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Abstract—This paper presents a hybrid direct and intelli-
gent method of real-time coordinated wide-area controller for
improved power system transient stability. The algorithm is
applied as an optimal Wide-Area System-Centric Controller and
Observer (WASCCO) based on Adaptive Critic Design (ACD).
ACD techniques that uses Reinforcement Learning (RL) could be
utilized to approximate the transient energy function by dynamic
programming and find the solution to nonlinear optimal control
problem. However, such technique yet is highly dependent on
the cost function and its dynamics. A Lyupanov-based energy
function that is defined offline and updated in real-time through
Prony analysis is utilized for this purpose. Results on a two
area power system and 68-bus New England New York system
shows better response compared to conventional schemes and
local power system stabilizers.
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I. INTRODUCTION

MODERN power systems are considered more complex
and nonlinear than before due to significant integration

of distributed energy resources, severe transmission congestion
and growth of energy markets deregulation. This extreme
nonlinearity of modern power system makes the classical
stability classifiers and controllers non-practical, yet applicable
for small signal stability analysis [1]. Thus, for transient stabil-
ity analysis and control of interconnected wide-area systems,
designing global optimal dynamic damping controllers capable
of tracking nonlinear dynamics of system is necessary. Wide-
Area Control System (WACS) coordinate the actions of a
number of distributed agents using supervisory control by
means of Wide-Area Monitoring (WAM) information.

Various approaches to wide-area real time transient stability
assessment and control have been proposed in the power sys-
tems literature [2]–[6]. Classical techniques such as numerical
integration and direct methods were utilized in early years,
each having their own advantages and disadvantages. For
example, numerical methods have shown considerably weak
performance in real-time implementation, especially, wide-area
application, as it requires accurate information of the power
network topology [7]. Direct methods analyze transient stabil-
ity using direct calculation of the Transient Energy Function
(TEF). Thus, such problem formulation may lead to excessive
simplifications. With the advent of technology new techniques

and approaches based on combination of these methods have
been developed. These approaches mainly rely on equivalent
modeling which can actually be integrated much faster than
real-time. Further, direct energy methods can be utilized to
predict the transient stability status of the system, as well
as, the stability margins [8]. Another hybrid method to tackle
the problem is early-termination criteria, allowing simulation
of stable cases to be aborted as soon as possible [9]. This
criteria for numerical simulations can be defined on the basis of
coherency, transient energy conversion between kinetic energy
and potential energy, and the product of system variables [10].

Artificial intelligence techniques on the other hand, have
shown the capability of dealing with such nonlinearities
and uncertainties, in a more reliable and stable way [11].
Intelligent-based techniques have shown great potential in
wide-area stability classification and control due to their speed
in Transient Stability Analysis (TSA) [12]. Various advanced
artificial intelligent techniques as well as machine learning
and data mining approaches have been tried to develop TSA
and promising results have been obtained. These methods
effectively learn and map the process behavior from relation-
ship between specified inputs and outputs, without any prior
knowledge of the system. Decision Tree algorithms [13], Fuzzy
Logic techniques [10], Neural Networks (NNs), and Support
Vector Machines (SVMs) [13] has been widely used as a
benchmark for transient stability prediction, classification, and
control. These actions are performed online, through matching
the online monitored data with some offline expert knowledge.
This new knowledge can inturn improve the training for
further events or recursively at each iteration, such as in the
case of Reinforcement Learning (RL) algorithms [14]–[16].
However, most of the works in this area has been designed as
classification and remedial actions schemes rather than real-
time damping control schemes. R. Hadidi et al in [14] proposed
real-time decentralized wide-area control scheme based on Q-
Learning for excitation control of generators. In [16], new
concept called a virtual generator for wide-area monitoring
and control has been introduced, in which RL is performed
for wide-area damping. One of the main challenges of such
designs is the need to have an optimal cost function that can
define the transient stability problem accurately.

