥∥2

2
+ λ1

∥∥Lilαil∥∥2

2
+

λ3

∥∥αih −Wαil∥∥2

2
},

(9)
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We combine the first and third terms of the equation. The
function can thus be rewritten as:

arg min
αi

l

{||
[

xil√
λ3α

i
h

]
−
[

Dl√
λ3W

]
αil||22 + λ1||Lilαil||22}.

(10)
In this formula, only αil is unknown while the other vari-

ables are known in advance. We let H =

[
Dl√
λ3W

]
, and

y =

[
xil√
λ3α

i
h

]
. Thus, this function can be resolved with a

regularized least square with the analytic solution:

(αil)
∗ = (HTH + λ1L

i
l)
−1HTy. (11)

Then, we can solve Λh in series in the same manner.
Updating Dl and Dh: When LR and HR representation

coefficients matrices are given, the dictionaries Dh and Dl

can be updated as follows:

arg min
Dl

{||Xl −DlΛl||2F + λ1

n∑
i=1

∥∥lil ◦ αil∥∥2

2
}, (12)

arg min
Dh

{‖Xh −DhΛh‖2F + λ2

n∑
i=1

∥∥lih ◦ αih∥∥2

2
}. (13)

Similar to a previous work [51], we excluded the locality
constraint term to simplify the computation. We use gradient
descent algorithm to solve the above problem. The updating
scheme for Dl is Dj+1

l = Dj
l − β∇D

j
l and ∇Dj

l= −2(Xl −
Dj
lΛl)Λ

T
l . Here, β is a step size length that controls the

learning rate. Thus, Dh can be derived in the same manner.
Updating W : As soon as coefficients matrices Λl and Λh,

and dictionaries Dl and Dh are ready, mapping function W
can be updated as follow:

min
W
{λ3 ‖Λh −WΛl‖2F + λ4 ‖W‖2F }, (14)

this objective function is an unconstrained quadratic problem.
Let G(W ) denote the above objective function. Then, let

∂G(W )
W = (−2ΛhΛTl + 2WΛlΛ

T
l + 2λ4

λ3
W ) = 0. (15)

The function above can be rewritten as follow, where W is
initialized as an identity matrix:

W = ΛhΛTl (ΛlΛ
T
l + λ4

λ3
I)−1, (16)

where I is the identity matrix.
We iteratively perform the above steps for few iterations, Dl

and Dh, W can reach a balance to represent VLR images and
transform them into HR feature space. We directly use these
learned dictionary pair and mapping matrix in the following
classification task. The summary of semi-coupled learning
scheme is in Algorithm.1.

C. Classification

In the classification step, the codebook D contains n train-
ing images of k object classes: D = [D1, D2, ...Dk], n =∑k
i=1 ni. With the i-th face class Di = [di,1,di,2...di,ni ] ∈

<t×ni , ni is the number of the i-th class. We directly take
HR dictionary Dh as the gallery database. For the query LR

Algorithm 1 Dictionary learning by semi-coupled scheme.
Input: Validation of datasets Xh, Xl. Initial training dictio-

nary Dh, Dl,
1: Initial mapping of coefficients W .
2: Fix other variables, update αh and αl by Eq.(7) and

Eq.(8).
3: Update Dh and Dl by Eq.(12-13) with fixed other vari-

ables
4: Update W by Eq.(16).
5: Repeat the above steps with set iteration number.
Output: Semi-coupled dictionaries Dh and Dl and mapping

coefficients W .

input y, we first obtain its LR representation coefficient αy .
Then the VLR features are transformed into HR domain by
αh = Wαy .

For the i-th class, we define δi as a selection function which
choose the coefficients according to the same class. For input
query VLR image y, we classify it by assigning it to the object
class that minimizes its construction errors as:

arg min
i
ri(y) = min

i
{‖y −Dδi(Wαy)‖22 /||Wαy||

2
2}.

(17)
This objective function has analytical solution by using the

SPAMS toolbox [52].

