
ON A CLASS OF FUNCTIONS THAT SATISFIES EXPLICIT FORMULAE

INVOLVING THE MÖBIUS FUNCTION

PATRICK KÜHN, NICOLAS ROBLES AND ARINDAM ROY

Abstract. A class of functions that satisfies intriguing explicit formulae of Ramanujan and Titch-
marsh involving the zeros of an L-function in the reduced Selberg class of degree one and its
associated Möbius function is studied. Moreover, a sufficient and necessary condition for the truth
of the Riemann hypothesis due to Riesz is generalized.

1. Introduction and results

1.1. Motivation for studying the Möbius function. The Möbius function µ is defined as

(1.1) µ(n) =


1, if n = 1,

0, if p2|n for some prime p,

(−1)k, if n is a product of k distinct primes.

If x denotes a positive real, then the Mertens function M is defined by

M(x) =
∑
n6x

µ(n).

The interest in studying µ(n) and M(x) comes from their connection to the distribution of the
prime numbers. For instance (see Hardy and Littlewood [18, §1.1]), the prime number theorem is
equivalent to the following statements

M(x) = o(x),
∞∑
n=1

µ(n)

n
= 0.(1.2)

Estimates on Mertens’s function date back to the 1880’s when Mertens [15] falsely conjectured
that M(x) 6

√
x for all sufficiently large x. Later in 1885, Stieltjes [15] claimed a proof of this

conjecture. It was not until 100 years later that te Riele and Odlyzko [38] disproved the Mertens’
conjecture. Specifically they showed the following.

There are explicit constants C1 > 1 and C2 < −1 such that

lim sup
x→∞

M(x)√
x
> C1, lim inf

x→∞

M(x)√
x
6 C2.

This means that each of the inequalities −
√
x ≤M(x) and M(x) ≤

√
x fails for infinitely many x,

or, equivalenly, M(x) = Ω±(
√
x). The proof of te Riele and Odlyzko does not provide a specific

value of x for which M(x) ≥
√
x, but it is known that there is such an x for x < 10156. In [6]

Best and Trudigan give an alternative disproof of Mertens’ conjecture and they show that C1 can
be taken to be 1.6383 and C2 to be −1.6383. The best unconditional estimate on the Mertens’
function is (see Ivic̀ [21, §12])

M(x)� x exp(−c1log
3
2x(log log x)−

1
5 ),
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for c1 > 0; and the bound on the assumption of the Riemann hypothesis is (see Titchmarsh [48,
§14.26])

M(x)� x
1
2 exp

(
c2 log x

log log x

)
,

for c2 > 0. The best unconditional Ω result for the Mertens function is

M(x) = Ω±(x
1
2 ),

and if ζ(s) has a zero of multiplicity m with m > 1 then

M(x) = Ω±(x
1
2 (log x)m−1).

On the other hand, if the Riemann hypothesis is false, then

M(x) = Ω±(xθ−δ),

where θ = supρ,ζ(ρ)=0 Re(ρ) and δ is any positive constant (see Ingham [20]).

1.2. Explicit formulae. An explicit formula is an equation which encapsulates certain arithmeti-
cal information and which involves the non-trivial zeros ρ of an L-function.

1.2.1. Ramanujan explicit formula. In 1918 Hardy and Littlewood (see [18, §2.5] and [48, §9.8])
published an explicit formula suggested to them by Ramanujan. Under the benign assumption that
the non-trivial zeros ρ are all simple, their explicit formula can be stated as follows.

Let a and b be two positive real numbers such that ab = π. Let ϕ and ψ be a pair of
suitable cosine reciprocal functions1. Let Z1(s) and Z2(s) be the Mellin transforms
of ϕ(s) and ψ(s) respectively. Then

√
a

∞∑
n=1

µ(n)

n
ϕ
(a
n

)
−
√
b

∞∑
n=1

µ(n)

n
ψ

(
b

n

)
=

1√
a

∑
ρ

aρ
Z1(1− ρ)

ζ ′(ρ)
= − 1√

b

∑
ρ

bρ
Z2(1− ρ)

ζ ′(ρ)
,(1.3)

provided the series involving ρ are convergent.

If we take ϕ(x) = ψ(x) = exp(−x2), then it is easily seen that these functions are cosine reciprocal
functions and that

Z1(s) = Z2(s) =
1

2
Γ
(s

2

)
.

In this case (1.3) becomes

√
a

∞∑
n=1

µ(n)

n
e−a

2/n2 −
√
b

∞∑
n=1

µ(n)

n
e−b

2/n2
=

1

2
√
a

∑
ρ

aρ
Γ(1−ρ

2 )

ζ ′(ρ)
= − 1

2
√
b

∑
ρ

bρ
Γ(1−ρ

2 )

ζ ′(ρ)
,(1.4)

provided, once again, that the series ∑
ρ

αρ
Γ(1−ρ

2 )

ζ ′(ρ)

is convergent for α > 0. Hardy and Littlewood credit Ramanujan for first providing (1.4) and later
on for suggesting the generalization (1.3). They do not, however, state the conditions that ϕ and ψ
must satisfy for (1.3) to hold. The arithmetical information is contained in the Möbius function on
the left-hand side of (1.3) and (1.4) and the analytic information is encoded in the sums involving
the non-trivial zeros on either of the right-hand sides.

In 2013 Dixit [12] gave a one-variable generalization of (1.4). He showed the following result.

1Two functions f(x) and g(x) are cosine reciprocal if
√
π

2
f(x) =

∞w

0

g(u) cos(2ux)du,

√
π

2
g(x) =

∞w

0

f(u) cos(2ux)du.
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If we let a and b be positive reals such that ab = 1 and z ∈ C, then

√
ae

z2

8

∞∑
n=1

µ(n)

n
e−πa

2/n2
cos

(√
πaz

n

)
−
√
be−

z2

8

∞∑
n=1

µ(n)

n
e−πb

2/n2
cosh

(√
πbz

n

)

= − e
− z

2

8

2
√
πb

∑
ρ

Γ(1−ρ
2 )

ζ ′(ρ)
1F1

(
1− ρ

2
;
1

2
;
z2

4

)
πρ/2bρ(1.5)

provided the series involving ρ are convergent, and where 1F1 denotes the confluent
hypergeometric function.

Clearly, if z = 0 then (1.5) becomes (1.4).
In [11], Dixit obtained a character analogue of (1.4). To state his result we recall the following

notation of the theory of Dirichlet L-functions. Suppose that χ is a character mod q. The indicator
h is defined by

(1.6) h =

{
0 if χ is even,

1 if χ is odd.

The Gauss sum τ(χ) is defined by

τ(χ) =

q∑
m=1

χ(m)e2πim/q.

With this in mind, Dixit’s second result is as follows.

Let a and b be two positive reals such that ab = π and let χ denote a primitve
Dirichlet character mod q such that χ(−1) = (−1)h. If the non-trivial zeros ρ of
L(s, χ) are all simple then one has

ah+1/2
√
τ(χ)

∞∑
n=1

χ(n)µ(n)

n1+h
e−a

2/(qn2) − bh+1/2
√
τ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n1+h
e−b

2/(qn2)

= q

√
τ(χ)

2
√
a

∑
ρ

(
b

q1/2

)ρ Γ(1+h−ρ
2 )

L′(ρ, χ)
= −q

√
τ(χ̄)

2
√
b

∑
ρ

(
b

q1/2

)ρ Γ(1+h−ρ
2 )

L′(ρ, χ̄)
(1.7)

provided the series involving ρ are convergent.

Later in [13] one of the authors, Dixit and Zaharescu found the character analogue of (1.5) and in
[14] a generalization of (1.5) to Hecke forms.

The transformations in (1.3), (1.4), (1.5) and (1.7) exhibit a transformation of the type x→ 1/x,
which is an analogue of the Poisson summation formula. These kinds of transformation formulas
have broad interest in different branches of mathematics. In this article we establish a class of
reciprocal functions, as well as a class of arithmetical functions obtained from a reduced Selberg
class, which satisfies the transformation formula mentioned above. At the end of the introduction
we provide examples where we obtained the above transformations as special cases. Furthermore,
we obtain some new transformations that are not in the literature.

Let us suppose that A1 > 0 and T > 0. We define the bracketing condition B on a sum involving
the zeros ρ = β + iγ and ρ′ = β′ + iγ′ of ζ(s) to be a summation where the terms are bracketed in
such a way that two terms for which

|γ − γ′| < exp(−A1|γ|/ log |γ|) + exp(−A1|γ′|/ log |γ′|)(1.8)

are included in the same bracket. When a sum over ρ satisfies the bracketing condition B we will
write

∑
ρ∈B f(ρ).
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We define the bracketing condition Bχ on a sum involving the zeros ρ = β + iγ and ρ′ = β′+ iγ′

of L(s, χ) to be a summation where the terms are bracketed in such a way that two terms for which

|γ − γ′| < exp(−A1|γ|/ log |γ|+ 3) + exp(−A1|γ′|/ log |γ′|+ 3)(1.9)

are included in the same bracket. Similarly, when a sum over ρ satisfies the bracketing condition
Bχ we will write

∑
ρ∈Bχ f(ρ). If we assume that the zeros of ζ(s) satisfy the bracketing condition

B then one can drop the assumption of convergence of the series in the right hand sides of (1.3),
(1.4) and (1.5). Likewise, if we assume that the zeros of L(s, χ) satisfy the bracketing condition
Bχ, then we can drop the assumption of convergence in the right-hand side of (1.7).

