
Making a Dynamic Interaction Between Two Power
System Analysis Software

Amirreza Sahami
Department of Electrical and

Computer Engineering
UNC Charlotte
Charlotte, USA

asahami@uncc.edu

Shahram Montaser Kouhsari
Department of Electrical and

Computer Engineering
Amirkabir University of Technology

Tehran, Iran
smontom@aut.ac.ir

Abstract—Different goals in studying a piece of equipment
or a phenomenon, and the need for different accuracies in
studies and manufacturing new instruments, persuade engineers
to use different mathematical models for studying the behavior
of phenomena and elements. On the other hand, calculation
complexity in the study of large systems, and the rising costs
of industry in conjunction with development of capabilities of
new generations of computers, have made computer simulation
an unavoidable choice. There are different software applications
in various fields of electrical engineering, and each one has its
own specific features and usages. If we could use features of
different software simultaneously, then we could improve the
accuracy of analyzing engineering complexities. In this paper, we
have used mapping to create dynamic interaction between two
existing software packages, PASHA and MATLAB, which are
popular software among electrical engineers. By linking these
two software packages, we may use MATLAB and Simulink
capabilities in PASHA software.

Index Terms—Dynamic Data Interaction, Linking Software,
PASHA, UDEM, UDM, MATLAB,.

I. INTRODUCTION

Prior to the era of digital computers, analogue computers
were used to simulate dynamic engineering problems, which
were modeled using differential equations. In late 1950s, after
the appearance of new digital computers, the first software
packages were developed to calculate short circuit capacities
and to perform transient stability studies. In these programs,
generators were modeled by a constant voltage source in series
with a variable reactance and the controllers’ effects were
ignored.

The improvement of digital computers in the late 1960s
helped to develop better software, which brought more details
of the generators’ models and their controllers into consider-
ation.

Since then, much progress has been made in modeling
power system equipment, and IEEE committees have provided
various standard models for equipment, which have been used
to develop different power system software. However, the
invention of new controllers brought some complaints about
the lack of accuracy of the provided standard models. Also, in
some studies it was shown that the models used for machines
were not accurate enough [1].

Until 1977, a large number of researchers were focused
on studying the power system dynamics to gain a better
perception about generators’ dynamic behaviors to provide
more detailed and accurate models [1].

The behavior of modern interconnected power systems
needs to be predicted more accurately due to its complexity
and the significant economic impacts and security conse-
quences that might happen in case of a failure. Therefore, we
need to model our equipment in accordance with up-to-date
models, and we need tools with the ability to flexibly model
new equipment. Fortunately, fast computers help engineers to
analyze and predict more complex situations than was possible
before [2], [3].

Different software packages are designed to fulfill different
goals, and each of them has its own pros and cons. For
instance, EMTP simulates the power systems in time domain,
which is mostly effective in studying fast transient phenomena,
and it is not recommended for performing load flow or
transient stability analysis because of time concerns. On the
other hand, some software packages such as Power Apparatus
and System Homological Analysis (PASHA) use frequency
domain equations to simulate networks, which decrease the
simulating time for load flow and stability studies; however,
it is not suitable for fast transient studies [4]. These kinds
of limitations in software packages have led engineers to
think about connecting software packages and using the better
capabilities of each package in the other ones. Hence, there
has been a growing trend in software development toward
open systems, in which each part of the software is designed
based on a protocol for easier interaction. Having the ability
of dynamic data interaction in operating systems, such as
Windows, and inter-medium processing in Solaris and Unix,
has made it easier to connect different software packages [5],
[6], [7], [8].

Widely used software packages, such as Labview, PSCAD,
and EMTDC, have been designed with the ability to take
advantage of the noted capabilities of operating systems.
MATLAB has a similar capability, and it is already connected
to EMTP and NEPLAN. ASPEN, which is used in petrochem-
ical studies, is another software that has been connected to
MATLAB [8], [9], [10].



PASHA is connected to LabView, EMTP, and DigSilent.
However, it should be noted that it cannot dynamically interact
with them, which means that we cannot simulate part of the
network in PASHA and other parts in DigSilent and run the
simulation [4].

