MOMENTS OF AVERAGES OF GENERALIZED RAMANUJAN SUMS

NICOLAS ROBLES AND ARINDAM ROY

ABSTRACT. Let 8 be a positive integer. A generalization of the Ramanujan sum due to Cohen is
given by

cualn)i= D T
(thﬁ)gzl
where h ranges over the the non-negative integers less than ¢° such that b and ¢° have no common
B-th power divisors other than 1. The distribution of the average value of the Ramanujan sum
is a subject of extensive research. In this paper, we study the distribution of the average value
of ¢q,3(n) by computing the k-th moments of the average value of ¢q,g(n). In particular we have
provided the first and second moments with improved error terms. We give more accurate results
for the main terms than our predecessors. We also provide an asymptotic result for an extension
of a divisor problem and for an extension of Ramanujan’s formula.

1. INTRODUCTION
In [23], Ramanujan introduced a trigonometrical sum

ca(n) = cos<27r:h> Yo emnh/a, (1.1)

(h.a)=1 (hyg)=1
where g and n are positive integers. Ramanujan sums fit naturally with other arithmetical functions.
For instance, one has

cg(1) = p(g) and c4(q) = ¢(q),

where p(n) and ¢(n) are the Mobius and Euler totient functions, respectively. Moreover, if (¢,7) =
1, then c4(n)cp(n) = cgr(n). In the same article, Ramanujan obtained expressions of the form

n) =" ageg(n) (1.2)
q=1

for some arithmetical functions a4. In particular,

Solm) — Y IE =gy, et Ly )

i = po 2q—1 us

as well as

¢s(n)

ns

=((s+1)

2 cg(n)  o_s(n)

D T gy M Z

g=1 q C(S + 1 ¢s+1 )
for Re(s) > 0. Here d(n) is the number of d1v1sor of n, o5(n) the sum of their s-th powers,

= (1) () (0 3)
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when n = p{*p3?--- pzk, and r(n) is the number of representations of n as the sum of two squares.
Also he showed that

[o¢]

Z cq(n)

n=1

=—A(q) and Y du(q/d) = cg(n), (1.5)
dn
dlg

where A(n) is the von Mangoldt function.

The second equation of is of the same depth as the prime number theorem. As discussed
by Hardy and Wright in [13], these series have a particular interest because they show explicitly
the source of the irregularities in the behavior of their sums. Note that the Ramanujan expansion
mimics the notion of a Fourier expansion of an L!-function. In [2], Carmichael noticed an
orthogonality principle of Ramanujan sums. This allows one to predict the Ramanujan coefficients
aq in (1.2]) of an arithmetical function f(n) if such expansion exists. The work of Wintner [32] and
Delange [10] allows us to determine a large number of Ramanujan expansions. Later on more work
was done in this direction by Delange [9], Wirsing [33], Hildebrand [14], Schwarz [25], Lucht and
Reifenrath [17].

Ramanujan sums and their variations make surprising appearances in singular series of the Hardy-
Littlewood asymptotic formula for Waring problems and in the asymptotic formula of Vinogradov
on sums of three primes, for details the reader is referred to [§].

Recently, Alkan [1] studied the weighted averages of Ramanujan sums. He showed that for integer
r>1and x > 1 one has

5

Z(l{::ﬂéjrcku)):l—i_; _(;5(15)—1—1—1#7"”12_:1( >BQWZH(1_>7

k<z 2<k<z p|k

where Bs,, # 0 are the Bernoulli numbers together with the convention that the sum over m is
taken to be zero when r = 1 and the sums over k are taken to be zero when 1 < z < 2.

In [3], Chan and Kumchev studied moments of averages of Ramanujan sums. They showed that
for y > x one has

.’172
DD ) =y - Q) +O(zy'Plogx + 2y, (1.6)

n<y ¢Sz
as well as
2 72
ce(n —74-095 + zylog x
% () = gy o v
<y “g<z
for y > x?(logz)? for B > 0, and lastly for z < y < 2%(logz)?

2 xg
Z(Zcqm)) = 56y (1 26(0)) + Oy (log )™/ + (/) %), (1)

where u = log(yz~2) and r(u) is a certain Fourier integral given by

1o C(1—s) 1
k(u) == — it)e " dt, where s) = .
W)= 5 / Fét) I8 = e T a2 =9
It satisfies some numerical inequalities given in [3] and in particular x(u) = o(1).
Let 8 be a positive integer. A generalization of the Ramanujan sum due to Cohen [5] is written
as c¢q3(n) and it is defined by

n<ly “q<z

winh/qP
Cq8(n) = Z e2minh/a”, (1.8)
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where h ranges over the the non-negative integers less than ¢ such that h and ¢® have no com-
mon [S-th power divisors other than 1. It follows immediately that when 8 = 1, becomes
the Ramanujan sum . Clearly this generalization of the Ramanujan sum is as important as
Ramanujan sum by its arithmetic nature. For more arithmetic properties of the generalized Ra-
manujan sum , the reader is referred to [5]. For a discussion of the connections between the
generalized Ramanujan sums due to Cohen and the non-trivial zeros of the Riemann zeta-function
the reader is referred to [16].

Let us now introduce the main object of study of this paper. The k' moment of the average of
the generalized Ramanujan sum is defined by

Cuate) =X (X cq,ﬁm))k, (1.9)

nxy “gsw
where k is a positive integer and = and y are reals. It is not to difficult to obtain an asymptotic
result for the & moment of (1.9)). In particular we have
Proposition 1.1. Let k and 8 be two positive integers. Let y > ¥+ 1og"*1 2 then
Cr(e,y) = Arp(@,y) + O (+5 ) 1ogh 2)

where
if k=1,

Y,
Ak, (337 y) = a1 t+h .
p (1_,'_%)w‘|‘O(y$ﬁlogL1/5J :C), ka> 1

For the first and second moments one can improve the error terms as well as clarify the depen-
dence between the parameters y and x. Our main results are following.