The size and the distribution of such bracketings are unknown but their existence is widely
accepted. In fact, it is expected that the pairs of zeros {ρ, ρ′} that need to be bracketed together
in Ramanujan’s explicit formula will occur rarely. For results on the correlation of zeros of L-
functions, the reader is referred to Montgomery [33], Rudnick and Sarnak [43], Katz and Sarnak
[23], [24], Murty and Perelli [35], and Murty and Zaharescu [36].

1.2.2. Titchmarsh explicit formula. An explicit formula for the Mertens function was first published
in 1951 by Titchmarsh on the assumption of the Riemann hypothesis (see [48, §14.27]), i.e. let
ρ = 1

2 + iγ with γ ∈ R. Specifically,

On RH and the simplicity of the non-trivial zeros, there exists a sequence Tν , ν ≤
Tν ≤ ν + 1, such that

M(x) = −2 + lim
ν→∞

∑
|γ|<Tν

xρ

ρζ ′(ρ)
+

∞∑
n=1

(−1)n−1(2π/x)2n

(2n)!nζ(2n+ 1)
(1.10)

if x is not an integer. If x is an integer, M(x) is to be replaced by

M(x)− 1
2µ(x).

Note that, unlike RH, the assumption that the zeros are all simple is made for convenience. Indeed,
this condition can be relaxed, and zeros with higher multiplicity can be accommodated at the cost
of making the explicit formula much more complicated. Since it is widely believed that all zeros of
the Riemann zeta-function are simple we shall operate under this assumption throughout.
In 1991 Bartz (see [3] and [4]) proved (1.10) unconditionally. A generalization to Cohen-Ramanujan
sums of Bartz’s results is established in [28] by the first two authors.

1.2.3. Weil explicit formula. The von Mangoldt function is defined by

Λ(n) =

{
log p, if n = pm for some m ∈ N and prime p,

0, otheriwse.

In 1952 Weil (see [22, §5.5] and [50]) published an explicit formula for the von Mangoldt function.

Suppose that f is C∞ and compactly supported. Moreover, denote by F its Mellin
transform. Then ∑

ρ

F (ρ) +
∞∑
n=1

F (−2n) = F (1) +
∞∑
n=1

Λ(n)f(n).(1.11)

In order to state the main theorems proved in this note, we first need to introduce some further
concepts.
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1.3. Hankel transformations. Two functions ϕ(x) and ψ(x) are said to be reciprocal under the
Hankel transformation of order ν if

(1.12) ϕ(x) =

∞w

0

(ux)
1
2Jν(ux)ψ(u) du and ψ(x) =

∞w

0

(ux)
1
2Jν(ux)ϕ(u) du,

where Jν(x) is the Bessel function of the first kind of order ν defined by

Jν(x) =
∞∑
n=0

(−1)n(x/2)ν+2n

n!Γ(ν + n+ 1)
.

The existence of such reciprocity was first shown by Titchmarsh, see [46] and [47]. In particular he
showed the following.

If ϕ(s) is integrable in the sense of Lebesgue and ν ≥ −1
2 then

aw

0

(ux)
1
2Jν(ux)ϕ(u) du

converges in mean to a function ψ(x) of integrable square in (0,∞) as a→∞.

Hankel transformations reduce to Fourier’s cosine and sine transforms for ν = −1
2 and ν = 1

2 ,
respectively. The Mellin transforms of ϕ(x) and ψ(x) are defined, as usual, by

(1.13) Z1(s) =

∞w

0

xs−1ϕ(x)dx, Z2(s) =

∞w

0

xs−1ψ(x)dx.

Their inverse Mellin transforms are given by

(1.14) ϕ(x) =
1

2πi

c+i∞w

c−i∞
Z1(s)x−sds, ψ(x) =

1

2πi

c+i∞w

c−i∞
Z2(s)x−sds.

The value of c will depend on the nature of the functions ϕ and ψ.

Definition 1.1. Let 0 < ω ≤ π and α < 1
2 . If f(z) is such that

i) f(z) is analytic of z = reiθ regular in the angle defined by r > 0, |θ| < ω,
ii) f(z) satisfies the bounds

(1.15) f(z) =

{
O(|z|−α−ε) if |z| is small,

O(e−|z|) if |z| is large,

for every positive ε and uniformly in any angle |θ| < ω,

then we say that f belongs to the class K and write f(z) ∈ K(ω, α).

1.4. The Selberg class. In [44], Selberg introduced a general class S of L-functions. Let F be an
L-function in S then the completed L-function is defined by

Λ(s) = Qs
d∏
i=1

Γ(αis+ ri)F (s)(1.16)

where Q > 0, αi > 0, ri ∈ C with Re(ri) ≥ 0. The degree dF and conductor qF are defined by

(1.17) dF = 2
d∑
j=1

αj and qF = (2π)dFQ2
d∏
j=1

α
2αj
j ,
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respectively. It is conjectured that the degree dF and conductor qF are both integers. For a
non-negative integer n, the H-invariants are defined by

HF (n) = 2
d∑
j=1

Bn(rj)

αn−1
j

,

where Bn(x) are the familiar n-th Bernoulli polynomials. The first few Bn(x)’s are given by

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, · · · .

Hence we find that

(1.18) HF (0) = dF , HF (1) = 2
∑

(rj − 1/2), · · · .

1.5. Main results. Equipped with these notions our first result is as follows.

Theorem 1.1. Suppose that F is an element of the Selberg class with dF = 1. Let ν ≥ −1
2 and

HF (1) = −ν − 1
2 . Let π

4 < ω ≤ π, α < 1
2 and ϕ,ψ ∈ K(ω, α) be reciprocal functions under the

Hankel transformation of order ν. Let Z1(s) and Z2(s) defined as above and let x be a positive real.
Then there exists a sequence {Tl} of positive numbers that satisfies the following.

i) If qF = 1 then

∞∑
n=1

µ(n)ϕ
(n
x

)
= lim

l→∞

∑
−Tl<Im(ρ)<Tl

Z1(ρ)

ζ ′(ρ)
xρ +

√
2π

∞∑
k=1

(−1)kZ2(1 + k)

(k!)2ζ(1 + k)

( x
2π

)−k
.(1.19)

ii) If q := qF ≥ 2 then there exists a primitive Dirichlet character χ mod q with χ(−1) = −2ν
such that

∞∑
n=1

µ(n)χ(n)ϕ
(n
x

)
= lim

l→∞

∑
−Tl<Im(ρ)<Tl

Z1(ρ)

L′(ρ, χ)
xρ + i

1
2

+ν

√
2π

τ(χ)

∞∑
k=0

(−1)kZ2(1 + k)

(k!)2L(1 + k, χ̄)

( qx
2π

)−k
+

Z1(s0)

L′(s0, χ)
xs0(1.20)

on the assumption that the Riemann hypothesis for Dirichlet L-functions is true and where s0

denotes a hypothetical Landau-Siegel zero.

Equation (1.19) is reminiscent of the Weil explicit formula except that Λ(n) is replaced by µ(n).
Similar formulae due to Berndt [5] and Ferrar (see [16], [17], and [47, §2.9]) for the divisor function
d(n) exist as well. Extensions of the Weil explicit formula (1.11) to generalized von Mangoldt
functions and other arithmetical functions such as the Liouville λ function can be found in another
article by the last two authors and Marcq [31]. The second result is as follows.

Theorem 1.2. Suppose that F is an element of the Selberg class with dF = 1. Let ν ≥ −1
2 and

HF (1) = ν− 1
2 . Let π

4 < ω ≤ π, α < 1
2 and ϕ,ψ ∈ K(ω, α) be reciprocal functions under the Hankel

transformation of order ν. Let Z1(s) and Z2(s) defined as above. If a and b are two positive reals
such that ab = 2π, then one has the following.

i) If qF = 1 then

√
a

∞∑
n=1

µ(n)

n
ϕ
(a
n

)
−
√
b

∞∑
n=1

µ(n)

n
ψ

(
b

n

)
=

1√
a

∑
ρ∈B

aρ
Z1(1− ρ)

ζ ′(ρ)
= − 1√

b

∑
ρ∈B

bρ
Z2(1− ρ)

ζ ′(ρ)
.(1.21)
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ii) If q := qF ≥ 2 then there exists a primitive Dirichlet character χ mod q with χ(−1) = −2ν
such that

√
a
√
τ(χ)

∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
−
√
b
√
τ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)
(1.22)

=
q1/2

√
τ(χ)

a1/2

∑
ρ∈Bχ

(
a

q1/2

)ρ Z1(1− ρ)

L′(ρ, χ)
= −

q1/2
√
τ(χ̄)

b1/2

∑
ρ∈Bχ

(
b

q1/2

)ρ Z2(1− ρ)

L′(ρ, χ̄)
.

