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Abstract—Remote sensing land-use scene classification has a wide 

range of applications including forestry, urban-growth analysis, 

and weather forecasting. This paper presents an effective image 

representation method, Gabor-filtering-based completed local 

binary patterns (GCLBP), for land-use scene classification. It 

employs the multi-orientation Gabor filters to capture the global 

texture information from an input image. Then, a local operator 

called completed local binary patterns (CLBP) is utilized to 

extract the local texture features, such as edges and corners, from 

the Gabor feature images and the input image. The resulting 

CLBP histogram features are concatenated to represent an input 

image. Experimental results on two datasets demonstrate that the 

proposed method is superior to several existing methods for land-

use scene classification. 

Keywords-Gabor filtering; local binary patterns; land-use sence 

classification; extreme learning machine 

I.  INTRODUCTION 

Land-use scene classification aims to assign semantic labels (e.g., 
building, river, forest, mountain, etc.) to aerial or satellite images. It 
has a wide range of applications including agricultural planning, 
forestry, urban-growth analysis, and land use management. With the 
rapid development in sensor technology, high-resolution remote 
sensing images can be obtained using the advanced space-borne 
sensors. High-resolution remote sensing images with rich spatial and 
texture information have made it possible to categorize different land-
use scene classes automatically [1]. 

There has been a great deal of effort in employing computer vision 
techniques for classifying aerial or satellite images. The Bag-of-Words 
(BoW) model [2] is one of the most popular approaches in image 
classification and image retrieval applications. In the BoW model, 
local image features such as color and texture are first quantized into a 
set of visual words using some clustering methods. An image is then 
represented by frequencies of the set of visual words. Although the 
BoW model has demonstrated the effectiveness for the remotely 
sensed land-use scene classification [1, 3], it ignores spatial 
relationships of the local features. To incorporate spatial context to the 
BoW model, a spatial pyramid matching (SPM) framework was 
proposed in [4] by partitioning an image into subregions and 
computing a BoW histogram for each subregion. Histograms from all 
subregions were concatenated to form the SPM representation of an 
image. In [5], a multi-resolution representation was incorporated into 
the BoW model to improve the SPM framework by constructing 
multiple resolution images and extracting local features from all the 
resolution images with dense regions. Since the SPM method uses the 
absolute spatial information, it may not improve the classification 

performance for images exhibit rotation and translation variations due 
to rotated camera views. To overcome this limitation, a pyramid-of-
spatial-relatons (PSR) model was proposed in [6] to capture both 
absolute and relative spatial relationships of local features. 

The above-mentioned methods focused on improving the BoW 
framework by incorporating spatial information for land-use scene 
classification; however, extracting effective local features that can 
capture the rich texture information of the high-resolution remote 
sensing images was not exploited. On the other hand, some works 
evaluated various image feature descriptors and combinations of 
feature descriptors for scene classification. In [7], local structural 
texture descriptors and structural texture similarity with nearest 
neighbor classifier were utilized for semantic classification of aerial 
images. In [8], Gabor descriptor and Gist descriptor were evaluated 
individually for the task of aerial image classification. In [9], a global 
feature descriptor named enhanced Gabor texture descriptor (EGTD) 
and a local scale-invariant feature transform (SIFT) [10] descriptor 
were combined in a hierarchical approach to improve the remote 
sensing image classification performance. In [11], four types of 
features consist of DAISY [12], geometric blur [13], SIFT [10], and 
self-similarity [14] were used within the framework of multifeature 
joint sparse coding with spatial relation constraint. Although fusing a 
set of different features may enhance the discriminative power, it 
requires parameter tuning for each feature and the feature 
dimensionality may be increased significantly.  