Theorem 1.2. Let y > 236/2log® x. Then for 8 = 1,2 one has
( ) o148
Ciplz,y) =y —
e 2(1+B)C(1+B)
and for B > 3 one has

+ O(2Py /3 loghy + a2B+1y =23 | gP+1y=1/3),

Crp(z,y) =y + O(a%y 3 logy).

Theorem 1.3. For 3 =1,2 and 2*° <y < 225 log%(ﬁﬂ) x one has

Cyp(z,y) = ya* ! i + O(y 2?8 4 2%t (log z + loglog z))
PETTT BB 21+ B)°C(+ )

1 1
+0 <x25y3+65 (log® y) loglog y(log* z + log* log ) + yac%Jrﬁ(log?’ z + log® log a:)) .

For 8>3 andy > 2°0/2 one has
ny'B

1+8)¢(1+8

1 1
Cop(x,y) = ( y+0 (:cwy?’”ﬁ (log” y) log log y(log*  + log* log w))

+0 <yxé+6(log3 z + log® log x)) .

Remarks: (i) Theorem is not only more general but also improves ((1.7) when we choose
g =1

(ii) In order to improve Proposition for £ > 3 one may need to assume some strong results
such as the moment hypothesis of the Riemann zeta-function. For k > 3 improving Proposition [I.1
unconditionally is still an open question.
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Next we consider a generalization of the divisor function, defined by
oap(n) = d*. (1.10)
df|n

Crum [7] seems to be first author who coined the notation ([1.10). Understanding the asymptotic

behavior of sums like
Z UZl,B(n) and Z 0'2175 022,5 n)

n<x n<z

for Re(z;) <0, i = 1,2 is naturally needed in the proofs of Theorems and However, these
sums are important objects in their own right. Clearly these sums are generalizations of

Zd(n) and ZdQ(n)

respectively.
The evaluation of the summation of the divisor function

= d(n)

has been studied extensively in the literature. In particular, it can be shown that
D(z) =zlogz + (2v — )z + A(z),

and the specific determination of the error term A(x) is called the Dirichlet divisor problem (see
[T9, p. 68]). In 1849, Dirichlet [T1] proved that A(z) could be taken to be O(x!/2). Further progress
came in 1903 by Voronoi [30], who showed that A(z) < z/?logz, and then by van der Corput
who proved in 1922 that A(z) < 233/100+¢ [29]. The exponent has been reduced over the years
(see [19, p. 69] for further details). The current record stands at A(z) < £'31/416+¢ and it is due
to Huxley [15].
On the other hand, in [24], Ramanujan states without proof that
d?(1) 4+ d*©2) + - - - + d*(n) = An(logn)® + Bn(logn)? + Cnlogn + Dn + O(n*/°+).  (1.11)

Moreover, and also without proof, Ramanujan claims that on the Riemann hypothesis, the error
term in can be strengthened to O(n'/2+%). In 1922, Wilson [31] proved that indeed one can
take the error term to be O(n'/?*¢) unconditionally. As can be seen from [I8, 21], it is highly
probable that that the error term is O(n'/2). Suppose that P3(t) denotes a polynomial in ¢ of
degree 3. Let us set the notation

Z d*(n) — zP3(log z).
n<z
Ramachandra and Sankaranarayanan [22] showed that
E(z) = O(z'/*(log z)° (log log )
unconditionally. In 1962, Chandrasekharan and Narasimhan [4] proved that
E(z) = Qi (z'/*).
For a given arithmetic function f(n) we define
Sy =3 fn) - ff
n<z n<z

when z a is positive integer. We have following asymptotic results.
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Theorem 1.4. Let Re(z) < 0. Then

S 0. 5(n) = Dapla) + A p(a),

n<T
where
A, () < 23 log? =

uniformly for B > 1 and D, g(x) is given by following.
(i) If 6=1,2 and —% < Re(z) <0, then
1 1\ L1
Desa) = €31 = o+ - (4 5 ) o770,
(ii) If B > 3 and —1 < Re(z) <0, then
D. () = ((B(1 — 2))x.

Theorem 1.5. Let Re(z1),Re(z2) <0, Re(21 + 22) > —1 and |Re(z1 — 22)| < 1/b. Then for § >1
one has

’
Z 0'21”3(72)0‘22”3(71) = DZl,Zz,ﬁ(x) + Az1,zz,6($)7

n<x

where the values D, ., 3(x) and A, ., g(x) are given below.

(i) If 6 =1,2 and _Wlﬂ) < Re(z1),Re(#2), Re(z1+22) < 0 then for z1 # 0,22 # 0, and z1 # 22

one has
C(B(1 = 21))C(B(1 — 22)C(B(1 — 21 — 22))
DZLZQ,ﬁ(x) - C(B(z_zl —22)) T
L S+ 1B+ B = Ba)((1 = B2a) e
(Bz1 +1)C(2 + fz1 — B22)
L SCa+ 1B+ Bz = B)C(L = B1) oo
(Bz2 +1)C(2 + fz2 — Bz1)
C(z1 + 22 +1/B)((Bz2 + 1)((Bz1 + 1)le+z2+%
(Bz1 + Bza + 1)((2 + B21 + B22) 7

and
Re(z1)+Re(29)

Az iz p(T) < witast 6 (log® z) log log .
(i) If B >3 then for 21 # 0,22 # 0, and 21 # z2, then

CB(L = 21))C(B(L = 22))(B(L =21 — 22)) .
C(B(2 =21 — 22)) ’

D(z1, 22, 8)(x) =

and

1 1, 1 Re(z1)+Re(22)
Az zp,5(2) < max <x25+ 3 a3 68" 6 )(log5 ) loglog .

1 Re(21)+Re(z2)+,8| Re(z1)—Re(z2)]
2

Remark: For other values of z; and z2, such as z; = 0 or z1 = 23, one can compute explicitly
the value of D, ., 3(x). Since the other cases are not of interest in the present paper, only values
of D, ., g(x) for Re(z;) <0, ¢ = 1,2 are provided. In the proof of Theorem we will see how
the other values can, in fact, be obtained. Theorems and can be computed for Re(z;) > 0,
i = 1,2 by similar arguments of the methods presented here. We also avoid these cases.
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2. PRELIMINARIES

We start this section by recalling two important identities due to Cohen [5]. These identities
generalize the first identity of ((1.4)) and the second identity of ((1.5)).