If one changes (1.15) to the following

(1.23) f(z) =

{
O(|z|−α−ε) if |z| is small,

O(|z|−β−ε) if |z| is large,

with α = 0 and β > 1, then Theorem 1.2 would also hold for ϕ and ψ satisfying the above growth
conditions.

One can see the condition HF (1) = ν− 1
2 is necessary. This condition naturally leads us to make

the following conjecture.

Conjecture 1.1. Let F be an element in the Selberg class with dF = 1. Let ν ≥ −1
2 , π

2 < ω ≤ π
and ϕ,ψ ∈ K(ω, α) be reciprocal under Hankel transformation of order ν. Then (1.21) holds only
when ν = −1/2 and (1.22) holds only when ν = ±1/2.

Remark 1.1. The following special cases are to be noted.

(1) Let ϕ(x) = ψ(x) = x(ν+1/2)e−
x2

2 for ν = ±1/2. Clearly ϕ,ψ ∈ K(ω, a) . Also

Z1(s) = Z2(s) =

(
1

2

)( ν
2
− 3

4
)

2
s
2 Γ

(
s+ ν + 1/2

2

)
.

If we substitute the above values of ϕ,ψ, Z1 and Z2 in (1.22) then we obtain (1.7).

(2) Let ϕ(x) = e−x
2−z2/2 cosh(zx) and ψ(x) = e−x

2+z2/2 cos(zx). One can see that ϕ,ψ ∈
K(ω, a) and that they are reciprocal under cosine transformations, i.e. ν = −1/2. Their
Mellin transformations are given by

Z1(s) =
1

2
e−

z2

8 Γ
(s

2

)
1F1

(
s

2
,
1

2
;
z2

4

)
,

Z2(s) =
1

2
e
z2

8 Γ
(s

2

)
1F1

(
s

2
,
1

2
;−z

2

4

)
.

If we substitute the above values of ϕ,ψ, Z1 and Z2 in (1.21) and (1.22) then we obtain
(1.5) and [13, Theorem 1.2, part i)] respectively.

(3) Let ϕ(x) = e−x
2−z2/2 sinh(zx) and ψ(x) = e−x

2+z2/2 sin(zx). One can see that ϕ,ψ ∈
K(ω, a) and that they are reciprocal under sine transformations, i.e. ν = 1/2. Their Mellin
transformations are given by

Φ(s) =
z

2
e−

z2

8 Γ

(
1 + s

2

)
1F1

(
1 + s

2
,
3

2
;
z2

4

)
,

Z2(s) =
z

2
e
z2

8 Γ

(
1 + s

2

)
1F1

(
1 + s

2
,
3

2
;−z

2

4

)
.

If we substitute the above values of ϕ,ψ,Φ and Z2 in (1.22) then we obtain [13, Theorem
1.2, part ii)].
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The following corollaries are new transformations in the literature. It is not difficult to find pairs
of reciprocal functions and obtain new formulae from (1.21). For instance, one could take the pair
of cosine reciprocal functions

ϕ(x) = e−x, ψ(x) =
2√
π

1

1 + x2
,

which are in K, and which have Mellin transforms given by

Z1(s) = Γ(s), Z2(s) =

√
π

2
csc
(πs

2

)
,

valid for Re(s) > 0 and 0 < Re(s) < 2 respectively, and obtain the following.

Corollary 1.2. One has

√
a

∞∑
n=1

µ(n)

n
e−a/n − 2

√
b

π

∞∑
n=1

nµ(n)

n2 + b2

=
1

a1/2

∑
ρ∈B

aρ
Γ(1− ρ)

ζ ′(ρ)
= −1

2

√
π

b

∑
ρ∈B

bρ

ζ ′(ρ)
csc

(
π(1− ρ)

2

)
.

However, the symmetry is more striking on the left hand-side when we take a pair of self-
reciprocal functions. For the coming corollaries a and b will denote two positive real numbers
satisfying ab = 2π and the non-trivial zeros of ζ(s) and L(s, χ) are all assumed to be simple. Here
χ denotes the primitive Dirichlet character mod q.

Corollary 1.3. Let χ be odd. Then we have√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n

(
1

ea
√

2π/qn − 1
− n

a

√
q

2π

)

−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n

(
1

eb
√

2π/qn − 1
− n

b

√
q

2π

)

=

√
qτ(χ)

2πa

∑
ρ∈Bχ

(
(2π)1/2a

q1/2

)ρ
Γ(1− ρ)ζ(1− ρ)

L′(ρ, χ)
.(1.24)

Corollary 1.4. Let χ be even. Then we have the following

√
a

∞∑
n=1

µ(n)

n
sech

(√
π

2

a

n

)
−
√
b

∞∑
n=1

µ(n)

n
sech

(√
π

2

a

n

)

=

√
1

2πa

∑
ρ∈B

(2
3
2π

1
2a)

ρΓ(1− ρ)(ζ(1− ρ, 1
4)− ζ(1− ρ, 3

4))

ζ ′(ρ)
(1.25)

as well as √
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n
sech

(√
π

2q

a

n

)
−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n

(√
π

2q

b

n

)

=

√
qτ(χ)

2πa

∑
ρ∈Bχ

(
2

3
2π

1
2a

q1/2

)ρ
Γ(1− ρ)(ζ(1− ρ, 1

4)− ζ(1− ρ, 3
4))

L′(ρ, χ)
(1.26)

where ζ(s, α) denotes the Hurwitz zeta-function.
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Corollary 1.5. Let Kν(x) be the modified Bessel function of second kind. Let χ(−1) = −2ν. Then
for Re(z) > 0 we have

√
a
∞∑
n=1

µ(n)

n

(
a2

n2
+ z2

)−1
8
K1

4

(
z

√
z2 +

a2

n2

)
−
√
b
∞∑
n=1

µ(n)

n

(
b2

n2
+ z2

)−1
8
K1

4

(
z

√
z2 +

b2

n2

)

=
1√
2a

∑
ρ∈B

( a

21/2

)ρΓ(1−ρ
2 )K

−1
2 (

1
2−ρ)

(z2)

ζ ′(ρ)
,(1.27)

and for ν = ±1/2

a1+ν
√
τ(χ)

q
1
2 (

1
2 +ν)

∞∑
n=1

χ(n)µ(n)

n1+
1
2 +ν

(
z2 +

a2

qn2

)1
4 (−ν−1)

K1
2 (ν+1)

(
z

√
z2 +

a2

qn2

)

−
a1+ν

√
τ(χ̄)

q
1
2 (

1
2 +ν)

∞∑
n=1

χ̄(n)µ(n)

n1+
1
2 +ν

(
z2 +

b2

qn2

)1
4 (−ν−1)

K1
2 (ν+1)

(
z

√
z2 +

b2

qn2

)

= 2
2ν−1

4

√
qτ(χ)

a

∑
ρ∈Bχ

(
a

(2q)1/2

)ρΓ(3
4 + 1

2ν −
1
2ρ)K

−1
2 (

1
2−ρ)

(z2)

L′(ρ, χ)
.(1.28)

Let us recall that the Weber parabolic cylinder functions Dn(x) are defined by (see Mitra [32])

Dn(x) =
Γ(1

2)2
n
2 e−

1
4x

2

Γ(1
2 −

n
2 )

1F1(−n
2 ; 1

2 ; x
2

2 ) +
Γ(−1

2)2
n
2−

1
2 e−

1
4x

2

Γ(−n
2 )

1F1(1
2 −

n
2 ; 3

2 ; x
2

2 )

for all reals n and x.

Corollary 1.6. Let χ(−1) = −2ν. Then for every m = 0, 1, 2, · · · we have

√
a

∞∑
n=1

µ(n)

n
D4m

(
2a

n

)
−
√
b

∞∑
n=1

µ(n)

n
D4m

(
2b

n

)

=
22n−1√π
a1/2

∑
ρ∈B

aρΓ(1− ρ)

Γ(1
2(2− 4n− ρ))ζ ′(ρ)

2F1

( 1−ρ
2 , 2−ρ

2
2−4n−ρ

2

;
1

2

)
,(1.29)

and for χ(−1) = −2ν we have√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n
D

4m+ν+
1
2

(
2a

q1/2n

)
−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
D

4m+ν++
1
2

(
2b

q1/2n

)

= 2
2n− 2

3+2ν

√
πqτ(χ)

a

∑
ρ∈Bχ

(
a

q1/2

)ρ Γ(1− ρ)

Γ(1
2(3

2 − ν − 4n− ρ))L′(ρ, χ)
2F1

( 1−ρ
2 , 2−ρ

2
1
2(3

2 − ν − ρ− 4n)
;
1

2

)
,

(1.30)

where 2F1 is the hypergeometric function.