In Adaptive Critic Designs (ACDs), one of the common
techniques of RL implementation, critic NN performs cost
function estimation based on incremental utility function U or



in Lyapunov sense V̇ . With Lyapunov stability criteria, positive
V and negative V̇ satisfies the stability convergence, yet, may
not be an optimized solution. In conventional methods, usually,
utility function considered in ACD defined by the Euclidean
norm of the desired states may not be a full representative of
the goal of transient stability condition as well. In addition,
methods for solving the above problem based on energy
estimation of generators, may not be practical in real life. Thus,
in this paper, a method that can overcome this problem by
linking the cost function to Lyupanov energy function through
eigenvalue analysis in offline mode is proposed. The main
advantage of this method is that it can be performed in real-
time as well, by monitoring the system modes online and
tuning the utility function iteratively. The method is evolved
from [17] for real-time wide-area monitoring and control of
large power system. Benefits of this method over conventional
methods can be highlighted in multi-area systems, monitoring
and controlling inter-area oscillation modes, in a form of
tuneable cost function rather than static one based on local
states.

As a machine learning method, offline training should be
performed before taking any actions in real-time. For this, an
Input/Output (I/O) specification based on the proposed method
is set initially. These input specification can be states derived
from Phasor Measurement Unit (PMU) needed to estimate
the energy function. Then, an offline training is performed
based on the I/O signals. This action is performed by training
the NNs of ACD with pseudo random inputs in the batch
mode. The control action is chosen based on cost function
optimization. The proposed method links stability criteria
with optimality conditions using offline and online eigenvalue
estimation. In online process corresponding iterative procedure
changes the utility function by updating the coefficient matrix
of system states. Simulation results shows that the inter-area
and local oscillation can be better recognized and controlled
through this online tuning.

The paper is organized as follows. The second section
provides a brief overview of system modeling and direct en-
ergy function development. In section III, the proposed Wide-
Area System-Centric Controller and Observer (WASCCO)
design is illustrated and Section IV discusses the proposed
offline and online cost function tuning methodology. Section V
presents the implementation test bed evolved from [18] and test
results followed by future works and challenges in real-time
simulation and conclusions in section VI and VII respectively.

II. SYSTEM MODELING AND DIRECT ENERGY FUNCTION
DEVELOPMENT

The problem of direct transient stability of power systems
is usually assessed by using a simplified synchronous generator
model. In this paper, the third-order generator model is used
as,

δ̇ = ∆ω (1)

M∆ω̇ = Pm − Pe −Dδ̇ (2)

T ′doĖ
′
q = (Ef − Êf )− (Eq − Êq) (3)

where, δ is the rotor angle, ∆ω = ω−ωs the speed deviation,
M the inertia constant of the synchronous generator, Pm the

mechanical power, Pe the electrical power, D damping coef-
ficient, Eq the quadrature-axis component of internal voltage,
E′q quadrature-axis component of transient emf, T ′do the open-
circuit transient time constant,and Ef is the excitation voltage.
The symbol ”hat” denotes the static operating point.

An energy-type Lyapunov function for such a system model
(V ) comprises of the sum of the system kinetic energy (VK)
and potential energy (VP ) with respect to the equilibrium
point. For the third-order generator model a Lyapunov function
of a component proportional to the squared deviation of the
transient emf, so-called field energy (VF ) is also included [19].
Therefore,

V = VK + VP + VF

=
1

2
M∆ω2 −

∫ ∆δ

∆δ

[Pm − Pe]dδ

+
1

2

α

β
(E′q − Ê′q)2 (4)

V̇ = −D∆ω2 − 1

T ′d0

1

∆Xd
(Eq − Êq)2

− 1

T ′d0

1

∆Xd
(Eq − Êq)(Ef − Êf ) (5)

where, α and β are parametric coefficient based on syn-
chronous and transient reactances and the transfer admitance
matrix, ∆Xd = (Xd −X ′d) with Xd and X ′d as synchronous
and transient reactances, respectively.