Gabor filters [15] and local binary patterns (LBP) [16] have been 
successfully applied for a variety of image processing and machine 
vision applications (e.g., [17-19]). In this paper, we present an 
efficient image representation method using Gabor-filtering-based 
completed local binary patterns (GCLBP). More specifically, multi-
orientation Gabor filters are first applied to a remotely sensed input 
image to obtain multiple Gabor feature images which capture different 
orientation information of the input image. Completed local binary 
patterns (CLBP) [20] operator, a complete modeling of the LBP 
operator, is then employed to extract the rotation invariant texture 
features (histograms) from the Gabor feature images as well as the 
input image. The overall framework of the proposed representation 
approach is illustrated in Fig. 1. For classification, kernel-based 
extreme learning machine (KELM) [21] is utilized due to its efficient 
computation and good classification performance.  

The remainder of this paper is organized as follows. Section II 
provides relevant background and related work. Section III describes 
the details of the proposed image representation approach. Section IV 
presents the experimental data and setup as well as comparison of the 
classification performance between the proposed method and the 
existing methods. Finally, Section V makes several concluding 
remarks. 

*Correspondence to Libing Zhou (lb_zhou@163.com). This research was 
supported by the Key Program of Hubei Provincial Department of Education 

(Grant No. D20141602).  



 

Fig. 1. The framework of the proposed GCLBP image representation approach. 

 

II. RELATED WORK 

A. Gabor Filtering 

A Gabor wavelet is a filter whose impulse response is defined by a 
sinusoidal wave multiplied by a Gaussian function. In the 2-D spatial 
domain, a Gabor filter, including a real component and an imaginary 
term, can be represented as  
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where 
 cos sina a b     (2) 

 sin cos .b a b      (3) 

Here, a  and b  denote the pixel positions,   represents the 

wavelength of the sinusoidal factor,   represents the orientation of 

the Gabor wavelet (e.g., 8 , 4 , 2 , etc.). Note that we only 

need to consider 
o o[0 ,180 ]   since symmetry makes other 

directions redundant.   is the phase offset and   is the spatial 

aspect ratio (the default value is 0.5 [17, 18]) specifying the ellipticity 

of the support of the Gabor function. 0   and 2   return the 

real and imaginary parts of the Gabor filter, respectively. Parameter 
  is the standard deviation of the Gaussian function and it is 

determined by   and spatial frequency bandwidth bw  as 
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A visualization of Gabor filters for four orientations is presented in 
Fig. 2.  

 

Fig. 2. Two-dimensional Gabor kernels with four orientations, from left to right: 

0 , 4 , 2 , and 3 4 . 

Typically, the Gabor texture feature image in a specific orientation 
is the magnitude part of convolving the input image with the Gabor 

function ( , )G a b . 

B. CLBP 

LBP [16] is a simple yet efficient operator to summarize local 

gray-level structure of an image. Given a center pixel ct , its 

neighboring pixels are equally spaced on a circle of radius r  ( 0r  ) 

with the center at ct . If the coordinates of ct  are (0,0)  and m  

neighbors 1

0{ }m

i it 

  are considered, the coordinates of it  are

( sin(2 ), cos(2 ))r i m r i m  . The LBP is computed by thresholding 

the neighbors 1

0{ }m

i it 


 with the center pixel ct  to generate an m -bit 

binary number. The resulting LBP for ct  can be expressed in decimal 

form as follows: 
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where ( )i i cd t t  is the difference between the center pixel and each 

neighbor, ( ) 1is d   if 0id   and ( ) 0is d   if 0id  . The LBP only 

uses the sign information of id  while ignoring the magnitude 

information. However, the sign and magnitude are complementary and 

they can be used to exactly reconstruct the difference id . In the CLBP 

scheme, the image local differences are decomposed into two 
complementary components: the signs and magnitudes (absolute 

values of id , i.e., | |id ). Fig. 3 shows an example of the sign and 

magnitude components of the CLBP extracted from a sample block. 
Note that “0” is coded as “-1” in CLBP [see Fig. 3 (c)]. Two operators, 
namely CLBP-Sign (CLBP_S) and CLBP-Magnitude (CLBP_M), are 
used to code these two components. CLBP_S is equivalent to the 
traditional LBP operator. The CLBP_M operator is defined as follows: 
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where c  is a threshold that is set to the mean value of | |id  from the 

whole image. The CLBP-Center part which codes the values of the 
center pixels is not used here.  