Lemma 2.1. Suppose that B is a positive integer, then one has

S5 casln) _ o1-aaln)
= ¢ ¢(Bs)
for Re(s) > 1.

Lemma 2.2. The generalization of the Ramanujan sum may be written as

cqpn) =Y d’u(3). (2.1)

dlq
dP|n

where p(n) is the Mébius function.
In [7], Crum derived the Dirichlet series for o, g(n).

Lemma 2.3. Suppose that B is a positive integer and that z € C. One has

5 2 ((a)c((s - 2))
n=1

for Re(s) > max(Re(z) + %, ).
The Dirichlet series for o, g(n)o, g(n) is given in [7].

Lemma 2.4. One has

i 021,8(1)02,8(n) _ C(s)C(B(s = 21))C(B(s — 21))C(B(s — 21 — 22))

— ns C(B(2s — 21 — =)
for Re(s) > max(1,Re(z1) + 1/8,Re(z2) + 1/5,Re(z1 + 2z2) + 1/5).
From [28, Lemma 4.5, page 72] we have

Lemma 2.5. Let a,b and M be real numbers and » > 0. Let F' be a real valued function, twice
differentiable, and |F"(x)| > r in [a,b]. Let G be a real valued function, G/F' be monotonic and
|G(z)] < M. Then

b
/a G(x)eiF(m)d:U' < 8\];

Let M be a class of non-negative arithmetic functions which are multiplicative and that satisfy:

(i) there exists a positive constant A such that if p is a prime and [ > 1 then
F') < A
(ii) for every e > 0, there exists a positive constant B(e) such that
f(n) < B(e)n®

for n > 1.
In [26], Shiu showed
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Lemma 2.6. Let f e M, 0 < «, 5 < 1/2 and let a, k be integers. If 0 < a < k and (a,k) =1, then

as r — X0
2 f(n)<<¢(Q)log:E p< 2 p )

r—y<n<zx p<z, plg
n=a (mod q)

uniformly in a,q, and y provided that ¢ < y'=%, 2# <y < .

In [20], Nair and Tenenbaum observed that if ¢ = 1 then one can obtain the same result when f
is non-negative, sub-multiplicative and satisfying (i) and (ii).
We also recall the following well-known estimate.

Lemma 2.7. Let M be the Mertens constant. Then

1 1
Zzloglogﬂ:+M+O( >
P log

p<z

The following lemma can be easily adopted from [I9, Theorem 5.2]. For the sake of completeness
we will give the sketch of the proof.

Lemma 2.8. Let 0 < A\ < Ay < -+ < A, — 00 be any sequence of real numbers and let {a,}
be any sequence of complex numbers. Let the Dirichlet series a(s) := > o2 ap\,® be absolutely
convergent for some Re(s) > o4. If 09 > max(0,0,) and x > 0, then

1 oo+iT s
Z/ ap = — a(s)x—ds + R,
= 270 J gy—iT s
where
) x 490 4+ 290 X |ay,|
R Z |ap| min <17T|$—)\n|> + T Z 20
z/2< A\ <2 n=1
n#x
Proof. Let
0o
si(x) == —/ Y .
s U
Integrating by parts one obtains
si(z) < min(1,1/z) (2.2)
for & > 0. The proof of the lemma follows from the following identity [19, p. 139, Eq. (5.9)]
1+ O0(%7), if 2 >2
1 footiT gs 14 si(Tlogz) + O(%2), if1<z<2
— — ™ 4o’ - 2.
271 Jyo—iT S ds < —1si(—Tlogz) + O(%7), ifi<z<1 (23)
O(%), ifz < %
for og > 0. Now
1 oo+iT s o0 1 oo+iT )8
— a(s)x—ds = Z an,/ Mds. (2.4)
270 J gy—iT s ot 270 J gy—iT s

Applying (2.2, (2.3) and the fact that
|log(1+6)| =< |d]
in (2.4) we obtain the desired result. O



8 NICOLAS ROBLES AND ARINDAM ROY

Note that for any fixed real number ¢ and o > 1/2 (see [28, Chap. VII])
T
/ Yo+ i(t + ))]dt < Tlog"T.
T/2

Therefore arguing in a similar fashion as in [22] Lemmas 3.3 and 3.4] we have following two lemmas.
Lemma 2.9. Let 0 > 1/2 and T > 0. Then for any fized real numbers t',t", and o’ we have
/ CHo+i(t+1)) dt

wer | CL+2it)  |]o +i(t+ 1))

Lemma 2.10. Let z be a complex number and Re(z) > 0. For o > 1/2 we have

/ / C4s+z
1/2JT/2

23

< (log T)°(loglogT).

dadt < (log T)*(loglog T') (z — z*/?)(log ) ™.

3. Proor oF ProPoOSITION [L1]

From we see that
k k
Yy
Custe) = X (Se) =11 X afuts) 1 =11 5t | Vo |
n<y “q<y j=ld;k;<z nﬁgy Jj=ld;k;<z [dl LA 7dk]
d;ln

where [df, o ,di] denotes the least common multiple of the integers df, dg, e ,di. Let (d?, .. ,df)

denote the greatest common divisor of the integers df , dg yees ,dg. Then one derives
k k
Cuate) =[] 3 @ty +0( I X ) (3.1)
j=1ldjk;j<z J=ldjkj<a

for k> 2. If k =1, then
Crp(z,y) =y > p(k) +0( > dﬁ) = y+0( > dﬁ)-
dk<x dk<z dk<z
By the aid of the fact that
Znﬂ = 2P 1 O(%)
n<x

we deduce that

z =2 (50 +0 (35)) - 15

()

dk<x k<x ké k<x
218
+ O(zP 1028 ). (3.2
=@ pasp TOE s ) (32)