D. Locality-induced based face hallucination
In the face hallucination scenario, traditional face hallucina-

tion algorithms directly project the LR representation weights
to the HR dictionary space for reconstruction. However, the
“one-to-many” approach and related degradation reduces the
reconstruction ability of LR dictionary. Especially in a VLR
scenario, the structure mismatching of representation weights
between LR and HR manifolds reduces both recognition and
reconstruction efficiency. To use the locality constraint in the
super-resolved HR target image, we rewrite (2) into

arg min
α
‖y −Dα‖22 + λ

n∑
i=1

‖li ◦ αi‖22,

s.t.
n∑
i=1

αi = 1, and αk = 0 if k /∈ Ck(y),
(18)

where Ck(y) is the indices of the K nearest neighbors of y
in the VLR dictionary. Given the added constraint, the value
of αi shrinks to zero if di is not the K nearest neighbors of
y, Thus, we only need to determine the K nearest neighbors
and use them to reconstruct y. Here, we use ε− ball method
to find K neighbors: If ||di − y||22 < ε, then add index i into
Ck(y), where ε > 0 is a constant. Formula (18) can be seen
as a regularized least square problem, which has an analytical
solution [12], [53].

Thus, we summarize the above classification process in
Algorithm.2.

IV. EXPERIMENTS
A. Database configuration and parameter settings

We perform extensive experiments on AR [54] and CMU
PIE [55] Face databases to investigate the performance of the
SLR.
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Algorithm 2 Simultaneous face recognition and SR engine
via SLR.
Input: Semi-coupled dictionaries Dh, Dl, mapping function

W , and testing sample y.
VLR face recognition

1: Calculate the testing LR LCR coefficients αl.
2: Transform αl to αh by mapping function W .
3: Classify with Eq (17).

VLR face hallucination
4: Calculate K locality-induced dictionary for input LR y.
5: Use (18) to calculate the LR LCR coefficient αl.
6: Transform αl into αh with the mapping function WK .
7: Calculate HR image by Y = DhWKαl.
Output: Class label i for input y, and HR image Y .

Fig. 3. Visual samples from the AR database. First row: HR samples; Second
row: LR samples.

The AR database has 100 subjects and total 2,600 face
images that include varied expressions and illumination. We
drop the images of subjects wearing glass and scarf, and select
1,400 samples include expression and illumination changes.
The entire database is partitioned into three parts. The first
part (five images for each person, totally 500 samples) is used
as LCR initial dictionaries Dh and Dl. The second part (five
other 5 images for each person, totally 500 samples) is used as
the training set (training datasets Xh and Xl) for the mapping
coefficients. We use the remainders (dataset Yl contains 400
samples) to testify the face recognition performance. As we
know, all test images are different from the training database.
The original AR database are color images, all images are
768 × 576 pixels. We manually align the extracted faces
images from the AR database by the positions of the two
eyes. Then we transform the color images to grayscale images
and resize them to 32 × 24 pixels as HR face images by
bicubic interpolation. We downsample the HR by a bicubic
interpolation at 1/4 multiple. The size of VLR image is 8× 6
pixels. Some representative samples from AR database are
shown in Fig. 3.

The CMU PIE database have 68 subjects and total 40,000
facial images, including poses, illumination, and expressions
changes. We randomly divide the whole database into three
parts. The first part (5 images for each person, totally 1360
samples) is used as LCR initial dictionaries Dh and Dl. The
second part (20 other images for each person) is used as the
training samples (training datasets Xh and Xl, each dataset
has 340 samples) for the mapping coefficients. We select the
third part (dataset Yl, with 28 images per person, with certain
extremely dark images are removed, totally 1969 samples)
to evaluate face recognition performance. The original CMU

Fig. 4. Visual samples of the CMU PIE database. First row: HR samples;
Second row: LR samples.