Corollary 1.7. One has

√
a
∞∑
n=1

µ(n)

n
exp

(
a2

4n2

)
D−2

(a
n

)
−
√
b
∞∑
n=1

µ(n)

n
exp

(
b2

4n2

)
D−2

(
b

n

)

=
1

21/2a1/2

∑
ρ∈B

(21/2a)
ρΓ(1− ρ)Γ(1

2 + 1
2ρ)

ζ ′(ρ)
.
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If ν = ±1
2 then(

a

q1/2

)ν+1/2√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n3/2+ν
exp

(
a2

4qn2

)
D−2ν−3

(
a

q1/2n

)

−
(

b

q1/2

)ν+1/2√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n3/2+ν
exp

(
b2

4qn2

)
D−2ν−3

(
b

q1/2n

)

=
1

Γ(2ν + 3)

√
qτ(χ)

2ν+3/2a

∑
ρ∈Bχ

(
21/2a

q1/2

)ρ
Γ(ν − ρ+ 3

2)Γ(ν + 3
2 + ρ

2)

L′(ρ, χ)
.

We remark that [37, p. 266]

D−1(z) =
√

π
2 e

1
4 z

2

Erfc(2−1/2z)(1.31)

where Erfc is the complementary error function

Erfc(x) = 1− 2π−1/2
xw

0

e−t
2
dt.

Corollary 1.8. For χ(−1) = −1 one has√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n
Erfc

(
a√
2qn

)
−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
Erfc

(
b√
2qn

)

= 2

√
qτ(χ)

a

∑
ρ∈B

(
a√
2q

)ρ Γ(1− ρ
2)

(1− ρ)L′(ρ, χ)

Straightforward computation shows that

(1.32)
cosh

(
x
√

π
2

)
cosh(x

√
2π)

and
1

1 + 2 cosh
(
2x
√

π
3

)
are self-reciprocal Hankel transformations of order ν = −1/2 and

(1.33)
sinh

(
x
√

π
2

)
cosh(x

√
2π)

and
sinh

(
x
√

π
3

)
2 cosh

(
2x
√

π
3

)
− 1

are self-reciprocal Hankel transformations of order ν = 1/2. In a similar fashion to the above
corollaries one can obtain transformation formulas for the functions (1.32) and (1.33). There exist
many self-reciprocal Hankel transformations of order ν = ±1

2 in the literature and a transformation
formula can be obtained each one of them. The functions mentioned in the above Corollaries are
well known in literature and have many applications.

Finally, on inspiration coming from (1.4) Hardy and Littlewood [18] found an equivalent condition
for the validity of the Riemann hypothesis. This kind of result was first published by Riesz in [42].
The analogues of the conditions for the Dirichlet L-functions and Hecke forms were obtained in [13]
and [14] respectively. The motivation for the coming theorem comes from the following heuristics.
Let us suppose that ϕ and ψ meet the conditions of the previous theorems and that dF = qF = 1.
For y > 0, let us define the functions

Pϕ(y) :=

∞∑
n=1

µ(n)

n
ϕ
(y
n

)
, Pψ(y) :=

∞∑
n=1

µ(n)

n
ψ
(y
n

)
.
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Now we perform a Maclaurin expansion of ϕ around y = 0 to obtain

Pϕ(y) =
∞∑
n=1

µ(n)

n

∞∑
k=0

(y
n

)kϕ(k)(0)

k!
=
∞∑
k=0

ϕ(k)(0)

k!
yk
∞∑
n=1

µ(n)

nk+1
=
∞∑
k=0

ϕ(k)(0)

k!

yk

ζ(1 + k)
,

with a similar formula holding for Pψ(y). The interchange is justified by the fact that ϕ is in
K(ω, α) so that ϕ can be written as a convergent Taylor series at 0. The explicit formula (1.21)
can be written as

a
1
2Pϕ(a)− b

1
2Pψ(b) = −

∑
ρ

bρ−
1
2
Z2(1− ρ)

ζ ′(ρ)
.(1.34)

If we assume the Riemann hypothesis, ρ = 1
2 + iγ with γ ∈ R, and the absolute convergence of∑

ρ

biγ
Z2(1− ρ)

ζ ′(ρ)
,(1.35)

then the right-hand side of (1.34) is of the form O(1) when b → ∞. Thus the left hand side of

(1.34) is now −b
1
2Pψ(b)� 1, or, equivalently

∞∑
k=0

ψ(k)(0)

k!

bk

ζ(1 + k)
� b−

1
2 ,(1.36)

as b → ∞. Seeing how the Riemann hypothesis and the convergence of (1.35) implies the bound
(1.36), we will now establish the following theorem which provides an equivalence of the Riemann
hypothesis.

Theorem 1.3. Let us suppose that ϕ is in K(ω, 0) and that it is analytic at 0. Consider the
function

Pϕ(y) :=

∞∑
k=0

ϕ(k)(0)

k!

yk

ζ(1 + k)
.

One has the following:

i. The Riemann hypothesis implies Pϕ(y)� y−
1
2 +δ as y →∞ for all δ > 0.

ii. If Z1(−s) has no zeros in the interval −1
2 < Re(s) ≤ 0, then the estimate Pϕ(y) � y−

1
2 +δ

as y →∞ for all δ > 0 implies the Riemann hypothesis.

Remark 1.2. If Z1(−s) had zeros then all the zeros of ζ(s) would still lie on the critical line except
for the zeros that coincide with the zeros of Z1(−s). In most of the examples that we considered in
the Corollaries we see that Z1(−s) has at most finitely many zeros in the region −1

2 < Re(s) ≤ 0.

2. Preliminary Lemmas

We will use the following lemmas to prove our main theorems.

Lemma 2.1. Let ϕ,ψ ∈ L2(0,∞) be two reciprocal Hankel transforms of order ν. Then

ϕ(x) =
1

2π

∞w

−∞
2
it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Φ

(
1

2
+ it

)
x−

1
2
−it dt,(2.1)

ψ(x) =
1

2π

∞w

−∞
2
it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Ψ

(
1

2
+ it

)
x−

1
2
−it dt,(2.2)
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the integrals are mean square integral, 2
it
2 Γ(ν2 + 1

2 + it
2 )Φ(1

2 + it) and 2
it
2 Γ(ν2 + 1

2 + it
2 )Ψ(1

2 + it)

belong to L2(−∞,∞), and

(2.3) Φ

(
1

2
− it

)
= Ψ

(
1

2
+ it

)
.

Proof. Supoose that ϕ belongs to L2(0,∞). One can see that

∞w

0

ϕ2(x) dx =

∞w

−∞
ϕ2(ex)ex dx.

Hence F (x) := ϕ(ex)ex/2 ∈ L2(−∞,∞). Then from the theory of Fourier transforms, see [47], it
follows that

(2.4) Z1

(
1

2
+ it

)
=

∞w

−∞
F (x)eitx dx =

∞w

0

ϕ(x)x−
1
2

+it dx

exists as a mean square integral for almost all t. Also Z1(1
2 + it) ∈ L2(−∞,∞) and

(2.5) F (x) =
1

2π

∞w

−∞
Z1

(
1

2
+ it

)
e−ixt dt.

The above integral is also a mean square integral. In other words, (2.5) can be written as

(2.6) ϕ(x) =
1

2π

∞w

−∞
Z1

(
1

2
+ it

)
x−

1
2

+it dt.

Similarly we obtain

(2.7) ψ(x) =
1

2π

∞w

−∞
Z2

(
1

2
+ it

)
x−

1
2

+it dt.

Let us consider two functions Φ and Ψ such that

(2.8) Z1

(
1

2
+ it

)
= 2

it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Φ

(
1

2
+ it

)
and

(2.9) Z2

(
1

2
+ it

)
= 2

it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Ψ

(
1

2
+ it

)
.

Replacing the above equalities in (2.6) and (2.7) we obtain (2.1) and (2.2). Now we complete the
proof by proving (2.3). For all n ≥ −1/2, y > 0 and x > 0 we have

(2.10)

yw

0

√
uxJν(ux) du =

y(xy)ν+ 1
2 1F2

(
ν
2

+ 3
4

ν
2

+ 7
4
,ν+1

;−x2y2

4

)
2ν(ν + 3/2)Γ(ν + 1)

.