 

Fig. 3. (a) 3×3 sample block; (b) the local differences; (c) the sign component 
of CLBP; and (d) the magnitude component of CLBP. 

C. Extreme Learning Machine (ELM) 

ELM [22] is an efficient learning algorithm for single-hidden-
layer feed-forward neural networks (SLFNs). The hidden node 
parameters in ELM are randomly generated leading to a much faster 
learning rate. 

Let 1[ ,..., ,..., ]T C

k Cy y y y be the class to which a sample 

belongs, where {1, 1}ky    ( 1 k C  ) and C  is the number of 

classes. Given n  training samples 1{ , }n

i i ix y , where 
M

i x  and 

C

i y , the model of a single hidden layer neural network having L  

hidden nodes can be expressed as 
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where ( )h   is a nonlinear activation function (e.g., Sigmoid function), 
C

j β  denotes the weight vector connecting the thj  hidden node 

to the output nodes, M

j w  denotes the weight vector connecting 

the thj  hidden node to the input nodes, and je  is the bias of the 

thj  hidden node. The above n equations can be written compactly as: 
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hidden layer output matrix of the neural network expressed as 
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1 1( ) [ ( ),..., ( )]i i L i Lh e h e    h x w x w x  is the output of the hidden 

nodes in response to the input ix . A least-squares solution β̂  of the 

linear system Hβ Y  is found to be 

 †ˆ ,β H Y  (10) 

where †H  is the Moore-Penrose generalized inverse of matrix H . 
As a result, the output function of the ELM classifier can be 
expressed as 
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where 1   is a regularization term. A kernel matrix

( ) ( ) ( , )ELM i j i jK   h x h x x x  is considered if the feature mapping 

( )ih x  is unknown. Therefore, the output function of KELM is given 

by 
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The label of a test sample is assigned to the index of the output nodes 
with the largest value. 

III. PROPOSED IMAGE REPRESENTATION APPROACH 

Inspired by the success of Gabor filters and LBP in computer 
vision applications, we propose an efficient image representation 
approach for land-use scene classification using Gabor-filtering-based 
CLBP. The Gabor filter belongs to a global operator while LBP is a 
local one. As a consequence, Gabor features and LBP features 
represent texture information from different perspectives. 

An input land-use scene image is first convolved with the Gabor 
filters with different orientations to generate the Gabor-filtered images. 
The magnitudes of the Gabor-filtered images are used as the Gabor 
texture feature images. Fig. 4(b) - (e) are the Gabor feature images 

obtained by the Gabor filters with four orientations ( =0 , = 4  , 

= 2  , and =3 4  ). As we can see the Gabor feature images 

reflect the global signal power in different orientations. In order to 
enhance the information in the Gabor feature images, we encode the 
Gabor feature images with the CLBP operator (i.e., CLBP_S and 

CLBP_M). Each Gabor feature image results in one CLBP_S coded 
image (equivalent to an LBP coded image) and one CLBP_M coded 
image. Fig. 4 (a1) - (e1) show the CLBP_S coded images for the 
Gabor feature images and Fig. 4 (a2) - (e2) show the CLBP_M coded 
images for the Gabor feature images. It is obvious that the detailed 
local spatial texture features, such as edges, corners, and knots, are 
enhanced in the CLBP_S and CLBP_M coded images. Moreover, 
CLBP_S and CLBP_M coded images contain complementary texture 
information which motivates us to use CLBP in our image 
representation method to enhance the discriminative power. The 
CLBP operator is also applied to the input image. Histogram is 
computed from each CLBP_S and CLBP_M coded images. Finally, 
all the histograms are concatenated or stacked as a composite feature 
vector before it is fed into a KELM classifier. The overall framework 
of the proposed image representation approach (GCLBP) is illustrated 
in Fig. 1. Note that we use rotation invariant pattern in CLBP to 
achieve image rotation invariance. 