PASHA is strong in simulating the real industrial power
networks. However, it lacks toolboxes such as the control
toolbox or the Fuzzy toolbox. On the other hand, MATLAB
is developing quickly and provides new capabilities and tool-
boxes in its new versions, which in turn provides us the ability
to model newer equipment. However, MATLAB is not an
adequate software for simulating real power systems compared
with professional software packages, such as PASHA or PSSE.
Hence, considering all the works in this field and the growing
need for strong and accurate power system simulators, it would
be valuable to connect PASHA and MATLAB to each other
so that they can have a dynamic data interaction in order to
use the MATLAB capabilities in PASHA [8], [11], [12].

There are several benefits in undertaking this research
project. Although power systems can be modeled and analyzed
in MATLAB, there is no comprehensive power system analysis
toolbox in MATLAB for large networks. Also, professional
power system analysis software packages have been specif-
ically designed to simulate power system networks. These
professional software packages usually have a lower simula-
tion time, and are easier to use while drawing and analyzing
industrial power networks in comparison with MATLAB. In
contrast, MATLAB has a large library of different control
functions, and due to its variety of toolboxes, it has numerous
predefined, easy-to-use algorithms. Therefore, MATLAB can
be a good option while trying to find a new control strategy
for applying to an industrial network. The strong mathematical
capabilities of MATLAB, combined with the fast and highly
technical industrial modeling capabilities of PASHA, repre-
sents a comprehensive tool for electrical engineers. However,
the simulation speed decreases in combined simulation (i.e.
having part of the network in one software and the rest in
the other one). Therefore, it is preferred to use combined
simulation as a medium step to find the right algorithms and
controllers between different options. Afterwards, to achieve
the highest simulation speed, the entire module would be
modeled in a professional software.

This article is organized as follows: First, UDEM is intro-
duced. It follows with the proposed method for connecting
MATLAB and PASHA dynamically. Finally, the results are
represented for validation tests.

II. UDEM AND PASHA

User Defined Equipment Modeling (UDEM) is part of
the PASHA software package. UDEM can be used as an
independent simulation package; in this respect, it is analogous
to analogue computers [1]. It can also be attached to another
power system simulator like PASHA. The most important role
of UDEM is to provide the capabilities of graphically drawing
simple transfer functions, radial networks, and to model basic

Fig. 1: A sample block diagram in UDEM

equipment. It can be likened to the ”Commonly Used Blocks”
library of Simulink [3].

A. UDEM Working logic

Before a module in a software like UDEM can be used
by simulating routines, it needs to be interpreted as a set of
mathematical equations that define a relation between inputs
and outputs of the module. There are three ways to do so [1],
[3]:

1) Considering the entire block-diagram of the model and
finding one transfer function that can present the effect
of all the blocks.

2) Finding the state space equations for each block and
solving them simultaneously.

3) Considering each block as a separate unit and finding
its outputs based on its inputs.

The first solution seems the most attractive one. However,
developing a code that can always find the right answer is
difficult, especially while having nonlinear elements in models.

Although the second and third solutions are similar, using
the second method requires matrix algebra, which makes the
solution complex for non-linear elements’ models. Conse-
quently, the third method seems more practical. Based on the
third solution, each block is considered as an independent unit
and calculates the output based on its input as shown in Fig.1.
In this module, two inputs and outputs are considered. The
output of each element can be gained based on its input.
Hence, if the input values are (IN(1) and IN(2)), output
values can be calculated. First, the outputs of elements that
are directly connected to the inputs (Elements number 2 and
9) are calculated. Then, the outputs of these two elements
are considered as inputs for the next elements and so forth.
Therefore, the required data for simulation routines are:

1) The relation between input and output of each block.
2) The connection between the blocks.
Hence, for simulating a model, instead of considering one

large model, several small blocks with their own operation
can be considered. Then the output of each element during
transient or steady-state studies would be found.

III. A REVIEW ON MEMORY MAPPING IN MATLAB

Memory mapping is a process that maps all or parts of a
file on a disk in a range of addresses in a software’s address
space. The software can access the file just like it accesses the
dynamic memory, which makes it faster than using commands,
such as “fread” and “fwrite”, for reading and writing the data
[13], [14]. Using memory mapping gives another advantage



for providing access to a file’s data by using some standard
Indexing Operations. When a file is mapped, for reading and
writing its data, the same commands that are used in the
MATLAB workspace can be applied. The contents of the
mapped file seem like an array in the current working space,
which can be easily read from or written to this array [13].

A. Benefits of Memory Mapping

Faster file access, efficiency, and sharing memory between
different software packages and applications are the main
advantages of using memory-mapping [13].