The right hand side of (2.10) belongs to L2(0,∞) and the Mellin transform is given by

(2.11)

∞w

0

y(xy)ν+ 1
2 1F2

(
ν
2

+ 3
4

ν
2

+ 7
4
,ν+1

;−x2y2

4

)
2ν(ν + 3/2)Γ(ν + 1)

x−
1
2

+it dt =
2ity

1
2
−itΓ(ν2 + 1

2 + it
2 )

(1
2 − it)Γ(ν2 + 1

2 −
it
2 )
.
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We also have that ϕ ∈ L2(0,∞) and its Mellin transform is given by (2.4). Hence by an analogue
of Plancherel’s theorem for Mellin transform (see [47, Theorem 72]) we have

∞w

0

ϕ(x)

y(xy)ν+ 1
2 1F2

(
ν
2

+ 3
4

ν
2

+ 7
4
,ν+1

;−x2y2

4

)
2ν(ν + 3/2)Γ(ν + 1)

dx =
1

2π

∞w

−∞

2ity
1
2
−itΓ(ν2 + 1

2 + it
2 )

(1
2 − it)Γ(ν2 + 1

2 −
it
2 )
Z1

(
1

2
− it

)
dt

(2.12)

=
1

2π

∞w

−∞
2
it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Φ

(
1

2
− it

)
y

1
2
−it

1
2 − it

dt,

in the ultimate step we have used (2.8). Now from (1.12) we have

ψ(u) = lim
a→∞

aw

0

√
uxJν(ux)ϕ(x) dx,

where the limit converges in the sense of mean-square. Therefore for all x > 0, y > 0 and ν ≥ −1/2
we find that

yw

0

ψ(u) du = lim
a→∞

yw

0

aw

0

√
uxJν(ux)ϕ(x) dx du(2.13)

= lim
a→∞

aw

0

ϕ(x)

y(xy)ν+ 1
2 1F2

(
ν
2

+ 3
4

ν
2

+ 7
4
,ν+1

;−x2y2

4

)
2ν(ν + 3/2)Γ(ν + 1)

dx

=

∞w

0

ϕ(x)

y(xy)ν+ 1
2 1F2

(
ν
2

+ 3
4

ν
2

+ 7
4
,ν+1

;−x2y2

4

)
2ν(ν + 3/2)Γ(ν + 1)

dx.

The left hand side of (2.13) is

yw

0

ψ(u) du =
1

2π

yw

0

∞w

−∞
2
it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Ψ

(
1

2
+ it

)
u−

1
2
−it dt du(2.14)

=
1

2π

(
lim
X→∞

yw

0

Xw

0

+ lim
Y→∞

yw

0

0w

−Y

)
2
it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Ψ

(
1

2
+ it

)
u−

1
2
−it dt du

=
1

2π

∞w

−∞
2
it
2 Γ

(
ν

2
+

1

2
+
it

2

)
Ψ

(
1

2
+ it

)
y

1
2
−it

1
2 − it

dt.

By (2.13) we see the right hand sides of (2.12) and (2.14) are equal. Hence from [47, Theorem 32]
we conclude that

Φ

(
1

2
− it

)
= Ψ

(
1

2
+ it

)
,

and this ends the proof. �

Lemma 2.2. Let ϕ and ψ be reciprocal functions under Hankel transformation of order ν defined
in (1.12). Let ϕ,ψ ∈ K(ω, α). Then there exist two regular functions Φ and Ψ such that

ϕ(x) =
1

2πi

c+i∞w

c−i∞
2
s
2
− 1

4 Γ

(
s

2
+
ν

2
+

1

4

)
Φ(s)x−s ds,(2.15)
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ψ(x) =
1

2πi

c+i∞w

c−i∞
2
s
2
− 1

4 Γ

(
s

2
+
ν

2
+

1

4

)
Ψ(s)x−s ds(2.16)

for c > 0. Moreover Φ and Ψ satisfy the following:

(1) Φ(s) = Ψ(1− s) for all s ∈ C,

(2) Ψ(s) = O(e(π
4
−ω+ε)|t|) for every positive ε and uniformly for σ ∈ R.

Remark 2.1. If ϕ and ψ satisfy (1.23), then conditions (1) and (2) in Lemma 2.2 hold uniformly
for α < σ < β.

Proof. Since ϕ,ψ ∈ K(ω, α), the right hand sides of (1.13) are absolutely convergent. Then it
follows that Z1(s) and Z2(s) are regular in α < σ. Let

(2.17) Z1(s) = 2
s
2
− 1

4 Γ

(
s

2
+
ν

2
+

1

4

)
Φ(s),

and

(2.18) Z2(s) = 2
s
2
− 1

4 Γ

(
s

2
+
ν

2
+

1

4

)
Ψ(s).

Hence by (2.8) and (2.9) of Lemma (2.1), we deduce that Φ(s) and Ψ(s) also regular in this region.
One can see ϕ,ψ ∈ L2. Therefore from (2.3) of Lemma (2.1), Ψ(s) = Φ(1− s) for σ = 1/2. Thus,
by analytic continuation Ψ(s) = Φ(1− s) for α < σ and hence for all s ∈ C. Also (2.15) and (2.16)
hold for α < c = σ. Let us consider the line along any radius vector r and angle θ, where |θ| < ω.
Then by Cauchy’s theorem we can deform the integral (1.13) to

Z1(σ + it) =

∞w

0

rσ+it−1eiθ(σ+it)ϕ(reiθ) dr,

where θ, t > 0. Therefore

(2.19) |Z1(σ + it)| = e−θt
∣∣∣∣ ∞w

0

rσ+it−1eiθ(σ+it−1)ϕ(reθ) dr

∣∣∣∣ ≤ e−θt ∞w
0

rσ−1|ϕ(reθ)|dr � e−|θ||t|,

since ϕ ∈ K(ω, α). By Stirling’s formula for Γ(σ + it) in the vertical strip p ≤ σ ≤ q we have

(2.20) |Γ(s)| =
√

2π|t|σ−
1
2 e−

π|t|
2

(
1 +O

(
1

|t|

))
,

as |t| → ∞. Now combining (2.17), (2.19) and (2.20) we get

(2.21) Ψ(1− s) = Φ(s)� e(π
4
−|θ|)|t| � e(π

4
−ω+η)|t|,

for every positive η. This proves the Lemma. �

Remark 2.2. For self-reciprocal Hankel transformation functions, similar results of Lemma 2.1
and 2.2 was obtained in [19] for a vertical strip.

The following result is Theorem 3 from Kaczorowski and Perelli [25].

Lemma 2.3. Let F ∈ S. Suppose that dF = 1 and Re(HF (1)) is either 0 or 1. If qF = 1
then F (s) = ζ(s). If qF ≥ 2 then there exists a primitive Dirichlet character χ mod qF with
χ(−1) = −(2 Re(HF (1)) + 1) such that F (s) = L(s+ i Im(HF (1)), χ).

Remark 2.3. It is worthwhile to mention pertinent observations which motivated the authors to
study the case dF = 1. The following results are due to Conrey and Ghosh [9] and Kaczorowski
and Perelli [25, 26, 27].

(1) One has dF = 0 precisely when F = 1.
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(2) There is no function F ∈ S with 0 < dF < 1.
(3) There is no function F ∈ S with 1 < dF < 2.

The following results due to Montgomery, [34]; Ramachandra and Balasubramanian, [40], [41]
and [2] will enable us to prove Theorem 1.1 with dF = qF = 1 without the assumption of the
Riemann hypothesis.

Lemma 2.4. For any given ε > 0 there exists a T0 = T0(ε) such that T ≥ T0 the following holds:
between T and 2T there exists a t for which

|ζ(σ ± it)|−1 < c1t
ε

for −1 ≤ σ ≤ 2 with an absolute constant c1 > 0.

For the case where qF > 1, the analogues results are due to Soundararajan, [45]; Lamzouri, [29].
However, this latter depends on the truth of the Riemann hypothesis for Dirichlet L-functions.

Lemma 2.5. Assume the Riemann hypothesis for Dirichlet L-functions. For any given ε > 0 and
primitive Dirichlet character χ mod q there exists a T0 = T0(ε, q) such that if T ≥ T0 then the
following holds: between T and 2T there exists a real number t for which

|L(σ ± it, χ)|−1 < c(q)tε

for −1 ≤ σ ≤ 2 with an absolute constant c(q) > 0.

An intermediate result we will be using is due to Ahlgren, Berndt, Yee and Zaharescu [1].

Lemma 2.6. If χ is a primitive character of conductor N and k an integer ≥ 2 such that χ(−1) =
(−1)k then one has

(k − 2)!Nk−2τ(χ)

2k−1πk−2ik−2
L(k − 1, χ̄) = L′(2− k, χ).(2.22)

3. Proof of Theorem (1.1)

i) Let F be a Selberg L-function of degree dF = 1 and conductor qF = 1. Then by Lemma
(2.3) we see that F (s) = ζ(s), where ζ(s) is the Riemann zeta-function. Therefore there is only
one gamma factor in the completed Selberg L-function of F for which rj = 0 and λj = 1/2. From
(1.18) we see that HF (1) = −1 when rj = 0 and hence ν = 1/2. Therefore ϕ,ψ ∈ K(ω, α) is a pair
of reciprocal sine transformations. Now

(3.1)
∞∑
n=1

µ(n)ϕ
(n
x

)
=

1

2πi

∞∑
n=1

µ(n)

λ+i∞w

λ−i∞

Z1(s)
(x
n

)s
ds =

1

2πi

λ+i∞w

λ−i∞

Z1(s)xs
( ∞∑
n=1

µ(n)

ns

)
ds.

By Lemma (2.2) Z1(s) � e(−ω+η)|t| for every positive η. For 1 < λ < 2 the sum inside the above
integral is absolutely convergent. Therefore, the far right-hand side of above equalities is absolutely
convergent, which justifies the interchange of the summation and integration. Recall the Dirichlet
series valid for Re(s) > 1 of the Möbius function

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
.