 

Fig. 4. Examples of Gabor feature images and the corresponding CLBP coded 
images. (a) Input image. (b) - (e) are the Gabor feature images obtained by the 

Gabor filters with =0 , = 4  , = 2  , and =3 4  (wavelength 8 

and bandwidth 4bw  ). (a1) - (e1) are CLBP_S coded images corresponding 

to (a) - (e). (a2) - (e2) are CLBP_M coded images corresponding to (a) - (e). 
The pixel values of the CLBP_S (CLBP_M) coded images are CLBP_S 
(CLBP_M) codes (binary strings) in decimal form. 

IV. EXPERIMENT 

To evaluate the efficacy of our proposed image representation 
method for remote sensing land-use scene classification, we conduct 
experiments using two publicly available datasets. The classification 
performance of the proposed method is compared with the state-of-
the-art performance reported in the literatures. In our experiments, the 
radial basis function (RBF) kernel was employed in KELM. 

A. Experimental Data and Setup 

The first dataset is the 21-class land-use dataset with ground truth 
labeling [3]. The dataset consists of images of 21 land-use classes 
selected from aerial orthoimagery. Each class contains 100 images 
with sizes of 256×256 pixels. This is a challenging dataset due to a 
variety of spatial patterns in those 21 classes. Sample images of each 
land-use class are shown in Fig. 5. To facilitate a fair comparison, the 
same experimental setting reported in [3] was followed. Five-fold 
cross-validation is performed in which the dataset is randomly 
partitioned into five equal subsets. There are 20 images from each 
land-use class in a subset. Four subsets are used for training and the 
remaining subset is used for testing. The classification accuracy is the 
average over the five cross-validation evaluations. 

The second dataset used in our experiments is the 19-class 
satellite scene dataset [23]. It consists of 19 classes of high-resolution 



satellite scenes collected from Google Earth (Google Inc.). There are 
50 images with sizes of 600×600 pixels for each class. The images 
are extracted from large satellite images. An example of each class is 
shown in Fig. 6. The same experimental setup in [24] was used. We 
randomly select 30 images per class as training data and the 
remaining images as testing data. The experiment is repeated 10 
times with different realizations of randomly selected training and 
testing images and classification accuracy is averaged over the 10 
trails. 

 

Fig. 5. Examples from the 21-class land-use dataset: (1) agricultural, (2) 
airplane, (3) baseball diamond, (4) beach, (5) buildings, (6) chaparral, (7) 

dense residential, (8) forest, (9) freeway, (10) golf course, (11) harbor, (12) 

intersection, (13) medium density residential, (14) mobile home park, (15) 
overpass, (16) parking lot, (17) river, (18) runway, (19) sparse residential, (20) 

storage tanks, (21) tennis courts. 

 

 

Fig. 6. Examples from the 19-class satellite scene dataset: (1) airport, (2) 
beach, (3) bridge, (4) commercial, (5) desert, (6) farmland, (7) football field, 

(8) forest, (9) industrial, (10) meadow, (11) mountain, (12) park, (13) parking, 

(14) pond, (15) port, (16) railway station, (17) residential, (18) river, (19) 
viaduct. 

B. Parameter Tuning 

First of all, we study the Gabor filter parameters for land-use 
scene classification. According to (4), the parameters of Gabor filter 

with different   and bw  are investigated. Four Gabor orientations (

=0 , = 4  , = 2  , and =3 4  ) are used. The parameters for 

the CLBP operator are set as: =10m  and =3r . For the 21-class land-

use dataset, we randomly select four subsets for training and the 
remaining subset for testing. For the 19-class satellite scene dataset, 
30 images per class are randomly selected for training and the 
remaining images for testing. Fig. 7 and 8 show the classification 
results for the two datasets, respectively. From the results, the optimal 