PIE database are colorful human faces images, all images
are 640 × 486 pixels. we directly convert the color images
to grayscale images and then resize the grayscale images to
32 × 28 pixels as HR face images by bicubic interpolation.
We downsample the HR image by bicubic interpolation with
amplification factor of 1/4. Then the size of VLR image is
8 × 7 pixels. We show the visual HR and LR samples from
CMU PIE database in Fig. 4.

First, we initialize Dh and Dl as HR face image data
matrices and VLR ones respectively. The number of iterations
is 20. In the AR database we fine-tune balance parameters
λ1=0.02 and λ2=0.06, λ3=1 and λ4=0.01. In the CMU
PIE database we use balance parameters λ1=2 × 10−5 and
λ2=8 × 10−3, λ3=6.4 × 10−5 and λ4=10−3. For the VLR
image recognition task, dataset Xh is selected as the HR
gallery set, and Yl is used as the VLR probe set. There are
no overlapped images between the training data and testing
data. Here, for each image in gallery dataset, we use HR
dictionary Dh to extract features and for LR probe dataset, we
use LR dictionary Dl to extract LR features, with the learned
mapping function, we can transform the LR features into HR
ones. For a fair comparison, some state-of-the-art recognition
and SR algorithms are chosen as the benchmarks for VLR
face images. As far as we know, the best performances
have been reported for the following: FRH [37] presents
for VLR face recognition and hallucination; CDMMA [25]
for feature-based face recognition; VDSR [56] for vision-
based face hallucination with deep learning; and CNE [41]
for representation-based face hallucination. All of the best
performance parameters have been considered in this work.
Furthermore, all of the face recognition and SR experiments
are conducted over the same database settings.

B. Effect of semi-coupled learning scheme (mapping function
W )

On the basis of transfer learning, the correlation of differ-
ent knowledge domains determines the learning performance
[57]. As typical applications of transfer learning, SR- and
representation-based recognition tasks rely on the accuracy of
representation coefficients. Here we use the accuracy index of
representation coefficients the same way as in previous work
[16] for quantitative measurement. Suppose, the LR input yl

and its original HR image yo. Then, their coefficients are
αl and αo. In reality, the HR coefficients of αo are not
available, but we can use the original image yo to test the
coefficient accuracy. We use the correlation value of (α0)Tαl

as accuracy metric. The proof details can be read in [16]. As
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Fig. 5. Correlation value denotes the consistency of representation coeffi-
cients. Larger value indicate better accuracy for coefficients. X-axis represents
the index of 360 testing images whereas Y-axis represents the correlation
values. Experiments are conducted using the AR face database, and the
configuration is the same as in the next experiment.

Fig. 6. Recognition rate with or without the mapping function W . Left: AR
database. Right: CMU PIE database.

shown by the simulation results in Fig. 5, given the transform
function W , the accuracy of representation coefficients is
better than original LR and HR coefficients using the semi-
coupled learning scheme.

Another experiment is designed to further verify the ef-
fectiveness of the mapping function, one with and the other
without the W matrix. When the best reconstructive and
discriminative dictionary pair is learned, we use the gallery and
probe sets all in HR size as the upper bound. The performance
of the proposed algorithm with different setting is shown in
Fig. 6. The learned semi-coupled mapping matrix enhances
the average recognition rate by 1.75% for the AR database
and 3.35% for the CMU PIE database. This results confirm
that the proposed semi-coupled dictionary learning scheme is
important in FR task. Mapping functions can ameliorate one-
to-many relationships by local manifold regularization. The
resolution gap between HR and LR is reduces by 5% - 10% in
terms of recognition performance, and the transforming func-
tion W improves the performance by revising the manifold
structure.

C. Effect of LCR

Unlike sparse representation regularization, LCR shows
some attractive advantages, for instance enhanced reconstruc-
tion ability, local smooth sparsity and having analytical so-

Fig. 7. The Recognition rate values versus different λs.

lution [11]. Thus, LCR is assumed to have improved the
recognition rate by using the discriminative ability from local
manifolds of input images. In fact, VLR and HR images are
not only different in resolution, but also in manifold structures.
Therefore, selecting a best performance parameter for LCR
is significance in experiment. Subsequently, we design an
experiment to confirm the roles of LCR for testing the HR
and LR manifold structures.