From (2.8) we find that the simple poles of Z1(s) are at s = −2k+1 for k = 0, 1, 2, · · · . For 1 < λ < 2
and −1 < c < 0 we consider the positively oriented closed contour Ω = [c− iT, c+ iT, λ+ iT, λ− iT ]
where T > 0. Therefore by residue theorem

(3.2)
1

2πi

w

Ω

Z1(s)

ζ(s)
xs ds =

∑
−T<Im(ρ)<T

lim
s→ρ

(s− ρ)
Z1(s)

ζ(s)
xs =

∑
−T<Im(ρ)<T

Z1(ρ)

ζ ′(ρ)
xρ.
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The functional equation of ζ(s) is given by

(3.3) ζ(s) = πs−
1
2

Γ
(

1−s
2

)
Γ
(
s
2

) ζ(1− s).

From Lemma (2.2) we have

(3.4) Z1(s) = 2s−
1
2

Γ
(

1+s
2

)
Γ(1− s

2)
Z2(1− s).

Hence by using (3.3), (3.4) and the duplication of the gamma function we find

(3.5)

c+iTw

c−iT

Z1(s)

ζ(s)
xs ds =

√
2π

c+iTw

c−iT

( x
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
ζ(1− s)

ds.

Now we consider the positive oriented contour Ω′ with sides [−N − 1
2 − iT, c− iT ], [c− iT, c+ iT ],

[c + iT,−N − 1
2 + iT ] and [−N − 1

2 + iT,−N − 1
2 − iT ]. The poles of the integrand of the right

hand side integral of (3.5) are at k = −1,−2,−3, . . . . By the residue theorem we have

(3.6)

√
2π

2πi

w

Ω′

( x
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
ζ(1− s)

ds =
√

2π
N∑
k=1

(−1)kZ2(1 + k)

(k!)2ζ(1 + k)

( x
2π

)−k
.

Stirling’s formmula in exact form reads (see [7, p. 47])

(3.7) Γ(s) =
√

2πe−sss−
1
2 exp(O(|s|−1)).

Therefore by Lemma (2.2) and equation (3.7) we have

(3.8)

−N− 1
2

+iTw

−N− 1
2
−iT

( x
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
ζ(1− s)

ds�
Tw

−T

( x
2π

)−N− 1
2 e2(N+1)−2(N+1) log(

√
t2+(N+1/2)2)

e(π+ω+η)|t| dt,

which tends to zero as N →∞ for any fixed T . Combining (3.6) and (3.8) we find

√
2π

c+iTw

c−iT

( x
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
ζ(1− s)

ds =
√

2π
∞∑
k=1

(−1)kZ2(1 + k)

(k!)2ζ(1 + k)

( x
2π

)−k(3.9)

+
√

2π

( c−iTw

−∞−iT

+

c+iTw

−∞+iT

)( x
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
ζ(1− s)

ds.

Similarly as with (3.8) we have

c±iTw

−∞±iT

( x
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
ζ(1− s)

ds�
cw

−∞

( x
2π

)σ e1−2σ+(2σ−1) log(
√
T 2+σ2)

e(π+ω+η)T
dσ

� 1

e(π+ω+η)T
.(3.10)

Now by Lemmas (2.2) and (2.4) we have

(3.11)

λ±iTw

c±iT

Z1(s)

ζ(s)
xs ds� T εe(−ω+η)T ,
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where T runs through a sequence {Tl} with Tl > T0(ε). Here ε and η are any positive numbers.
Now combine (3.1), (3.2), (3.5), (3.6), (3.8) and (3.11) to conclude

∞∑
n=1

µ(n)ϕ
(n
x

)
= lim

l→∞

∑
−Tl<=ρ<Tl

Z1(ρ)

ζ ′(ρ)
xρ +

√
2π

∞∑
k=1

(−1)kZ2(1 + k)

(k!)2ζ(1 + k)

( x
2π

)−k
.

This proves part i) of Theorem 1.1.
ii) In this case we consider that F is an L-function of degree dF = 1 and conductor qF ≥ 2. Using

Lemma (2.3) we find F (s) = L(s, χ) for some Dirichlet primitive character mod qF . Therefore the
completed L-function of F contains only one gamma factor and hence rj = 0 or rj = 1/2. Since
ν is real then Im(HF (1)) = 0 and hence HF (1) = −1 or HF (1) = 0. By Lemma (2.2) we know
that Φ(s) is analytic on the whole complex plane. Therefore the poles of Z1(s) are at the poles of
Γ
(
s
2 + ν

2 + 1
4

)
. If ν = −1/2 then s = 0 is a pole Z1(s). For the sake of brevity we will prove the

case where χ is a even character mod qF ; that is, when ν = 1/2. The other case is handled in a
similar fashion. In this case Z1(s) is analytic for Re(s) > −1. Arguing as in part i) we have

(3.12)
∞∑
n=1

µ(n)χ(n)ϕ
(n
x

)
=

1

2πi

λ+i∞w

λ−i∞

Z1(s)

L(s, χ)
xs ds.

Consider the positively oriented contour Ω mentioned in part i). By the residue theorem one can
find

(3.13)
1

2πi

z

Ω

Z1(s)

L(s, χ)
xs ds =

Z1(0)

L′(0, χ)
+

∑
−T<Im(ρ)<T

Z1(ρ)

L′(ρ, χ)
xρ,

where the ρ’s denote the non-trivial zeros L(s, χ), assumed to be simple for notational convenience.
If there is a Landau-Siegel zero (see §14 of [10]) at s = s0 then we would have to add the extra
term

res
s=0

Z1(s)

L(s, χ)
xs =

Z1(s0)

L′(s0, χ)
xs0 .

We note that this hypothetical zero is real and simple. Moreover, in [8] it was proved that for a
condutor q up to 200000 there are no Landau-Siegel zeros. Using the functional equation of Lemma
(2.2) and the relation in Lemma (2.6) we find that

(3.14)
Z1(0)

L′(0, χ)
=

√
2π

τ(χ)

Z2(1)

L(1, χ̄)
.

Proceeding as in the proof of part i) we have

c+iTw

c−iT

Z1(s)

L(s, χ)
xs ds =

√
2π

τ(χ)

c+iTw

c−iT

( qx
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
L(1− s, χ̄)

ds(3.15)

=

√
2π

τ(χ)

∞∑
k=1

(−1)kZ2(1 + k)

(k!)2L(1 + k, χ̄)

( qx
2π

)−k
+

√
2π

τ(χ)

( c−iTw

−∞−iT

+

c+iTw

−∞+iT

)( qx
2π

)s Γ(s)

Γ(1− s)
Z2(1− s)
L(1− s, χ̄)

ds.

Using Lemma (2.2) and equation (3.7) we obtain the bounds for
r c−iT
−∞−iT and

r c+iT
−∞+iT of the form

(3.10). Using Lemmas (2.2) and (2.5) we obtain the bound for the horizontal integral of (3.13)
which is of the form (3.11). Combining (3.12), (3.13), (3.14) and (3.15) we conclude the proof.
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4. Proof of Theorem (1.2) and Corollaries

i) By repeating a similar argument as in the previous proof we deduce that if dF = qF = 1
then F (s) = ζ(s). This case is already sketched in [18] and the missing ingredient comes from the
definition of the K class which allows us to get rid of the far left and horizontal integrals in the
path of integration.

ii) In this case we consider F to be a Selberg L-function of degree dF = 1 and conductor qF ≥ 2.
Using Lemma (2.3) we find F (s) = L(s, χ) for some Dirichlet primitive character mod qF . There-
fore the completed L-function of F contains only one gamma factor and hence rj = 0 or 1/2. Since
ν is real we have Im(HF (1)) = 0 and hence HF (1) = −1 or HF (1) = 0.
Suppose HF = −1, then ν = −1/2 and χ is an even primitive Dirichlet character mod qF . There-
fore ϕ,ψ ∈ K(ω, α) is a pair of cosine reciprocal functions. For 1 < λ < 1 + δ and −1 < c < 0
we consider the positively oriented closed contour Ω = [λ− iT, λ+ iT, c+ iT, c− iT ] where T > 0.
Recall that the functions Z1 and Z2 both have simple pole at s = 0. Hence from (2.17) and (2.18)
we find that Φ and Ψ are analytic at s = 0. Furthermore, by the residue theorem

1

2πi

z

Ω

x−sZ1(s)ds = res
s=0

x−sZk(s) = 23/4Φ(0),

and
1

2πi

z

Ω

x−sZ2(s)ds = res
s=0

x−sZk(s) = 23/4Ψ(0).

By the use of the bound in Lemma (2.2) and Stirling’s formula for Γ(s) the integrals along the
horizontal lines of the contour Ω tend to zero as T →∞. Since (2.15) and (2.16) hold for λ > 1 we
have the following cases

(4.1)
1

2πi

c+i∞w

c−i∞
x−sZk(s)ds =

{
ϕ(x)− 23/4Φ(0) if k = 1,

ψ(x)− 23/4Ψ(0) if k = 2.