  for the 21-class land-use dataset is 8 and the optimal bw  is 4. The 

optimal   for the 19-class satellite scene dataset is 6 and the optimal 

bw  is 2. Therefore, we fix these parameters in our subsequent 

experiments. We further examine different choices of orientations for 

the Gabor filter. Two orientations include [0, 2] , four orientations 

include [0, 4, 2,3 4]   , six orientations include 

[0, 6, 3, 2,2 3,5 6]     , and eight orientations include 

[0, 8, 4,3 8, 2,5 8,3 4,7 8]       . Fig. 9 illustrates the 

classification performance of GCLBP with different orientations. 

Thus, four orientations include [0, 4, 2,3 4]    were chosen for 

the experiments. 

Then, we assign appropriate values for the parameter set ( , )m r  of 

the CLBP operator. The classification results with various CLBP 
parameter sets are listed in Tables I and II for the two datasets, 
respectively. Note that the dimensionality of the CLBP histogram 

features is dependent on the number of neighbors ( )m . Therefore, 

larger m  will increase the feature dimensionality and computational 

complexity. In our experiments, we choose ( , ) (10,3)m r   for the 21-

class land-use dataset and ( , ) (8,3)m r   for the 19-class satellite 

scene dataset in terms of classification accuracy and computational 
complexity, making the dimensionalities of the GCLBP features for 
the 21-class land-use dataset and the 19-class satellite scene dataset 
1080 and 360, respectively. Furthermore, in all the experiments, the 
parameters for KELM (RBF kernel parameters) were chosen as the 
ones that maximized the training accuracy by means of a 5-fold 
cross-valiadation. 

 

Fig. 7. Classification accuracy (%) versus varying   and bw  for the proposed 

GCLBP method for the 21-class land-use dataset. 

 

Fig. 8. Classification accuracy (%) versus varying   and bw  for the proposed 

GCLBP method for the 19-class satellite scene dataset. 



 

Fig. 9. Classification accuracy (%) versus different Gabor filter orientations for 
the proposed GCLBP. 

TABLE I.  CLASSIFICATION ACCURACY (%) OF GCLBP WITH 

DIFFERENT PARAMETERS ( , )m r  OF THE CLBP OPERATOR ON THE 21-CLASS 

LAND-USE DATASET 

21-class land-use dataset 

r  1 2 3 4 5 

4m   85.48 85.00 83.57 82.86 80.71 

6m   88.81 88.10 87.14 86.67 85.71 

8m   89.52 89.05 89.76 88.33 87.38 

10m   89.05 89.29 90.24 88.10 86.67 

12m   89.52 89.52 90.48 90.00 88.10 

TABLE II.  CLASSIFICATION ACCURACY (%) OF GCLBP WITH 

DIFFERENT PARAMETERS ( , )m r  OF THE CLBP OPERATOR ON THE 19-CLASS 

SATELLETE SCENE DATASET 

19-class satellite scene dataset 
r  1 2 3 4 5 

4m   85.79 89.21 87.89 87.11 85.00 

6m   86.84 89.47 88.68 89.21 88.68 

8m   89.74 90.53 91.84 90.79 90.53 

10m   89.21 90.26 91.32 91.58 91.05 

12m   89.74 91.32 91.32 91.32 91.05 
 

C. Comparison With the State of the Art 

To evalute the effectiveness of the proposed GCLBP 
representation method, a comparison of its performance with 
previsouly reported performance in the literatures was carried out on 
the 21-class land-use dataset under the same experimental setup (i.e., 
80% of the images from each class are used as training, and the 
remaining images are used as testing). Since the images in the dataset 
are color images, we convert the images from the RGB color space to 
the YCbCr color space and use the Y component (luminance) to 
obtain the gray scale images. The GCLBP features are extracted from 
the gray scale images. We also implement the method which uses the 
CLBP operator on the input image only, denoted as CLBP. The 
comparison results are reported in Table III, which demonstrates that 
our method achieves superior classification performance over the 
other methods. Especially, our method achieved better performance 
than the popular BoW classification framework, which demonstrates 
the effectiveness of the proposed GCLBP approach for remote 
sensing land-use scene classification. Moreover, the proposed 
GCLBP has 4.5% improvement over the CLBP method since the 
multi-orientation Gabor filters captured the global texture information 
in different directions. 