We employ the AR database experiments as an example.
We show the VLR and HR locality constraint weights and
their recognition performance in Fig. 7. λ1 and λ2 indicate
VLR and HR control parameters, which are updated in 0.02
intervals. When λ1 = 0.02 and λ2 = 0.06 the recognition
rate (RR) reaches the optimum value. General, discriminative
information of HR image is naturally much more than its
LR version. Thus, the locality-constrained term in HR should
be more credible, as indicated by the greater contribution
weights. In the same manner, we plot the peak signal-to-
noise ratio (PSNR) values of different λ settings in Fig. 8.
From this figure, we see that the parameters λ1 and λ2 have a
obvious impact on PSNR performance. When λ1 = 0.01 and
λ2 = 0.06 the PSNR (dB) score reached its best performance.
For both recognition and SR tasks, the HR images provide
stable manifold structure priors, thereby enabling the same
locality balance parameters. However, slight differences can
be observed in the LR image space. Nonetheless, given that
the semi-coupled dictionary learning scheme drops the locality
terms during training, the slight difference in LR balance
parameter is acceptable. The process of estimating the balance
parameters is described in the appendix.

D. Recognition rate

We fully compare our approach with a number of state-
of-the-art recognition methods. Here, two settings are used in
the experiments: first setting is using vision-based recognition
algorithm. Super-resolved HR images are used as testing data
which is cascaded with several popular classifier engines, i.e.,
SRC [58], CRC [59] and PCANET [60] (The recognition
performance is shown in Table I). The second one is a typical
resolution-robust VLR face recognition method that only uses
LR images as testing inputs, including FRH method [37]
and CDMMA [25]. Among the list, PCANET [60] has been
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Fig. 8. The PSNR values versus different λs.

TABLE I
RECOGNITION PERFORMANCE OF SOME VISION-BASED FACE

RECOGNITION METHODS USING AR DATABASE AND CMU PIE
DATABASES.

Methods SRC CRC PCANET
AR CMU AR CMU AR CMU

HR 0.9450 0.9421 0.9550 0.9497 0.9575 0.9309
VLR 0.8200 0.8872 0.8280 0.8827 0.0275 0.0564
BIC 0.3000 0.5672 0.3550 0.4576 0.4400 0.4972
LSR 0.7875 0.8598 0.8180 0.8832 0.8075 0.8121

SRSR 0.7850 0.8765 0.7750 0.8791 0.7575 0.8385
LCR 0.7785 0.8644 0.7970 0.8756 0.7650 0.8121

known as a baseline of deep-learning based face recognition
algorithm. We cascaded VDSR [56] with the CRC classifier
and the SRC classifier using the same configuration to test the
recognition performance in Table II. We fine-tune the selected
classifiers at their best performance. We average five-times
performance score in Tables I and II. When the input VLR
images are super-resolved into the HR images using traditional
classifiers, findings showed that CRC is better than other
methods in term of recognition rates. Compared with VLR face
image recognition, performance of simply feeding the super-
resolved images into traditional classifiers is even lower than
the original LR version. Moreover, vision-based hallucination
does not seem to contribute to recognition. The results has
similar performance reports with the previous work [44].
Feature-based VLR recognition, for an example: FRH, exhibits
higher recognition rates than SR-based algorithms. In the other
hand, as shown in Tables I and II, SLR outperforms than
the FRH [37] and CDMMA [25], as shown by improvements
of 6.00% and 4.15% using the AR database and 2.64% and
1.32% using the CMU database, respectively. Here CDMMA
uses coupled-learning scheme too. Above results confirm that
SLR has stronger discriminative ability than its competitors.
The proposed semi-coupled learning scheme improves the
recognition rate score by fully utilizing HR and VLR manifold
constraints.

E. Face hallucination

In this sub-section, we assess the subjective and objective
image qualities of all competitors, including bicubic interpo-
lation (BIC), LSR [9], SRSR [49], LCR [12], CNE [41], FRH
[37] and VDSR [56].