With the assumption of Êf = Êq , and (Ef − Êf ) =
K(Eq − Êq), where the gain K > 0, we get,

V̇ = −D∆ω2 − 1

T ′d0

1 +K

∆Xd
∆E2

q (6)

and, by denoting the second coefficiant as D′,

V̇ = −D∆ω2 −D′∆E2
q . (7)

III. INTELLIGENT SYSTEM CONSTRUCTION

ACDs are, in general, parametric structures capable of
optimization over time and under conditions of noise and
uncertainty [11]. The goal of ACD is to learn the Hamilton-
Jacobi-Bellman equation associated with optimal control the-
ory through critic network, and find the control signal through
Action network [11]. Training of Action network is based on
selecting sequence of actions that minimize the estimated cost
function (J). Machine learning technique is used as a tool for
mapping from a parameter space into the space of functions
they aim to represent. A common approach is to deploy NN to
map the nonlinearities of the system identification, control and
the cost function. In this paper, using Feed Forward Neural
Network (FFNN) the network output is computed by inner
product between the weight vector W and a state-dependent
feature vector Φ(.). The Wide-Area NN Identifier (WANNID),
Critic NN, and Action NN, approximate the dynamics of the
system, the control action, and the cost function, respectively
by,

x(t+ 1) = WI(t)
TΦI(x(t), u(t)) +BI(t) (8)

u(t) = WA(t)TΦA(x(t)) +BA(t) (9)
J(t) = WC(t)TΦC(x(t)) +BC(t) (10)



where, sub-scripts I , A, and C denotes WANNID, Action, and
Critic networks respectively. Φ(.) ∈ <j is the corresponding
nonlinear mapping function of the states, Ŵ (t) ∈ <j is the
parameter vector of approximated weights of the FFNN at time
t, with j ∈ N dimensionality of the feature vector representing
each state, and B is the bias coefficients. This optimization is
done by means of training the NNs through gradient descent
via back-propagation.

A. Cost function and Transient Energy function

Based on RL approach, it is desired to find the control
action which minimizes the cost-to-go function given as

J(t) =
∑∞

k=0
γkU(t+ k) (11)

Where, γ ∈ (0, 1] is the discount factor, and U is the utility
function used for reward/punishment in terms of RL concept,
or incremental cost function in Lyapunov stability concept.
This function can be represented as,

U(t) = −∆x(t)TQ∆x(t)− u(t)TRu(t) (12)

where, the weighting matrix Q is required to be positive-
definite, and ∆x(t) = x(t)− x̂. In this paper, R as a weighing
coefficient of control action are considered constant.

In the sense of Lyapunov stability criteria, this cost function
should be always positive. This criteria can be analyzed at each
time step, by checking the estimated cost function by means of
critic NN. If the cost function is named as V (x), a Lyapunov
function candidate, then it can be proved that the system is
asymptotically stable in the sense of Lyapunov stability criteria
(Proof left due to space limitation).

J(t) = V (x(t)) ≥ 0 (13)

In the sense of Lyapunov stability criteria ? is always true

U(t) = V̇ (x(t)) =
d

dt
V (x(t)) ≤ 0 (14)

B. Adaptive Critic Design Training

As a machine learning methods, offline training should be
performed before taking any actions in real-time. In addition,
as a RL technique online training is the main feature adapting
to optimal solution, yet weighing up the importance of train-
ing. The technique used in this paper is a simple Heuristic
Dynamic Programming (HDP) for implementation and training
the ACD.

The process of training a NN requires computing an error
value that describes how the NNs output varies from the
target value. Back-propagation algorithm being adapted to
wide use in training NNs, allows us to calculate the sensitivity
of each component of the NN to the error and minimize it
[11]. As mentioned before, there are three NNs that have
been implemented in WASCCO: WANNID, critic network, and
action network. In particular, the training process of the critic
NN is based on dynamic programming, which, estimates J∗
by updating its policy with respect to error, eC , with elements
of the rewards obtained from the environment, U(t), which
will be discussed in next section, the cost functions at current

time step, J(x(t)), and future time step, J(x(t+1)), estimated
by (10). This can be written as,

eC(t) = J(x(t))− γJ(x(t+ 1))− U(x(t), u(t)) (15)

where, critic NN future outputs is based on predicted states
derived from WANNID. Training of the identification NN is
derived as,

eI(t) = x(t)−WT
I ΦI(x(t)) (16)

and, the action training is based on minimizing the derivative
of cost function to action chosen. The purpose is to have the
action error asymptotically goes to zero in an iterative process.
This can be derived as,

eA(t) =
∂U(x(t), u(t))

∂u(t)
+
∂J(x(t+ 1))

∂x(t+ 1)
.
∂x(t+ 1)

∂u(t)
(17)

where, the elements of this error value can be calculated by
means of back propagation through Critic NN and WANNID
with the equations of (10) and (8) respectively.