Let d be the greatest common divisor of dj, ..., dk. The first sum on the right-hand side of (3.1
can be written as

k k
yY AT D wky)=yd T Do wk) D w@)

d<z  j=1 ljk;<z/d d<z  j=1ljk;<z/d U(lyeslk)
(T15el)=1
k

=y Y du) | D> wn)

di<z mn<z/dl
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ya'* 81511/8]
= Wr B py O s ),

where in the last step we used (3.2]). The last term on the right-hand side of (3.1)) can be estimated
as

k
H Z d?<<<2d5> < IOk log z.
7=1 d]'kj <z dk<z
This ends the proof of the proposition.
4. PROOF oF THEOREM [L.4]

If =1 and z = 0, the study of the error term in this asymptotic formula is the well-known
Dirichlet divisor problem. Thus, we exclude this case. Let z = a4+ i, a < 0, b € R, and
¢=1+1/logz. Then by Lemma ﬂ 2.8 we write

c+iT s
> oas(n) =5 / C(8)(B(s — 2)~-ds + B(z, B;x),

n<lx i
where
: z 4°+ 2 ~ Ta8(n)
E(z,fix) < ) 0ap(n)min (1, T n|> T D
x/2<n<2x n=1
n#x
Form ({1.10)) one has
n%oq 5(n), ifa>0
< I ’ .
O—aﬁ(n) = { 00,5(”)7 if a <0. (4 1)
Also we note that
[ 2 ifp=1
s ={ T 1052 (12)
We choose T'= z2/3. If 0 < |z — n| < /3, then from (@.1)), (4.2), Lemmas and We have
Z 04,3(n) min <1, T|azx—n|> < Z 00,8(n) < 23 log . (4.3)
0<|z—n|<z/3 0<|z—n|<z/3

For z + z!/3 < n < 2z one has

. x
Z O'a’g(n) min <17T'|£C—7’L|> <

z+zl/3<n<2z

3 00,5(n)
n—zx
x+x1/3<n<2x

S5 Y o)
<Llogz

U<n—x<2U
U=2ZCE1/3

N8

<

Nl &

Now by use of Lemmas [2.6] and [2.7] we deduce that
. x x
Z O'a75(n) min <1, M) < f 10g2 x. (44)
z+al/3<n<2x

The same bound holds when /2 < n < 2 — /3. Since

(o) ~ —

oc—1

(4.5)
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when o — 14, then from Lemma [2.3] we find that

A°+af i a,5(1)
T ne

< % log? . (4.6)

n=1

Hence from (4.3)), (4.4]), and (4.6)) we deduce that
E(z,B;2) < /3 log? x.
Now we take the integral around the rectangle D = [—a — iT,¢ — iT,c + iT, —a + iT], where
a = —a+ 1/logz. By the residue theorem one writes
[ - ) Sas =R

— s s—z))—ds =

21 D S ’
where R is the sum of the residues at the simple poles s = 1, s = z+ 1/, and s = 0. The functional
equation of ((s) is

L ()

C(1 =) == x(s)¢(1 = s). (4.7)

From Stirling’s formula for the gamma function [6, p. 224] one has

otit—1/2
x(o +it) = <2:) eit+m/4) (1 +0 <1>> (4.8)

for fixed o and t >ty > 0. Hence by (4.7]) we have

C(s) < 112~ (4.9)

for o < 0. Also we recall the bound (1 + it) < logt/loglogt from [28, Theorem 5.16]. Therefore
from (4.7) and (4.8) we have ((it) < v/tlogt/loglogt for t > 2 . Then by the Phragmén-Lindelof
principle [27, p. 176] one obtains

((o+it) < ¢2(1-0) logt/loglogt (4.10)
for 0 <o <1 and t > 2. For the upper horizontal integral we have

c+iT s
[ ot - nts
—a+1T

1 _QIC}gz a+%+210gz ¢ . i
= </ +/ +/ )C(U+1T)C(ﬁ(a+sz))x”da
T —a 1 a+%+ 1

" 2logz 2logx
= Il —+ IQ —+ 13.
Using the bound (4.9) for ((s) and (4.10) for {(B(s — z)) we find

_ 1
_[1 < ,_:2[1/ 2Togax TéfoT%(lf,BUJrﬁa) IOgTIL’JdU < xa/?"
—a

Using the bound (4.10)) we have

- i
I, < 71,/ 7R pi(-o)py(1-po+a) log? Tx%do < z L log .
72101gz
Similarly
log>T [©
I3 < 08 / T72(1-9) 4945 < /3 log x.
T Jatdtqis
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Therefore we obtain
c+iT s
/ C(s)C(B(s — 2))—ds < 23 log x.
—a+iT S
A similar estimate holds for the lower horizontal line. Next we will bound the left vertical part.
This is given by

—atiT 25 —aHiT 5
[ e = s = [ B - )6l - )6(8(1 s - ) Eds

—a—iT —a—iT
& —a+iT s
0,5(n Tn
=3 2 T st - 0
— g i 02,5(n) /T x(—o+ix(Bl-atit—2)) ity
N — nlto —o + it ’
(4.11)
and where in the first step we used the functional equation (4.7)). Note that
1 1 1
=—4+0(5]). 4.12
“ava <t2> (412)

Applying (4.8) and (4.12) yields

/T x(za+ith(Bl-atit =2) vy,
2b+1 -+t

T

<</ 6it(log(nx)+10g(27re)flogt)+5(log(27re)flogB(tfb))taﬁBaJrBadt‘
2b+1

Clearly o + fa + pBa > 0. Let F(t) := t(log(nz) + log(2me) — logt) + S(log(2me) — log B(t — b)).

Then

., 1 (t—2b)B 1 B
F(t):_t_((t—b))?<_T_T2'

Therefore by the aid of Lemma [2.5] we deduce that
/T X(—a+it)x(B(—a + it — 2))
2

b+1 —a 4t

Ta+6a+,3a+1

T-p

(nx)tdt <

Combining this with (4.11)) we finally get that

s

—a—+iT x a
/ C(s)¢(B(s — Z))gds Lxr 3 log2 xT.