Let qF := q. If χ is an even primitive character of modulus q then L(s, χ) satisfies the functional
equation

1

L(1− s, χ)
=
τ(χ̄)

q1/2

( q
π

)1/2−s Γ(1−s
2 )

Γ( s2)

1

L(s, χ̄)

for all complex values s. If we use the fact that ab = 2π and couple this equation with (2.17),
(2.18) and the functional equation of Φ and Ψ in Lemma (2.2), then we obtain

1

2πi

z

Ω

(
a

q1/2

)−s Z1(s)

L(1− s, χ)
ds =

1

2πi

z

Ω

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1− s)
L(s, χ̄)

ds.(4.2)

By absolute convergence, with c = Re(s) < 0, we may write

1

2πi

c+i∞w

c−i∞

(
a

q1/2

)−s Z1(s)

L(1− s, χ)
ds =

1

2πi

c+i∞w

c−i∞

(
a

q1/2

)−s ∞∑
n=1

χ(n)µ(n)

n1−s Z1(s)ds

=

∞∑
n=1

χ(n)µ(n)

n

1

2πi

c+i∞w

c−i∞

(
a

q1/2n

)−s
Z1(s)ds

=

∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
− 23/4Φ(0)

L(1, χ)
,
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where we have used the case k = 1 of (4.1). Similarly, with λ = Re(s) > 1, we have

1

2πi

λ+i∞w

λ−i∞

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1− s)
L(s, χ̄)

ds

=
1

2πi

λ+i∞w

λ−i∞

τ(χ̄)bs

(2π)1/2qs/2

∞∑
n=1

χ̄(n)µ(n)

ns
Z2(1− s)ds

=
τ(χ̄)b

(2π)1/2q1/2

∞∑
n=1

χ̄(n)µ(n)

n

1

2πi

1−λ+i∞w

1−λ−i∞

(
b

q1/2n

)−w
Z2(w)dw

=
τ(χ̄)b

(2π)1/2q1/2

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)
− τ(χ̄)b

(2π)1/2q1/2

23/4Ψ(0)

L(1, χ̄)
,

by making the change w = 1− s and using the case k = 2 of (4.1). Now, we may use either side of
(4.2) to evaluate the residues:

• for the non-trivial zeros ρ of L(s, χ), which we assume are all simple, we have∑
ρ

res
s=ρ

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1− s)
L(s, χ̄)

=
τ(χ̄)

(2π)1/2

∑
ρ

(
b

q1/2

)ρ Z2(1− ρ)

L′(ρ, χ̄)
;

• at s = 1 we have a simple pole coming from the Z2(1− s) function

res
s=1

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1− s)
L(s, χ̄)

= − τ(χ̄)

(2π)1/2

b

q1/2

23/4Ψ(0)

L(1, χ̄)
;

• at s = 0 we have a trivial and simple zero of L(s, χ̄) and we know that Z2(1− s) is analytic
and non zero, so

res
s=0

τ(χ̄)

(2π)1/2

(
b

q1/2

)s Z2(1− s)
L(s, χ̄)

=
τ(χ̄)

(2π)1/2

Z2(1)

L′(0, χ̄)
=

23/4Φ(0)

L(1, χ)
,

where we have used Lemma (2.6) with N = q and k = 2 in the last equality. Consequently, by the
residue theorem we have

τ(χ̄)b

(2π)1/2q1/2

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)
−
∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
=

τ(χ̄)

(2π)1/2

∑
ρ

(
b

q1/2

)ρ Z2(1− ρ)

L′(ρ, χ̄)
.

Multiplying both sides by −
√
a
√
τ(χ) and using the fact that q1/2 =

√
τ(χ)τ(χ̄) we have the

desired result for even characters

√
a
√
τ(χ)

∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
−
√
b
√
τ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)

= −q1/2

√
τ(χ̄)

b1/2

∑
ρ

(
b

q1/2

)ρ Z2(1− ρ)

L′(ρ, χ̄)
.(4.3)

We note that if we had used the other side of (4.2) instead, then the result would have been

√
a
√
τ(χ)

∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
−
√
b
√
τ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)
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= q1/2

√
τ(χ)

a1/2

∑
ρ

(
a

q1/2

)ρ Z1(1− ρ)

L′(ρ, χ)
.(4.4)

We denote by ρ = β + iγ a non-trivial zero of L(s, χ̄) and we choose T > 0 to tend to infinity
through values such that |T − γ| > exp(−A1|γ|/ log |γ|+3) for every ordinate γ of a zero of L(s, χ).
Using

log |L(s, χ)| >
∑
|t−γ|61

log |t− γ|+O(log(qt))

yields

log |L(σ + iT, χ)| > −
∑
|T−γ|61

A1γ/ log γ +O(log qT ) > −AχT,(4.5)

where Aχ < ω if A1 is small enough, and T > T0. Since the main technique behind the proofs of
explicit formulae is contour integration, this will enable us to make unwanted horizontal integrals
tend to zero as T → ∞ through the above values. To prove that indeed these horizontal integrals
tend to zero as T →∞ for the chosen values we note that from (4.5) we obtain

1

|L(1− s, χ)|
� exp(AχT )

where Aχ < ω. Then by Lemma (2.2) and Stirling’s formula for Γ(s) one gets

1

2πi

c−iTw

λ−iT

(
a

q1/2

)−s Z1(s)

L(1− s, χ)
ds� exp ((Aχ − ω + ε)|t|)→ 0

for each ε > 0. This could alternatively be proved by using Remark 2.1. The other horizontal
integral is dealt with similarly.
Let us now consider HF = 0, then ν = 1/2 and χ is an odd primitive Dirichlet character mod qF .
Therefore ϕ,ψ ∈ K(ω, 0,−δ) is a pair of sine reciprocal functions. Note Z1 and Z2 are both analytic
at s = 1 hence Φ and Ψ both analytic at s = 1. Then by the functional equation in (2.2) we see
Φ and Ψ are both analytic at s = 0. Therefore both Z1 and Z2 are analytic at s = 0. Similarly as
(4.1) we find

(4.6)
1

2πi

c+i∞w

c−i∞
x−sZk(s)ds =

{
ϕ(x) if k = 1,

ψ(x) if k = 2.

Let q := qF . If χ is an odd, primitive and non-principal character of mod q then L(s, χ) satisfies
the functional equation

1

L(1− s, χ)
=
τ(χ̄)

iq1/2

( q
π

)1/2−s Γ(1− s
2)

Γ( s+1
2 )

1

L(s, χ̄)
,

for all complex values s. If we use the fact that ab = 2π and couple this equation with (2.8), (2.9)
and the functional equation of Φ and Ψ in Lemma (2.2), then we obtain

1

2πi

z

Ω

(
a

q1/2

)−s Z1(s)

L(1− s, χ)
ds =

1

2πi

z

Ω

τ(χ̄)

i(2π)1/2

(
b

q1/2

)s Z2(1− s)
L(s, χ̄)

ds.

By absolute convergence with Re(s) = c we can change summation and integration to obtain

1

2πi

c+i∞w

c−i∞

(
a

q1/2

)−s Z1(s)

L(1− s, χ)
ds =

1

2πi

c+i∞w

c−i∞

(
a

q1/2

)−s ∞∑
n=1

χ(n)µ(n)

n1−s Z1(s)ds
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=

∞∑
n=1

χ(n)µ(n)

n

1

2πi

c+i∞w

c−i∞

(
a

q1/2n

)−s
Z1(s)ds

=

∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
,(4.7)

where in ultimate step we have used (4.6) with k = 1. Moreover, also by absolute convergence with
Re(s) = λ, we have

1

2πi

λ+i∞w

λ−i∞

τ(χ̄)

i(2π)1/2

(
b

q1/2

)sZ2(1− s)
L(s, χ̄)

ds

=
τ(χ̄)

i(2π)1/2

1

2πi

λ+i∞w

λ−i∞

(
b

q1/2

)s ∞∑
n=1

χ̄(n)µ(n)

ns
Z2(1− s)ds

=
τ(χ̄)

i(2π)1/2

b

q1/2

∞∑
n=1

χ̄(n)µ(n)

n

1

2πi

1−λ+i∞w

1−λ−i∞

(
b

q1/2n

)−w
Z2(w)dw

=
τ(χ̄)

i(2π)1/2

b

q1/2

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)
,

where we have made the change w = 1−s. A similar reasoning as the one we used for even primitive
characters shows that the contribution from the horizontal integrals of this contour will tend to
zero as well. Next, we compute the residues

• for the non-trivial zeros ρ one has∑
ρ

res
s=ρ

τ(χ̄)

i(2π)1/2

(
b

q1/2

)s Z2(1− s)
L(s, χ̄)

=
τ(χ̄)

i(2π)1/2

∑
ρ

(
b

q1/2

)ρ Z2(1− ρ)

L′(ρ, χ̄)
.

By the residue theorem one has

τ(χ̄)

i(2π)1/2

b

q1/2

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)
−
∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
=

τ(χ̄)

i(2π)1/2

∑
ρ

(
b

q1/2

)ρ Z2(1− ρ)

L′(ρ, χ̄)
.