Change of each NN weights at time t can be derived from
the deviation of NN’s output to its optimal value, e(t) by
means of gradient descent via back-propagation through the
NN model. This can be written as,

Ẇt = αe(t)Φ(x(t)) (18)

where, α is small step size learning parameter.

IV. TRANSIENT STABILITY COST FUNCTION
APPROXIMATION

The concept of transient stability cost function optimization
is highly dependent on the utility function. First, the RL
problem should be design to address the transient stability
criteria. This matter is done by setting the utility function as
derivative of Lyupanov stability function. The coefficients of
this function are accessible offline and through small signal
stability analysis. Further more, online tuning of utility func-
tion is critical, especially in the case of dealing with transient
stability analysis. So far there has not been many methods that
uses such tuning. This section discusses a novel method for
tuning the utility function based on the system response and
feedback. Here, the goal is to address the inter-area and local
oscillation of transient stability analysis in the optimization
cost function of ACD.

A. Offline Energy Function Estimation

As mentioned in previous section, cost function is esti-
mated based on utility function, which is defined on states
and Q as the weights of the states (12). As presented in (7),
states needed to monitor the transient energy deviation are ∆ω
and ∆Eq . In the offline simulation the coefficients could be
estimated and calculated by eigenvalue analysis of small signal
stability. As,

Di = 2Miωni/ζi (19)

where, λi = −ζiωni±ωni
√
ζ2
i − 1 is the eigenvalue related to

oscillatory mode i of the system, ζ is the damping ratio, and
wn is the natural frequency. In order to develop the D matrix,
participation of each generator on that mode is considered, as,

D =
∑
i

2M.pf.ωni/ζi (20)



where, M = [M1, ..,Mn] is the vector of the inertia of
generators and pf is the vector showing the participation of
each generator, actually state of ω of the generators, in that
specific mode of oscillation. Coefficient of D′ is also defined
as,

D′ = (1 +K)/(T ′do∆Xd) (21)

For the MIMO power system, with Ω = [ω1, .., ωn], and EQ =
[Eq1, .., Eqn], then

U(t) = −
[

∆Ω(t)
∆EQ(t)

] [
D 0
0 D′

]
[∆Ω(t) ∆EQ(t)] (22)

where, D and D′ monitor the inter-area oscillations of the
states as well as local ones.

B. Online Energy Function Tuning

In the online energy function or utility function estimation,
eigenvalues are determined online and the goal is to relate
the desired eigenvalues and performance criteria by finding Q
that corresponds to a set of preferred eigenvalues. In general,
there is no unique solution to this problem as construction
of Lyapunov function only demands V being positive and
V̇ being negative. Here, the Q matrix is determined so that
the closed-loop system obtains a set of preferable eigenvalues.
Thus, there is a need to monitor and analyze the eigenvalues of
the state matrix and identify power system oscillation modes.

Prony method is used, to determine the unknown eigen-
values of the system [20], [21]. This method is based on a
measured states, x(k), being represented in discrete time as a
sum of n damped complex sinusoids [20].

xk =

n∑
i=1

R̄iZ
k
i (23)

Zn + a1Z
n−1 + a2Z

n−2 + ...+ an = 0 (24)

where Ri is an output residue corresponding to the mode λi.
The vector A = [a1, .., an] leads to the eigenvalues, Zis, of
the system which are the roots of the system characteristic
equation. Once the roots of the system characteristic equation
are obtained, the eigenvalues with high frequencies, that are
known not to be present in power systems, are neglected. This
analysis leads to obtaining the eigenvalues of the system in
order to detect inter-area oscillation and local ones, which later
is used to adapt the weighing matrix of the states accordingly.

Further, in the proposed approach, desired eigenvalues and
performance criteria are related through Riccati equation to
detect and damp inter-area oscillations as,[

ẋ
ρ̇

]
=

[
A −BR−1BT

−Q A

] [
x
ρ

]
= F

[
x
ρ

]
(25)

where A, B, and K are available through state identification as
ẋ = (A+ BK)x with backpropagation through identification
and action NN blocks. From (20), it can be noted that, the
eigenvalues of the closed loop system are identical to those
eigenvalues of the F that have negative real parts. Therefore,
instead of the eigenvalues of the feedback system, eigenvalues
of F matrix can be used for further analysis. This allows us
to generate eigenvalues linking to the weighting matrix Q in
the performance criterion without solving the Riccati equation.