—a—1iT

Now we compute the residues

x® 1
res ((s)C(B(s — 2))— = —5¢(=52), (4.13)
res ((s)C(B(s — 2)) = = ((B(1 - 2)a,

and

z C(ﬁ—l + 2) 814z
s=,g§§+z C(S)C(/B(S B Z))? N Wx ' '

Clearly the residue in (4.13) is a constant. When [ > 3, the residue in (4.14)) is absorbed by the
error term. This completes the proof of the theorem.

(4.14)
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5. PROOF OF THEOREM

Let z1 = a1 + ib1, 29 = as +ibs, a1 <0, a2 <0, a1 +ay > —1, \al —a2] < 1/,3 and b1,by € R.
Define

¢(8)C(B(s = 21))C(B(s — z2))C(B(s — 21 — 22))

Z ) Z M S; /8 =
Jnz25i0) ((B2s — 71— )
and let ¢ =14 1/logz. Then in the view of Lemmas and we may write
1 c+iTy 5
> 02.8(n)0, 5(n) = 2/ f(z1, 22, 85 B) —ds + E(z1, 22, B; x), (5.1)
T Je—iTy s
n<x 0
where
- x 4+ ¢ O~ 0a,,5(1)Tay 5(1)
E(z1,22,0;z) < Z Oay,8(n)0q, g(n) min <1, Tolo — n|> + e Z a ncaz )
z/2<n<2z n=1

n#x
(5.2)

Let T = 22%/3 and T/2 < Ty < T. Now we estimate the right-hand side of (5.2). We consider
z+x'/3 < n < 2z. Applying (4.1 to the first term of the right-hand side of (5.2)) we obtain

: x z 0ay,3(1)0az,8(n)
Y 0u,5(n)0a, 5(n) min (1’ T0|x_n‘> =T > BE—
zl/B3<n—zr<x zl/B3<n—zr<x

T g n2
> ooy (el

< —
=T
0<Iklogx U<n—z<2U
U=2!g1/3
T 1
s Z T Z (00,5(n))*  (5.3)
0 o<iclogz = z4+U<n<z+2U
U=2lg1/3
From (4.2) and Lemmas and [2.7| we deduce
U
Z (005(n))? < ] exp(4loglog ) < Ulog® x. (5.4)
z+U<n<z+2U 08T
Invoking this in (5.3)) we finally have
. x T
Z O'al,ﬁ(n)a'a%ﬁ(n) min (171—‘0|§C—n|> <K ?O 10g4 xX. (55)
23 <n—z<z
Similarly
Z 0a,,8(n)0g, g(n) min | 1 T V<« £10g4 x. (5.6)
1, 2, ’T[)|ﬂ§' _ n| TO

z/2<n<z—z1/3

Let z — /3 <n <z + 2'/3. Using (1)) and (7.2)) one has

S 00 (1)0uy5(n) min (116‘;’_7“) < Y onsmonsn)

0<|z—n|<zl/3 0<|z—n|<zl/3

< 23 log? z. (5.7)

From (4.5) and Lemma [2.4] we have

o0

4¢ 4 z¢ Z O'alﬁ(n)o'azﬁ(n)
To

x
To

oy < %f(al,ag,c; B) < — log*z, (5.8)

n=1
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for § > 1. Combining (5.5)), (5.6)), (5.7) and (5.8) we obtain
E(21, 2, B;7) < 2/ log* . (5.9)

Let A\ = %(al + a2 + 1/8). Suppose R is a positively oriented contour with vertices ¢ + iTp and
A £ 71Ty. By residue theorem we have

1 x®
i B —ds = 1
Imi /IRf(ZDZQ,'Saﬁ) s S ROa (5 O)

where Ry is the sum of residues in side the contour R. By Hélder’s inequality [27), p. 382] one has

AT 8 4
</ f(Zl,Zz,S;ﬂ)d5>
A—iTh S

<[ GO+ it)| Y L LEES Ry
—1y [CBRMA+it) — 21 — z)) (A + i) Jog, [C(B2(A +it) — 21 — 2z2)) (A +it)]
T - 4.2 T . 4.\
0 [CBA+ it — 29)) [ ¢ [CBA+it— 2 —2))[
oy T+~ 52T L 05 =5y r g 510
By Lemma [2.9] we find that
/TO IC(BON + it — 21 — 29))|*2?
—1p [C(BE2A +it) — 21 — 22)) (A + i)
Let a1 — a9 > 0. Then by Lemma [2.9 we have
/TO [C(BOA + it — z9)) [t
—To ‘C(ﬁ(Q()\ + it) —Z1 — ZQ))()\ + Zt)’
By the functional equation and one obtains

dt < 2*(log® Tp) log log Tp

dt < 2 (log® To) loglog Tp.

/T° CEO+it—=)ft
1 [C(B2(N +it) — 21 — 22)) (X + it)]
[ - (1= B+ it — z))!
- /TO BT it =20l Rt T — o — )

Tt . / 4
rampyz [T 1G24 (a1 — a2)B/2 + it + 1))
<1y /TO Ot

where in last step we made a suitable change of variable. Finally, by Lemma [2.9| we obtain
o (B it — 21))|*a? —a)8/2
, __dt < 2T\ P (log? Ty) log log Tp.
/_TO|<<5<2<A+zt>—zl —22)) (A + it) ! {loe"To log log Ty
The case a; — as < 0 can be treated similarly. Therefore for any sign of a; — as we have
/TO CBOA + it — z))|*a?
1 [C(B2A +it) — 21 — 22)) (A + i)

for ¢ = 1,2. Using a similar argument one can deduce that

dt < xAT(I)m—azlﬁ/? (log® Tp) log log Tp,

To [C(A + it)[*a? 1/2-2
: —_dt < 2T log® Tp) log log Tp.
/_TO CBRO+it) — 21— 2)) (At i8)] o "(log”Tp)loglog Ty
Thus from (5.11]) we have

ATy 5 i+a1+a2+f3\a1*a2| 1+L+a1+a2
/ f(21, 22, 8; ) —ds < max <:U25 2 3 ,x3T68T 6 )(log5 x)loglogz. (5.12)
A—iTy S
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Next we compute the integral

o+t
dordt.