• Faster File Access
Memory Mapping is faster because data can be read and
written using the capabilities of virtual memory, which is
an internal feature of operating systems, instead of being
processed in the buffer first.

• Efficiency
The mapped files provide an ability that software can
access data in a large file without having to read the entire
file.

• Sharing Memory
Mapping gives the ability to share data between different
software packages and applications. It is possible to
use this feature to connect MATLAB to other software
packages.

The size and format of the file, the system platform, and the
manner of using the data determines the impact of memory-
mapping. It is most useful for binary files in the following
situations:

• For using large files more than once
• For writing small files in the memory frequently
• For sharing data
• For the data in array format in MATLAB
Files larger than about two hundred mega bytes use a vast

amount of virtual addressing space used by MATLAB, and
it can cause an “out of memory” error to be generated by
MATLAB [8].

IV. CONNECTING UDEM AND MATLAB

A. Sharing File and Memory

File mapping can be used for sharing a file or memory
between different processes in a computer. Sharing a file is not
beneficial for dynamic interaction due to low speed. Instead,
data is mapped into the memory. Mapping a file makes a
specific part of a file visible in a section of the memory of
the process that would use that data. For files that are larger
than the address of the mapping, only a part of the file can be
mapped. After completing this process, the mapping can be
cleaned, and the rest of the file can be mapped. The mapped
data is stored in the system “paging files” [9], [12], [13], [14],
[15].

To share data by this method, all the processes should use
the same name, the same handle, or the same file mapping
object.

Fig. 2: Schematic about how sharing memory works

B. Introducing Employed Functions

In order to share data between software packages by data
mapping, WinAPI functions are employed. A brief explanation
about each function is as follows [13], [14], [15]:

• CreateFileMapping Function:
This function creates or opens a named or unnamed
mapping for a specific file. After a mapping is created
for a file, the size of the file should not be greater than
the mapping size. Otherwise, all the content of the file
cannot be shared.

• OpenFileMapping Function:
This function opens a named mapping.

• MapViewOfFile Function:
This function maps a view of a file mapping into a
section of the memory of the process that will use
that data. Once a mapping is backed with a virtual
paging file (i.e. using the “CreateFileMapping” function
with “INVALID HANDLE VALUE” as its parameter),
“PagingFile” should be a sufficient size to include the
entire mapping or else the “MapViewOfFile” function
will not work properly. The predefined initial conditions
in a “PagingFile” are zero.

• CloseHandle Function
Mapping a file will cause the virtual address spaces
to become unavailable for further allocation. To free
that address, the “CloseHandle” function should be used
after deleting that mapping via the “UnmapViewOfFile”
function. The “CloseHandle” function closes an open
object handle.

• UnMapViewOfFile Function:
This function deletes the view of a file mapping in the
memory and prepares it for other applications.

C. Create a file Mapping Object

The “CreateFileMapping” function returns a handle, which
is used when creating a file view, and it can access the data in
the shared memory. When the “CreateFileMapping” function
is employed, the name for the mapping, the number of the
bytes that will be mapped, and the reading and writing per-
mission should be determined. The first process that uses the
“CreateFileMaping” function creates the mapping. However,
when another process uses this function with the name of an



existing mapping, it will receive a handle of that mapping
[13], [15]. It should be noted that creating a mapping does not
occupy any physical memory, but just allocates it. A schematic
view about memory sharing is depicted in Fig.2.

The easiest way to receive the handle created by a pro-
cess for other processes is by using the “OpenFileMapping”
function and defining the name of the created mapping. This
type of memory sharing is called ”Named Shared Memory.”
The other type is “Unnamed Shared Memory.” A process
that shares a file memory needs to employ “MapViewOfFile”
function to see the file contents. It should be considered that a
mapping will remain in the memory until all the applications
that are using it close the handle related to that mapping [13],
[15].

When using the “Named Shared Memory” method, the first
process creates a file mapping via the “CreateFileMapping”
function with a name and the function parameter should be
defined as “INVALID HANDLE VALUE.” By defining the
second parameter as “PAGE READWRITE,” the process will
be able to read and write to the file even when the mapping
is being viewed. Then, this first process uses the file mapping
object (which is created by the “CreateFileMapping” function
and is returned in response to the “MapViewOfFile” function)
in order to view the contents of a file in an address. When
this process no longer needs the mapping data, it should close
the mapping via the “CloseHandle” function. When all the
handles are closed, the system can free the parts of the paging
files that were used.