We determine a unique Q which gives the feedback system a
set of preferable eigenvalues when its shifted towards unstable
region in presence of faults. The proposed decoupling method
can be used to obtain M and λ matrix from states developed
by Prony method. This also transforms the cost function J ,
corresponding matrix Q, and Riccati equation to diagonal form
as follows

z = M−1x (26)
J = 1

2

∫∞
0

[zT Q̃z + aTRa]dt (27)

Q̃ = MTQM (28)[
ż
˙̃ρ

]
=

[
Λ −H
−Q̃ Λ

] [
z
ρ̃

]
= F̃

[
z
ρ̃

]
(29)

where,

H = M−1BR−1BTM−T (30)

The eigenvalues of the canonical system F̃ are identical to
the eigenvalues of the canonical system F , which are obtained
from the characteristic equation in prony analysis. Eq.33 shows
the relation between eigevalues of the system, Q matrix, and
H matrix. By focusing on λi as a critical mode in presence
of oscillations, one can shift them to acceptable location, by
setting the values of corresponding qii as follows.

|sI − F̃ | = 0 (31)

((s+ λi)(s− λi)− q̃iihii)
n∏
k=1
k 6=j

(s+ λk)(s+ λk) = 0 (32)

qii =
s2i−λ

2
i

hii
(33)

It is notable that, process of calculating Qii is dependent
on closed loop location of eigenvalues which is, itself, depen-
dent on the control action. The proposed iterative procedure
for calculating Q matrix, eigenvalues, and control actions is
illustrated in Fig.1. This figure presents the overall proposed
control architecture of offline and online energy function
estimation, the link to intelligent ACD based control, and the
training process of NN blocks of ACD.

V. IMPLEMENTATION AND TEST RESULTS

The architecture discussed in this paper is to modify HDP
approach based ACD towards a wide-area controller design
with better applicability. It is known that inter-area response
may be more effectively damped through the use of WAMs
especially with the advent of Global Positioning System (GPS)
and PMU technology [22]. Fig.1 presents the overall proposed
WASCCO architecture for offline and online energy function
estimation, the link to intelligent ACD based control, and the
training process of NN blocks of ACD. The action estimated in
the online implementation stage is supplemented to excitation
control of generators.

Intelligent system construction starts with offline training
to set the initial weights for online implementation. In this
regard, a batch learning structure with pseudo random inputs
and related outputs of the power system model is captured and
fed to data base. The training of Action is initialized with the
target of local Power System Stabilizer (PSS). Next, Critic NN
is updated based on the proposed method, followed by Action
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Fig. 1: Overall architecture of proposed WASCCO

update, alternatively. Once the Critic NNs and Action NNs
weights have converged, the Action NN is connected to the
generator’s exciter to replace the PSS. The process of online
training starts by monitoring the states to incrementally train
the WANNID followed by Critic and Action update iterations
(Fig. 1). The Critic training is based on utility function which is
tuned online to shift the eigen values derived by Prony analysis
to preferred left side plane locations.

It is bear noting that with the advances in PMU and WAM
technologies it is possible to monitor the internal variables
and parameters of generators. Yet, for the sake of simplicity,
in this simulations terminal voltage has been utilized, instead
of internal voltage of generators. For analysis of the proposed
architecture, two power systems has been considered: a five-
machine eight-bus power system without infinite bus, and 68-
bus 16-machine IEEE power system.

A. Implementation on a Two Area System

First system is a five-machine eight-bus power system
without infinite bus which is modeled using PSCAD. The one-
line diagram of the proposed network is shown in Fig. 2. All
generators are equipped with governors, exciters, Automatic
Voltage Regulators (AVRs), and conventional PSS. Parameters
of all devices and operating conditions are given in the [18].
G2, G3, and G5, may be considered to form one area, while
generators G1 and G4 form a second area. The two areas are
connected through a tie-line (buses 6 and 7).