/ fZl,ZQ,O'+Zt B)
T/2
Using the functional equation (4.7) we write
c T N4 o
/ / K.(O'—FZt)’ x _ dodt
72 [C(B(2(0 +it) — 21 — 22)) (0 + it)]

1/2 (o +it)|C(L — o — if)]ia”
/ /m 0w 1) == T

<o +it)|'a”
" /1/2 /T/z AR +it) — 21— =)o 1 i)

Now by the aid of (4.8)) and Lemma we deduce that

T . 4
C(o + it) 42 z .
1 log1 .
A /m o i) — 2 — (o T i) 01 ogg 08 T)loglosT

If a1 — a9 > 0, then simﬂarly we can find that

U+’it—21)‘4xa 2 A
—dodt < log* T') loglog T.
//T/2 IC(B U"‘Zt)—Zl—Zg))(O'—f—Zt)‘ 1ng( g" T)loglog

From Lemma 2.10] we have

B(o + it — z9)|*z” z A
—dodt < log* T) loglog T
//T/2 IC(B J‘I’Zt)—Zl—ZQ))(O'—{—lt)‘ 1ng( g" T)loglog

and

]C (0 4 it — 21 — 20)|*2°
—dodt < log? T) log log T..
//T/2 IC(B(2(0 +it) — 21 — 22)) (0 + it)] lg Togg 108 T)loglog

Therefore by Holder’s mequahty

xo'Jrzt

/ f(z1, 29,0 + it ﬁ) dadt < (log4 T)loglogT.

T/2 log

Hence we can choose a suitable Tj so that T/ 2 <Typ <T and

c o+i1y T 4
iTo; d log™ Ty) log log T
/A f(21, 22,0 +1i o,B)GH.TO o< Tologx(og 0) loglog Tg
< z'3(log® z) log log z.. (5.13)
Finally combining (5.1)), (5.9), (5.10), (5.12) and (5.13]) we find
1 ,a1tas  Plaa—azl 1,1  aitas
ZUZLB n)o,8(n) = Ro +O<max <$25+ 2 T ,953+65+ 6 )(10g5 x) loglogx).

n<x

(5.14)

Since z; # 0, z1 # z2, and |Re(z1 — 22)| < 1/, then all the poles are simple. The residues at the
simple poles s =1, s =21 + 1/, s = 20+ 1/5, and s = 21 + 22 + 1/3 are given by

& B0 = 2))C(BO = 2B = 2 — 22)
oo e s B = (B2 21— ) :

T C(z1 + %)C(l + Bz1 — Bz2)((1 — Bz2) z1+%
s:zrlefuﬁf(zl’m’s’ﬁ)? = 18+ 1)C(2 + Bz1 — Bz2) T ,

(5.15)
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£ _B)HLS_C(22+%)C(l—i-ﬁza—ﬂzl)((l—ﬁzl) Zﬁ_%
A R P (Bz2 + 1)¢(2+ Bzg — Bz1) v

(5.16)

and

N C(z1+ 22+ )C(ﬁ@ +1)¢(Bz1 + 1) zﬁ—zg—l—%
s=Z1£§§+I/Bf<217 e 5)? T T (But B+ )2+ B + ) '
If 3> 3, then (5.15)), (5.16)), and (5.17)) are smaller than the error term of the right-hand side of
. Therefore for § > 3 we find
C(B(L = 2)C(B(1 = 22)(BL = 21 = 22))
(B2 =21~ 2)) '
For f =1 and —1/2 < Re(z1),Re(22), Re(z1 + 22) < 0 we find
Ro — x<<(1 — )L = 2)((L—z —2)  ((aa+ 1)+ 21— 2)C( — 2)
((2—21 — 22) (21 +1)C(2+ 21 — 22)
(2 + DC + 22 — 21)C(L — 21) ., n (21 4 22+ 1)((22 + 1)((21 + 1)xz1+z2>.
(22 +1)C(2+ 22 — 21) (21 + 22 + 1)C(2+ 21 + 22)
Finally for § =2 and —1/10 < Re(z1), Re(22), Re(21 + 22) < 0 we obtain

Ro :\/5(4(2(1 —21))C(2(1 — 22))¢(2(1 — 21 — 22)) it C(z1 4+ 3)C(1 + 221 — 229)¢(1 — %)xh

(5.17)

Ry =

(22— 21— 2)) v (221 + 1)C(2 + 221 — 229)
2+ 300 + 250 = 22)C(1 = 221) ,  Clea+ 22+ B)C(222 + 1)C(20 + D puen)
(222 + 1)C(2 + 229 — 221) (221 + 229 + 1)((2 + 221 + 222) '

This completes the proof of the theorem.

6. PROOF OF THEOREM [1.2

Let us consider

1
a=1+ ,
logy
y >z, and T = y*/3. By Lemma one finds
1 a+iT 0—175,8<n> s
— = —ds+ F ) 6.1
Z Cap(n ~ 2mi /a—iT C(Bs) s s+ Bilen) (6.1)
¢P<z
where
. lcq.
Ei(z,n) < Y |egp(n)|min (1, Tqﬂ|> Z qﬁa : (6.2)
x/2<qP <2z q=1
¢’ #a

Using Lemma 2.2 we have

— |cq,5(n)
ZZT_ZqBa

g=1

> (g )’ ZqﬁaZ P =01 s(m)(Be).

dlq dP|n
dP|n

Therefore from (4.5) we deduce

Z ’Cqﬁ

o if 3= 1. (6:3)

1Ogy,ﬁ(")

{ 1 g(n)logy, if B> 1,
o_
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Similarly

3 |cq75(n)|min< L qﬁ|) Sy min(l,T|x_xdﬂq5|>

r/2<qP <2z dPIln  z/2<dP¢P<2x
P #z dbqP #£x

< %Uo’/g (n)logx. (6.4)

Hence from (6.2)), (6.3]) and (6.4) we obtain

By(z,n) < Zoo(n) logy. (6.5)

Now by (4.2) and Lemma [2.6{ one has

Hlogy, ifp>1
E E1($,n)<<{ :LTy 27 . o ’
= 7 log®y, if B =1.