The second process can access the data written by the first
process via the ”OpenFileMapping” and the ”MapViewOfFile”
functions [15].

V. LINKING UDEM AND MATLAB

Linking PASHA and UDEM with MATLAB and Simulink
has been achieved using virtual memory and applying the
functions noted earlier. About 17,000 lines of codes have been
developed in programming languages C, Fortran, MATLAB,
and WinAPI.

Twenty three blocks in UDEM can interact with MATLAB
and Simulink without any limitation in data type. If the blocks
used in Simulink are not memory blocks that need to be
initialized, such as integrators, each block can be used several
times. Functions defined in each block of UDEM can be used

Fig. 3: The main Pre-Built Simulink File. Users model should be copied in
the designated area

Fig. 4: A view of inside Process Control Block which controls the dynamic
data interaction between PASHA and MATLAB

independently. This way, we can use each block in each model
up to 30 times. For example, if a specific block is used in
up to 20 modules, and it is used 30 times in each module,
then 1800 data inputs from PASHA are sent to MATLAB
and 600 outputs of MATLAB are received back in PASHA.
However, because most of the typical models in Simulink
include memory blocks, using the maximum capacity of the
interaction block is not usually possible.

In the UDEM drawing part, the function block can be used
to apply a function from UDEM’s internal library [1], [3]
or to send the data to a Simulink model and use MATLAB
and Simulink capabilities. To do so, after connecting the
desired inputs and outputs to the function blocks in UDEM,
the desired Simulink model should be made as such that it
can dynamically interact with UDEM. In order to achieve
the dynamic interaction, the desired Simulink model must be
copied in a pre-created Simulink file and the suitable inputs
and outputs of the model in Simulink should be connected
according to the name of the functions that have been defined
in UDEM.

In Fig.3 the left block is a controller that checks the flags
sent between PASHA and MATLAB, and the right block
includes three sub-blocks that are shown in Fig. 4.

TABLE I: Generator Data

V-NOM(kV) 13.8 DA-TR-TC(P.U.) 8.3200
RES(P.U.) 0.07157 DA-ST-X(P.U.) 0.4455

REAC(P.U.) 4.45513 DA-ST-TC(P.U.) 0.0250
ZSQ-R(P.U.) 948.718 Inertia Constant 2.4922
ZSQ-X(P.U.) 0.30449 Gen-MW 20

DA-TR-X(P.U.) 0.5897 Gen-MVAR 20.82

Fig. 5: A simple test network



Fig. 6: Network Frequency without using interaction block

Fig. 7: Network Frequency using interaction block

Fig. 8: Bus Voltage without using interaction block

Fig. 9: Bus Voltage using interaction block

In Fig.4 the left block reads the data and some control
variables sent from PASHA. The middle block includes the
Simulink models that receive the required UDEM output data
from the left block and considers them as inputs for the

Fig. 10: Test System. A three phase fault is applied to LOAD BUS

Fig. 11: Bus Voltage without using interaction block

Fig. 12: Bus Voltage using interaction block

Fig. 13: Turbine Power without using interaction block

Simulink models. The right block returns the outputs of the
Simulink models to UDEM and this cycle is repeated in each
time step of the simulation.

It is worth mentioning that a special m-file has been
developed that the user must run after putting the Simulink



Fig. 14: Turbine Power using interaction block

TABLE II: Comparing Simulation Time in the Noted Tests

Simulation Time Without Using the
Data Interaction Block

With Using
Data Interaction Block

Test1 0.23 1.94
Test2 0.31 2.64

models in the provided main Simulink file. This m-file does
the required process for initialization of the system and creates
an executable file named MAT.exe that will be used once the
program is run.

After running PASHA or UDEM, the initialization process
starts and then routines related to the dynamic data interaction
with MATLAB will be run. Then a function transfers the
data from PASHA or UDEM to MATLAB. Here, PASHA
can be considered the first process in the discussion made in
section IV. This function pours the data in a pointer and, with
respect to the current flag in the pointer, maps the data into
the memory. Then the flag changes, and MATLAB recognizes
the flag change. MATLAB can now be considered the second
process in the discussion made in section IV. MATLAB runs
the simulation for one time step, puts the data in a mapping,
and sends a message to UDEM by changing the flag. Next,
UDEM starts reading MATLAB outputs from the memory
(at this phase of the interaction, MATLAB is like the first
process and PASHA is like the second process according to
discussion of section IV) and can use them for the next time
step of simulation, which means one time step of simulation
has been done in both PASHA and MATLAB. This process
repeats to the end of the simulation time. There are few
limitations from MATLAB in making executable files. For
example, the model should not include algebraic loops or level
2- MATLAB s-functions[13]. These limitations are explained
further in PASHA manuals.