Performance of the proposed control algorithm has been
compared to local PSS and conventional HDP based WASSCO.
In this case study, a 100ms three-phase short circuit on the
transmission line between bus 6 and bus 7 is simulated. In
order to access the performance of the controllers in presence
of inter-area oscillations, the line is disconnected by means of
breakers. This case study effects all oscillatory modes of the

Fig. 2: One-line diagram of the test power system

system and changes the topology as well. Inter-area oscillation
in this case are presented in Fig. 3. As it can be seen, a notable
damping improvement is gained, when the proposed control
algorithm has been used. Undershoot of oscillation is reduced
9% in comparison to conventional WASSCO. When there is
fault on tie line, the parallel line would encounter a power flow
oscillation, as well transmitting the extra 360 MW, which can
be seen in Fig. 4. As it can be seen, by utilizing this controller,
power transfer margin can be increased by 8.2% in comparison
to classical WASSCO and 13.8% in comparison to local PSS.

Eigenvalue monitoring based on Prony analysis for the
proposed case study is illustrated in Fig.5. As shows in
this figure, when there is a three-phase short circuit fault
on the tie-line, states from both areas are activated. Fig.6
shows corresponding changes in the Q matrix with R value,
weighting factor of action, set to 0.1.
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B. Implementation on a 68-bus 16-machine Power System

In order to assess the capability of the proposed method in
comparison to conventional existing transient stability damping
controllers, larger scale power system of 68-bus 16-machine
test power System has been simulated in PST toolbox. The 68-
bus system is a reduced order equivalent of the inter-connected
New England test system and New York power system, with
five areas out of which New England and new York are
represented by a group of generators whereas, the power
import from each of the three other areas are approximated
by equivalent generator models, as shown in Fig. 7. A brief

Fig. 5: Eigenvalue changes in states
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description of dynamic component modeling and its governing
equations are presented in [23]. In this simulation, the slow-
dynamics of the governors are ignored. Two types of AVRs
for the excitation of the generators: IEEE standard DC exciter
(DC4B), and the standard static exciter (ST1A). In order to
damp the local modes of oscillations, PSS is supplemented to
excitation control of generators with the feedback signal of the
rotor speed.

It is assumed that each generator bus or substation has a
PMU sensor that transmits voltage and speed data to the local
phasor data concentrator. The corresponding voltage and angle
will be sampled, typically with a sampling rate of 1 point per
cycle. In order to overcome the scalability issue of this model,
coherent groups has been considered instead of each generator
alone. Signals of each coherent groups are aggregated in a
manner that the energy function would be the same. Therefore,
each aggregated area would be represented by average speed,
voltage, and coefficients, as

Dav
j =

∑
Di (34)

∆ωavj =
∑

Di∆ωi/
∑

Di (35)

where, j is representative of area. The same applies to terminal
voltages and its relative coefficients.

In this test simulation, performance of the proposed control
algorithm has been compared to local PSS and conventional



TABLE I: Electromechanical Modes of the 68-bus System without PSS and
Participating Generators

Damping
ratio (%)

frequency
(Hz)

Gen/pf Gen/pf Gen/pf

-0.438 0.404 G13/1 G15/0.556 G14/0.524
0.937 0.526 G14/1 G16/0.738 G13/0.114
-3.855 0.61 G13/1 G12/0.137 G6/0.136
3.321 0.779 G15/1 G14/0.305 x
0.256 0.998 G2/1 G3/0.913 x
3.032 1.073 G12/1 G13/0.179 x
-1.803 1.093 G9/1 G1/0.337 x
3.716 1.158 G5/1 G6/0.959 x
3.588 1.185 G2/1 G3/0.928 x
0.762 1.217 G10/1 G9/0.426 x
1.347 1.26 G1/1 G10/0.756 x
6.487 1.471 G8/1 G1/0.435 x
7.033 1.487 G4/1 G5/0.483 x
6.799 1.503 G7/1 G6/0.557 x
3.904 1.753 G11/1 x x