We also present the confusion matrix of our method for the 21-
class land-use dataset in Fig. 10. For a compact representation, 
numbers along the x-axis and y-axis in this figure are used to indicate 

the land-use scene classes listed in Fig. 5. The diagonal elements of 
the matrix denote the mean class-specific classification accuracy (%).  

TABLE III.  COMPARISON OF CLASSIFICATION ACCURACY (MEAN STD) 

ON THE 21-CLASS LAND-USE SCENE DATASET 

Method Accuracy (%) 

BoW [3] 
SPM [3] 

BoW+Spatial Co-occurrence Kernel [3] 

Color Gabor [3] 
Color histogram (HLS) [3] 

Structural texture similarity [7] 
Wavelet BoW [25] 

Concentric circle-structured multiscale BoW [27] 

Multiple feature fusion [26] 
Pyramid-of-Spatial-Relatons (PSR) [6] 

CLBP 

76.8 
75.3 

77.7 

80.5 
81.2 

86.0 
87.4 

86.6 

89.5 
89.1 

85.5 

Ours (GCLBP) 90.0± 2.1 

 

 

Fig. 10. Confusion matrix of our method for the 21-class land-use dataset. 

The comparison results for the 19-class satellite scene dataset are 
listed in Table IV. Although the multiple features fusion method 
described in [24] achieved higher classification accuracy than our 
method, three different sets of features including SIFT features, Local 
Ternary Pattern Histogram Fourier (LTP-HF) features, and color 
histogram features were used, thus leading to increased computational 
complexity. The confusion matrix of our method for the 19-class 
satellite scene dataset is shown in Fig. 11. The numbers along the x-
axis and y-axis in this figure are used to indicate the land-use scene 
classes listed in Fig. 6. 

TABLE IV.  COMPARISON OF CLASSIFICATION ACCURACY (MEAN STD)  

ON THE 19-CLASS SATELLETE SCENE DATASET 

Method Accuracy 

Bag of colors [26] 

Tree of c-shapes [26] 

Bag of SIFT [26] 
Multifeature concatenation [26] 

Local Ternary Pattern Histogram Fourier (LTP-HF) [24] 

SIFT+LTP-HF+Color histogram [24] 
CLBP 

70.6 

80.4 

85.5 
90.8 

77.6 

93.6 

86.7 

Ours (GCLBP) 91.0 ± 1.5 



 

Fig. 11. Confusion matrix of our method for the 19-class satellite scene dataset. 

The dimensionality of the GCLBP features can be fairly high, e.g., 
it is 1080 for the 21-class land-use dataset, if a large m  is used for 

the CLBP operator. To gain computational efficiency, dimensionality 
reduction techiniques such as principal component analysis (PCA) 
[28] can be applied to the GCLBP features to reduce the 
dimensionality.  

V. CONCLUSION 

In this paper, an effective image representation method for remote 
sensing land-use scene classification was introduced. This 
representation method was derived from the Gabor filters and the 
completed local binary patterns (CLBP) operator. Gabor filters were 
employed to capture the global texture information from different 
directions of an input image, whereas CLBP histogram features were 
extracted from the Gabor feature images to enhance the texture 
information (e.g., edges and corners). The combination of a global 
operator (Gabor filters) and a local operator (CLBP) greatly enhanced 
the representation power of the spatial histogram. The experimental 
results on two datasets demonstrated that our proposed Gabor-
filtering-based CLBP (GCLBP) representation method achieved 
superior classification performance over the existing methods for land-
use scene classification. 
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