Summing the both sides of (6.1)) over n and using Theorem we can write
a+iT s 1+1/8  pot+iT _ s
x y CA—s+1/8) (z/y)
C —d d
1(7,9) Z Z Cq,6(n 271'2/04 s + 2w /a 1+8—08s sC(Bs) s

<y f<a —iT —iT

«

1/37.,2 4 £
+O<y log y/2 W) ZElxn (6.6)

n<y

Note that (¢(o +it))*! < logt for 1 < o < 1/logy. Thus the third term in the right-hand side of
is

1/3

< zy'3log? ylog? T.

By (2.3) the first integral in the right-hand side of is

yx
y+O<T>

for x > 2. For the second integral we shift the line of integration from c = atooc =1+ a+1/5.
The residue due to the simple pole at s =14 1/f is

s SL=s+1/B) y B fy)s i t1/8
i 14 A—Bs sC(Bs) 20+ BKATB)

The contribution from the horizontal line is

1+4 at+i o 1+a+1 o
<L <logT/ "Ti“’?ﬂ(g”) da—l—/ Crited (x) da)
T o y a+% y

zyl/B 71+1/8
< T37 logT + Tz
Similarly the contribution from right vertical line is

2+1/8 24+1/8
< T / tiéﬂogydt < LT%Jﬁogy,
y* Jo y

logT

Note that the second integral of disappears when § > 3. Finally, replace = by 2 to end the
proof.
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7. PROOF OF THEOREM [L.3|

For j € {1,2}, we let a; be such that

J
logy’
Let y > x and T = 2% log® z. From (6.1)) and (6.5) we have

1 a;+iT' s
> casn) 27rz/._~T UlC@i’g)Sd +O< oo,8(n )10gy>.

qB <z

aj:1+

Note that
1 /aﬁiT o1-s,8(n) 2° 2
- ’ T ds <L zoy log“T.
27 o —iT C(BS) $ IB( )

Therefore

/a1+zT /a2+21T o1- 81,ﬁ( )0,1782,5(711) xs1+52 d52d81
27TZ a ag—2¢T 551) C(BSQ) 5182

1—T

(S -

<z
+0 < (50,5(n))? logy log? T) . (7.1)
Combining equation (4.2] , Lemmas 2.6 ﬁ and we find
Z(UO,B(”))Q < ylogdy. (7.2)
n<y
Now sum over n both sides of ([7.1]) so that
2 a1 +iT ao+2iT S1+s
1 ! 2 G81,82,5, )z
Cop(,y) = < cgn) :/ / dsodsy
25(2.) Z Z ) =i Lo o RO
2
+0 (xTy log y log? T>
22y
where
G 817827/6 y Zal 81,5 Jl—sg,ﬁ(n)-
n<y
From Theorem [L.5 we find
I=h+L+I1I3+1;+ O<x2y§+ﬁlﬁ(log5 y)(log* T') log log y>,
where
a1+ ag+2¢T -1 s1+82
P / CBlsrt sz = 1)) 22 e,
(2m0)? Jor—ir Jag—2ir  C(B(s1+82))  s182
P BRI, RS, AR R i
= s1dsa,
L) Joyir Jopar (T4 B = Bs1)C(2 - Bs1 + Bs2)C(Bs1)C(Bs2)  sis
P i /CWT C(L— 55 +1/B)C(1 = Bsy + Bs1)¢(1 = B+ Bsr)) y~ 212,
T @) Jormir Jogar (48— B5:)C(2 = Bsa+ Bs1)C(Bs1)C(Bs2)  sis
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P il /“I“'T /0‘2“” (2= 51— 5 +1/B)C(1+ B = B51)¢(1 + B — Bs2))
T @mi)? ar—iT Jag—2ir (1 4+28 = Bs1 — 52)C(24 28 — Bsa — £51)((Bs1)¢(Bs2)
X wd81d52.

5182

Note that the integrals Io, I3, and I, disappear when 8 > 3. First we will compute the integral I;.
Let

ag+iT o
Ji(s1) = 1/+ S e 1))76182

270 Jag—ir  C(B(s1+s2)) s2

Shift the line of integration from o = ay to 0 = 1 + % — . Note that the integrand has a simple
pole at 14+ 1/8 — s1 in this region. The residue is

s SBGitsm-D)an el
so=l—s1+1/8  C(B(s1+s2) s2  (14+B8—PBs1)C(1+8)

Let T > 22/P. The contribution from the horizontal line is

1 [Y8 < T )U logz [*2 z xl/?
<L — —— | do+ / “do < =+
T> 1—a1+1/28 Th/? T 1/5( 7) T W T34

y /a1+ZT 2[3 logy-|-21T C(B(s1 + 52— 1)) pS1ts2 ds1dss
«

1=iT 55— oy 20T C(B(s1+s2)) s182
U g8 yz2 Y +1/28
2mi d 1 = —logz ). ,
" 2mi a1 —iT 51(1+ﬁ 551)C(1—}—ﬁ) 51 +0 T og + T3/4 og T (7 3)

Denote the first integral in the right-hand side of (7.3)) by I;;. Then we have

T2 c(1/2+iB(t +t
111<<yx1+1/25/ / ¢(1/ +t@5t( 1t 2>)’dt1dt2
102

2T
(1/2 t t
< Yzt o2 T / C(1/2 4 iB(t1 + 2))\dhdt2
T/2 tito

2T 2T 1/2
< yx1+1/25 log T( / 1/2 + ’Lﬂ(tl + tg))| dt1dty X / 2 2dt1dt2> ,
T/2

T/2

where in the last step we used Holder’s inequality. By the aid of the mean value theorem of ((s)
[28, Theorem 7.3] we deduce that

I <« ywlﬂ/z’g log® T

Finally, by applying the residue theorem on the second integral in the right-hand side of ([7.3|) we
conclude that