TABLE II: Configuration of Neural Networks

NN Inputs Delays
Layers

Hidden Outputs Input
Signals

Output
Signals

WANNID 30 2 35 10 w,V ,u w,V
Action 20 2 25 5 w,V u
Critic 20 2 30 1 w,V J

WASSCO with static weights of 0.5. First, small signal sta-
bility analysis has been performed to derive the damping
ratio, frequency, and participation factors of the generators
in the dominant oscillatory modes (Table. I). This modes has
been derived without the presence of any PSS in the system,
and it is also provided in [23]. It can be seen that, all the
inter-area modes have high participation from machines G13
to G16, and the local modes have high participation from
the corresponding local machines. Table II provides the NNs
parameters used which are identified in a heuristic manner.
This training has been done by means of Matlab NN toolbox,
and the weights and parameters are extracted to further use in
online implementation.

In this case study, a self healing 100ms three-phase short
circuit on the transmission line between area 1 and area 2
is simulated. As it can be seen, in the figure of the system,
there are three tie lines connecting these two area: Line 1-2,
Line 1-27, and Line 8-9. Fault at each of these tie lines and
disconnecting them from the connecting buses leads to inter-
area oscillations. Table III presents the overshoot improvement
in the case of proposed WASCCO being in the system. It
should be noted that these faults are sequentially, meaning that
at the end of the sequence these two areas are completely
disconnected. Figs. 8 and 9 depict the oscillation of inter-
area speed and energy exchange when lines 1-27 and 8-9 are
disconnected, and three phase short circuit occurs in the middle
of line 1-2. As it can be seen, speed oscillations in presence
of proposed method has more damping than local PSS and
conventional WASCCO, with less energy exchange, leading to
more stability margin.

VI. FUTURE WORKS AND CHALLENGES IN REAL TIME
SIMULATION

The proposed WASCCO for transient stability improve-
ment can be efficiently implemented on a TI board. In our

TABLE III: Overshoot of Inter-Area oscillation of Average Speed Between
Areas 1 and 2

Case study PSS Conv.
WASCCO

Proposed
WASCCO

Fault at line 8-9 8.991e-4 8.979e-4 8.970e-4
Fault at line 1-27 2.598e-4 2.461e-4 2.181e-4
Fault at line 1-2 7.982e-4 7.768e-4 7.200e-4
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Fig. 8: Inter-area oscillation of speed between area 1 and 2 due to short circuit
at line 1-2

previous work, [24], we have reported successful real-time
hardware implementation of optimal power system wide-area
system-centric controller based on temporal difference learn-
ing. The software and hardware real-time platform is depicted
in Fig. 10. For real-time development of the WASCCO, the
pre-training stages can be executed offline using the data
points obtained from the power system modeled in PSCAD.
The modeled power systems is then connected with exciter
acting as a ’nominal’ controller. The input of the exciter
is then connected to the control architecture implemented
in Texas Instrument (TI) Controller board, Piccolo C28335.
For this, MATLAB codes was first converted to SIMULINK
and then to C language by means of Code Composer Studio
software which is then deployed to TI controller board. The
full description of the implementation method is provided in
[24]. The main challenge in this work, in general, all the
wide-area controller implementation is the mater of scalability.
We seek to tackle the problem with the idea of performing
online coherency by means of energy technique provided in
this paper, and reduce the data load. Here, the coherent groups
were fixed and provided offline. Our next step would be tuning
and detecting this coherent groups as well. In addition, the
stability proof of the WASCCO is beyond the scope of this
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Fig. 9: Inter-area oscillation of Energy exchange between area 1 and 2 due to
short circuit at line 1-2
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Fig. 10: Real-Time implementation flowchart

paper. Yet, there is not any of a difference to conventional
NN-based WASCCO.

VII. CONCLUSION

In this paper a new energy-based intelligent system centric
control design for improved power system transient stability
is presented. The algorithm is an optimal Wide-Area System-
Centric Controller and Observer (WASCCO) based on Adap-
tive Critic technique (ACD). Cost function defined in ACD
problem are analyzed with Lyapunov stability function to ad-
dress inter-area oscillations. Further more, an offline and online
tuning method is designed based on extracted eigenvalues
using small signal stability analysis and Prony analysis and is
linked to performance index generation. Results on a two area
system and 68-bus 16-machine system shows better response
compared to conventional schemes.
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