TABLE II
RECOGNITION RATE OF SOME STATE-OF-THE-ART

RESOLUTION-ROBUST-BASED FACE RECOGNITION USING AR AND CMU
PIE DATABASES.

Databases FRH [37] CDMMA [25] VDSR+CRC VDSR+SRC SLR
AR 0.7950 0.8135 0.8125 0.8175 0.8550

CMU 0.8893 0.9025 0.9076 0.9072 0.9157

Fig. 9. The SSIM and PSNR values versus different K values. First row
indicates results using AR database. Second row indicates results using CMU
PIE database.

1) Quantity of Neighbors : We test the amount of K
neighbors on the basis of two objectives, namely, to save
on computing cost and to boost subjective image quality. For
the best performance, we fine-tuned K with different settings.
The SSIM and PSNR of the AR and CMU PIE databases are
shown in Fig. 9. For the AR database, when K = 350, the
SSIM and PSNR achieved the optimum. For the CMU PIE
database, when K = 200, the SSIM and PSNR obtained their
best performance. Findings indicate that the shrinking scheme
of the proposed approach boosts its performance by using the
locality prior from the training samples.

2) Objective reconstruction quality: Here three objective
quality measures, namely, PSNR, structural similarity (SSIM)
and feature similarity (FSIM), are used to evaluate the perfor-
mances of the different algorithms. The results are shown in
Tables III and IV.

We average all of the testing results and list them in Table
III and IV to highlight the promoted performance compared
with those of competitors. Here, VDSR gets the best perfor-
mances on PSNR and SSIM on the AR database and second-
best performances on the CMU PIE databases respectively.
However, when VDSR results are fed into the CRC recognition
engine (Table II), its recognition performance is lower than
the proposed method in terms of both on AR and CMU
PIE databases. In the same time, FSIM scores of SLR are
slightly higher than VDSR. This phenomenon demonstrates
that features have a dominant role in recognition than visual
results. SLR yields the best performances comparing with
other representation-based approaches without VDSR.

3) Time complexity: We implement the SLR algorithm in
Matlab with hardware configuration: Intel Core i5-6300HQ
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TABLE III
COMPARATIVE AVERAGES OF PSNR ,SSIM AND FSIM USING THE AR DATABASE.

Methods BIC SRSR LSR LCR CNE FRH VDSR Ours
PSNR(dB) 20.467 24.273 24.076 24.439 24.655 24.729 25.283 24.884

SSIM 0.563 0.829 0.818 0.829 0.835 0.844 0.857 0.845
FSIM 0.785 0.908 0.903 0.909 0.927 0.912 0.913 0.914

TABLE IV
COMPARATIVE AVERAGES OF PSNR ,SSIM AND FSIM USING CMU PIE DATABASE.

Methods BIC SRSR LSR LCR CNE FRH VDSR Ours
PSNR(dB) 22.031 26.511 25.709 26.985 27.288 27.186 27.405 27.645

SSIM 0.561 0.840 0.817 0.858 0.848 0.854 0.857 0.867
FSIM 0.780 0.908 0.904 0.913 0.905 0.914 0.915 0.921

CPU @2.30GHz, 8 GBytes RAM for experiments. As shown
in Fig. 10, VDSR has best performance on running time testing
(0.006sec/image) with GPU acceleration, but its training time
is much longer than other methods, and its optimization
process relies on GPU devices, so it is unfair to directly
compare time effectiveness with SLR. SLR takes slightly more
running-time than BIC and LSR, but it has much higher PSNR
scores both on AR and CMU databases than BIC and LSR.
On the other hand, SLR has better running time and PSNR
performances than FRH, LCR, SRSR and CNE. In short,
the running-time of different algorithms confirms the time
effectiveness of SLR.