1 =
(1+p5)¢(1+5
Next we compute the integral Is. Let

L[ e = )y
27 Joy—ir (14 B — Bs1)C(2 — Bs1 + Bs2)C(Bs1)  s1

1+1/28
] +0 (ya:lﬂ/w log® T + loga: + yOCTT log x)

JQ(SQ) = d81
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Shift the line of integration in the si-plane from ¢ = a3 to 0 = a3 = 1 + % — loig’y' Note that
$1 = So is a simple pole of the integrand and the residue is
o 0=+ 1B = Bsi+5s2) yat ((-s+1/B)  (wfy)?
si=sz (14 B — B51)((2 — Bs1 + Bs2)((Bs1)  s1 BC(2)(A+ B — Bs2)C(Bs2) 52
The contribution from the horizontal lines is
p1+1/8
< /AT logT.

provided z < y < 2812 logg(ﬁ +1) y. The contribution from the vertical line ¢ = a3 is
21+1/8

Therefore

I2 = d82

1 UG ) ()
BC(2) 270 Joy—2ir (1+ 8 — Bs2)¢?(Bs2) 55

£2+1/8
+ O( T log? T + 2%/ log? T).

Next we shift the line of integration in the ss-plane form 0 = as to o = a4 = 1+ as + % Note

that s =1+ % is a simple pole and the residue is
oy VTP — 5 +1/B)C(1 — B+ Bsy) (22 /y)*2 _ 2+2/6
s=1+1/8  BC2)(1+ B — Bs2)¢*(Bs2) 55 201+ p)2¢(1+ )

If we split the interval (a2, 1+a2+1/3) into two subintervals (a2, 1+1/b) and (1+1/b,1+a2+1/5),
then the horizontal line integration is

< <y—1x2)1+1/,3T—5/2 X (y_1x2)2+1/’8T_2.

The vertical line integration is
<y tattB,

To bound the integral I3 we move the line of integration in so plane from 0 = a9 to 0 = ag + %

The contribution from the horizontal line is

$y1+1//3
T2

£2+1/8
<

ax+1/8
long/ T2B0+0=1/8) (1 /47 do <

2

log? T,

provided that z < y < /2 logg(ﬁ“) y. If a5 = ag + 1/, then the contribution from the left
vertical line is

T T
Vialty —t
< x2+1/ﬁ/ / 2S;tl)altgdtl < ¥t/ log2 T.
2 J2 5l

Similarly if one moves the line of integration in ss-plane from ¢ = as to o =1 + % — loféx, then it
can be shown that

I, < x*t1/8 log? T.

Now we complete the proof of the theorem by replacing z by .
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APPENDIX

It is worth remarking (see [3]) that the introduction of van der Corput’s method of exponential
sums leads to the following result concerning the first moment.

Theorem 7.1. Let € N be fized. Let x be a large real and y > z?. One has

C o R
where )
xys logx + xy ™, if B =1,

Riglz,y) <
15(%Y) B{xlfﬁyﬂxmﬂyl, if B> 1.

We remark that the range of y is different than the one in Theorem and that when g =1,
follows as a special case.
To prove this, we recall the following auxiliary lemma from [I2, Lemma 4.3]. For the definition of
an exponent pair, the reader is referred to [12, pp. 30-31].

Lemma 7.2. Suppose that (k,l) is an exponent pair and I is a subinterval of (N,2N], then
Z by /n) < yF EFD N/ 1) =132
nel
where P(t) =1t — [t] — 3 denotes the saw-tooth function. Here [t] stands for the integral part of t.
By the use of we have

i ST DD WTTOED SP I

n<y q<x n<y ¢<T d|q n<y dk<z
dPln d5|n

where we have made the change k = %. Interchanging the order of summation we obtain

C1p(z,y) Z dP u( )Z 1= Z d° (k) L%B]

dk<x nﬁgy dk<x
dPln
_ 1 8 8 y
=y > ulk) =5 > dPulk) = Y duky ()
dk<z dk<x dk<z

= Crpa(z,y) + Crpa(z,y) + Crpa(@,y),
say, and where we have used the definition of 1 (¢). By using (3.2)) and setting
logz, ifn=1
E(x,n) = ’ ’
(z,n) {1, ifn>1,

we can conclude that
B+l

Cip2(z,y) :—defB = 2<1+B)C(1+6)—i—O(xBE(x,B)).

dk<z

The first sum is independent of § since we see that

Crpa(my) =y Y Y ulk)=

m<z klm

(8)

Thus, it remains to compute C) 3 (x,y) and this will require more effort. We begin by noting that

Cusste)= X Pt () = Zut) 3 o ().
k<z d<z/k

dk<z
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Furthermore, we define the intervals I; := (N;,2N;] where N;j = N = 727 J so that 1 < £27J

implies that j < logx. We may now write

Crasten = S5 X W (1) = a3 Sw (%)

k<z j=1del; k<z j<logx del;

<X ¥ S ()

k<z j<logx 'del;

z
k

The next step is to apply Abel summation to the inner sum to obtain

dEIj deNj
=2°N7 Sy % /2N § :w d6>6t5 Lat

d<2N;
A g
< N; dg;vj¢<d6>’+1<3t£% %w(dg)‘ —1)
<] 3 v ()]
d<2N;

Therefore we are left with

Y

> (1) < 7 sw ’ S (%)

del; del
where the supremum is over all subintervals I = {I;, j =1,---,4o00}. Thus, we have
Cip3(x,y) <<ZZN’BSup ( )'

k<z j=1

where we recall that the sum over j is finite and has O(log :z) terms. Now we use Lemma By
taking k =1 = % and seeing that f(n) = y/n® € F(N, 00, 3+ 1,y,¢) the exponent pair estimate we
need is

> 4 (i) < y3 N = +y N
np
nel
Consequently we have

> 1 16
Crpalz,y) < D3 N3N, ? +y 'NJTP)
k<z j—O
1428

_ZZ y3N 3 +y—1N1+25)

k<z j=0
1 3 1 x1+2ﬁ
< Z <y3 728 Y ivep
3
. 1+2,8) 4oplt28y1

3

This completes the proof.
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