VI. TESTS AND RESULTS

To test the authenticity of this Interaction-Block, more than
300 different tests have been conducted. However, only a few
are presented here due to lack of space.

Fig.5. shows the picture of a simple single machine network.
Machine data can be found in Table.I. System load is 20
MW and 20 MVAR. At 0.2s, a 5MW load is switched in.
The generator is equipped with an AVR and a governor. The
generator responses are depicted for two states: a) where all

the network and its controllers are in PASHA and b) where
part of the controllers are modeled in UDEM and part of it is
modeled in MATLAB, and the designed interaction-block is
used to make the model complete. Result are shown in figures
6-9.

The second test is applied on the same network. At t= 0.1s,
a three phase fault is applied to the LOAD bUS. The fault is
removed at t = 0.2s. The system is shown in Fig.10. Results
can be seen in figures 11-14.

Table.II. shows the simulation time for the noted states.

VII. CONCLUSION

In this paper, the history and importance of computer
simulation in power system engineering is discussed. The
necessity of connecting different software packages to use their
capabilities in each other is explained, and it is shown that
by using memory mapping, a dynamic interaction between
software packages can be provided. The ”Named Shared
Memory” method is applied to two software packages, PASHA
and MATLAB, and the results are shown. This method can be
used without losing any data accuracy.

REFERENCES

[1] S. Montasser Kouhsari, ”Interactive user defined equipment modified
in power system analysis,” Manchester, Ph.D. Thesis, UMIST, October
1987, pp. 1-2.

[2] P. Kundur, N. Balu and M. Lauby, Power system stability and control,
1st ed. New York [etc.]: McGraw-Hill, 2010.

[3] M. Lari, ”Developing User Defined Equipment Modeling for its applica-
tion in unbalanced transient stability”, Master, Amirkabir University of
Technology, 2007..

[4] ”Power System Real Time Simulator - POUYA software”, Tomcad.com,
2017. [Online]. Available: http://www.tomcad.com/.

[5] A. M. Gole and A. Daneshpooy ”Towards open systems: a
PSCAD/EMTDC to MATLAB interface,” IPST, 1997.

[6] G. Sybille, L. A. Dessaint, P. Giroux, R. Gagnon, S. Casoria, P.
Brunelle R. Champagne, H. Lehuy, B. DeKelper, H. Fortin-Blanchette,
O. Tremblay, C. Semaille, H. Ouquelle, J.-N. Paquin and P. Mercier,
SimPowerSystems 4, The MathWorks Inc. 2007.

[7] G. Sybille, P. Brunelle, P. Giroux, S. Casoria, R. Gagnon, S. Casoria,
I. Kamwa, R. Roussel, R. Champagne, L. Dessaint and H. Lehuy,
SimPowerSystems for use with Simulink, The MatWorks Inc. 2003.

[8] MATLAB External Interfaces, 1st ed. The MathWorks Inc., 2012.
[9] E. Krieg, ”NEPLAN power system analysis”, Neplan.ch, 2013. [Online].

Available: http://www.neplan.ch/.
[10] ”AspenONE Process Optimization Solutions — As-

penTech”, Aspentech.com, 2013. [Online]. Available:
http://www.aspentech.com/products/home/.

[11] Real-Time Workshop for use with Simulink, The MathWorks Inc. 2004.
[12] SIMULINK dynamic system simulation for MATLAB, The MathWorks

Inc., 1999.
[13] ”MathWorks - Makers of MATLAB and Simulink”, Mathworks.com,

2013. [Online]. Available: http://www.mathworks.com
[14] MATLAB (R2012a) C/C++ and Fortran API Reference, The MathWorks

Inc.,2012.
[15] ”Develop Windows desktop apps Windows app develop-

ment”, Developer.microsoft.com, 2013. [Online]. Available:
https://developer.microsoft.com/en-us/windows/desktop/develop.