4) Visual results: The visual results of using the different
algorithms are shown in Figs. 11 and 12. The HR images
have 32× 24 pixels, and thus, they are somewhat unclear. By
contrast, the VLR images with 8×6 pixels result in blurriness
that prevents the effective gathering of facial information.
Except for BIC, all the other SR algorithms achieve smooth
results. Specifically, the results of the proposed approach
contains more details (e.g., edges of nose, eye, and mouth in
magnified version) compared with those of the other methods.
Although the VDSR obtained higher PSNR and SSIM perfor-
mance, the visual results seem to be more blurred/smoother
details compared with those from our method. This finding
indicates that the visual reconstruction performance of SLR is
competitive with other competitive algorithms.

V. CONCLUSION

We propose a novel semi-coupled locality-constrained rep-
resentation algorithm to improve the discriminative and re-
constructive abilities for VLR image in this work. Semi-
coupled learning scheme fully uses manifold consistency
that revises the feature representation capabilities. Then we
conduct comprehensive experiments on VLR face recognition
and hallucination using AR and CMU PIE databases, and
results confirm the effectiveness of the proposed method over
several state-of-the-art SR and recognition methods. In the
future, the recognition performance should be further boosted
by designing novel deep feature representation schemes.

VI. APPENDIX

Although locality constraint leads to smooth sparsity which
boosts its performance, the regularization parameter λ is still

hard to estimate. Vanilla solution to estimate λ is to fine
tune the best performance parameter. In this paper, we use a
maximum a posteriori probability (MAP) method to estimate
this parameter. Take how to estimate LR locality constraint
parameter λ1 for example, for an input xil , Dl is LR dictionary,
then LCR objective function is defined as following

arg min
αi

l

{
∥∥xil −Dlα

i
l

∥∥2

2
+ λ1

∥∥lil ◦αil∥∥2

2
}, s.t.1Tα = 1.

(19)
From statistical point of view, input images xil is observed

variable, the task is to estimate unobservable variable αil . Then
objective function is defined as:

p(αil|xil) =
p(αi

l)p(x
i
l |α

i
l)

p(xi
l)

, (20)

where p(xil|αil) represents a posterior probability, in general,
the image noise is assume as Gaussian distribution with zero
mean and σ variance, then:

p(xil|αil) = 1√
2πσ

exp(− 1
2σ2 ||xil −Dlα

i
l||22), (21)

usually, representation coefficients are assumed as Gaussian
distribution with zero mean and σr variance too. Then

p(αil) = 1√
2πσr

exp(− 1
2σr
||lil ◦α||22), (22)

here lil is a constant for locality metric. For a given observation
variable xil , the formula for representation coefficient using
MAP is given by:

αil = arg max
αi

l

log p(αil|xil)

= arg max
αi

l

(logp(xil|αil) + logp(αil)).
(23)

Formula (19) and (20) are combined into formula (21), then
we have,

αil = arg max
αi

l

(log 1√
2πσ
− 1

2σ2 ||xil −Dlα
i
l||22

+log 1√
2πσr

− 1
2σ2

r
||lil ◦αil||22.

(24)

Since the first and third terms in formula (22) are constant,
they always do not affect the probability of αil , then we have

αil = arg min
αi

l

( 1
2σ2 ||xil −Dlα

i
l||22+ 1

2σ2
r
||lil ◦αil||22). (25)

We compare above formula (24) with formula (18), it is easy
to get:

λ1=σ2

σ2
r

(26)
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Fig. 10. Running time (seconds per testing image) of different SR algorithms using AR database(a) and CMU database(b), the scaling factor is 4, X axis
indicates running time of algorithms and Y axis represents the PSNR scores.

Fig. 11. Experimental results on image SR using AR database (scaling factor: 4). From left to right: LR image, Bicubic, LSR, SRSR, LCR, CNE, FRH,
VDSR, the proposed SLR method and the HR ground-truth.

Where σ is noise variance of the observed image and σr
is variance of representation coefficients. Here, we use same
method (MAP) to estimate LR and HR locality term parame-
ters λ1 and λ2 to perfectly exploit their locality constraints.
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