Multiplying by −
√
a
√
τ(χ) and using the fact that

√
τ(χ)τ(χ̄) = iq1/2 one has

√
a
√
τ(χ)

∞∑
n=1

χ(n)µ(n)

n
ϕ

(
a

q1/2n

)
−
√
b
√
τ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
ψ

(
b

q1/2n

)

= −q
1/2

b1/2

√
τ(χ̄)

∑
ρ

(
b

q1/2

)ρ Γ(1− ρ)

L′(ρ, χ̄)
Z2(1− ρ),(4.8)

and this proves the theorem.

Proof of Corollary (1.3). By taking ν = 1
2 so that χ(−1) = −21

2 = −1, and choosing

ϕ(x) =
1

e
√

2πx − 1
− 1√

2πx
,
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we have

ψ(x) =

∞w

0

(ux)
1
2Jν(ux)ϕ(u)du =

√
2

π

∞w

0

sin(ux)ϕ(u)du

= −1

2
− 1√

2πx
+

1

2
coth

(√
π

2
x

)
=

1

e
√

2πx − 1
− 1√

2πx
= ϕ(x).

We note that ϕ,ψ ∈ K. The Mellin transform is given (see §9.12 of [47] and equation (2.7.1) of
[48])

Zi(s) =

∞w

0

xs−1

(
1

e
√

2πx − 1
− 1√

2πx

)
dx = (2π)−

1
2 sΓ(s)ζ(s),

for 0 < Re(s) < 1 and i = 1, 2. We note that

Zi(1− ρ) = (2π)−
1
2 (1−ρ)Γ(1− ρ)ζ(1− ρ).

By plugging these into (1.22) we obtain√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n

(
1

ea
√

2π/qn − 1
− n

a

√
q

2π

)

−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n

(
1

eb
√

2π/qn − 1
− n

b

√
q

2π

)

=

√
qτ(χ)

2πa

∑
ρ∈Bχ

(
(2π)1/2a

q1/2

)ρ
Γ(1− ρ)ζ(1− ρ)

L′(ρ, χ)
,

as it was to be shown. �

Proof of Corollary (1.4). First take χ to be even, i.e. 1 = χ(−1) = −2ν so that ν = −1
2 . Choose

ϕ(x) = sech( 1√
2

√
πx). We verify that this is cosine reciprocal by noting that

ψ(x) =

∞w

0

(ux)
1
2J
−1

2
(ux)ϕ(u)du =

√
2

π

∞w

0

cos(ux)ϕ(u)du

=

√
2

π

∞w

0

cos(ux) sech( 1√
2

√
πu)du = sech( 1√

2

√
πx) = ϕ(x),

and that ϕ,ψ ∈ K. The Mellin transform is given (see entry 6.1 of [37]) by

Zi(s) = 21−3
2 sπ−

s
2 Γ(s)(ζ(s, 1

4)− ζ(s, 3
4))

for Re(s) > 0 and i = 1, 2. Plugging this into (1.22) we obtain√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n
sech

(√
π

2q

a

n

)
−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n

(√
π

2q

b

n

)

=

√
qτ(χ)

2πa

∑
ρ∈Bχ

(
2

3
2π

1
2a

q1/2

)ρ
Γ(1− ρ)(ζ(1− ρ, 1

4)− ζ(1− ρ, 3
4))

L′(ρ, χ)
.

Next, take the same choice of ϕ and plug it into (1.21) so that

√
a

∞∑
n=1

µ(n)

n
sech

(√
π

2

a

n

)
−
√
b

∞∑
n=1

µ(n)

n
sech

(√
π

2

a

n

)
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=

√
1

2πa

∑
ρ∈B

(2
3
2π

1
2a)

ρΓ(1− ρ)(ζ(1− ρ, 1
4)− ζ(1− ρ, 3

4))

ζ ′(ρ)

and this ends the proof. �

Proof of Corollary (1.5). In [39] it is shown that for Re(a) > 0 one has

x
1
2 +µ(x2 + a2)

1
4 (−µ−1)K1

2 (µ+1)
(a
√
x2 + a2)

is Hankel reciprocal with respect to µ and that the Mellin transform is given by

φµ(s) =

∞w

0

xs+µ−
1
2 (x2 + a2)

−1
4 (µ+1)

K1
2 (µ+1)

(a
√
x2 + a2)dx

= 2
1
2 s+

1
2µ−

3
4 Γ(1

2s+ 1
2µ+ 1

4)K
−1

2 (s−1
2 )

(a2).

If we take µ = −1
2 , i.e. if we deal with cosine reciprocity, then

(x2 + a2)−
1
8K1

4
(a
√
a2 + x2)

is cosine reciprocal and ϕ,ψ ∈ K. Thus,

Z1(1− ρ) = φ
−1

2
(1− ρ) = 2

1
2 (1−ρ)−1Γ(1

2(1− ρ))K
−1

2 (
1
2−ρ)

(z2).

Plugging these back into (1.21) gives us

√
a

∞∑
n=1

µ(n)

n

(
a2

n2
+ z2

)−1
8
K1

4

(
z

√
z2 +

a2

n2

)
−
√
b

∞∑
n=1

µ(n)

n

(
b2

n2
+ z2

)−1
8
K1

4

(
z

√
z2 +

b2

n2

)

=
1√
2a

∑
ρ∈B

( a

21/2

)ρΓ(1−ρ
2 )K

−1
2 (

1
2−ρ)

(z2)

ζ ′(ρ)

and (1.22) gives us

√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n

(
a2

qn2
+ z2

)−1
8
K1

4

(
z

√
z2 +

a2

qn2

)

−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n

(
b2

qn2
+ z2

)−1
8
K1

4

(
z

√
z2 +

b2

qn2

)

=

√
qτ(χ)

2a

∑
ρ∈Bχ

(
a

q1/221/2

)ρΓ(1−ρ
2 )K

−1
2 (

1
2−ρ)

(z2)

L′(ρ, χ)
.

If we take µ = 1
2 then the same procedure on φ gives

Z1(1− ρ) = φ1
2
(1− ρ) = 2−

1
2ρΓ(1− 1

2ρ)K
−1

2 (
1
2−ρ)

(z2).

Therefore (1.22) yields

a

q1/2

√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n2

(
a2

qn2
+ z2

)−3
8
K3

4

(
z

√
z2 +

a2

qn2

)
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− b

q1/2

√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n2

(
b2

qn2
+ z2

)−3
8
K3

4

(
z

√
z2 +

b2

qn2

)

=

√
qτ(χ)

a

∑
ρ∈Bχ

(
a

21/2q1/2

)ρΓ(1− 1
2ρ)K

−1
2 (

1
2−ρ)

(z2)

L′(ρ, χ)
.

Combining both cases yields the Corollary. �

Proof of Corollary (1.6). For Re(s) > 0 the Mellin transform of the Weber parabolic cylinder
function is given by entry 13.48 of [37]

∞w

0

xs−1Dn(x)dx = 2
n−2

2
√
π

Γ(s)

Γ(1
2(1− n+ s))

2F1

( s
2 ,

1+s
2

1
2(1− n+ s)

;
1

2

)
,

where 2F1 is the hypergeometric function. For m = 0, 1, 2, · · · it is shown in [49] that D4m(2x) =
ϕ(x) is cosine reciprocal and ϕ,ψ ∈ K. Thus, (1.21) yields

√
a

∞∑
n=1

µ(n)

n
D4m

(
2a

n

)
−
√
b

∞∑
n=1

µ(n)

n
D4m

(
2b

n

)

=
22n−1√π
a1/2

∑
p∈B

aρ

Γ(1
2(2− 4n− ρ))ζ ′(ρ)

2F1

( 1−ρ
2 , 2−ρ

2
1
2(2− 4n− ρ)

;
1

2

)
,

and for even characters (1.22) yields√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n
D4m

(
2a

q1/2n

)
−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
D4m

(
2b

q1/2n

)

= 22n−1

√
πqτ(χ)

a

∑
p∈Bχ

(
a

q1/2

)ρ Γ(1− ρ)

Γ(1
2(2− 4n− ρ))L′(ρ, χ)

2F1

( 1−ρ
2 , 2−ρ

2
1
2(2− 4n− ρ)

;
1

2

)
.

Moreover, it is also shown in [49] that D4m+1(2x) is sine reciprocal for m = 0, 1, 2, · · · . Thus, for
odd characters (1.22) yields√

aτ(χ)
∞∑
n=1

χ(n)µ(n)

n
D4m+1

(
2a

q1/2n

)
−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
D4m+1

(
2b

q1/2n

)

= 2
4n−1

2

√
πqτ(χ)

a

∑
p∈Bχ

(
a

q1/2

)ρ Γ(1− ρ)

Γ(1
2(1− ρ− 4n))L′(ρ, χ)

2F1

( 1−ρ
2 , 2−ρ

2
1
2(1− ρ− 4n)

;
1

2

)
.

Putting these two results together yields the statement of the corollary. �

Proof of Corollary (1.7). In [49] it is shown that

xν+1/2ex
2/4D−2ν−3(x) =

∞w

0

(xy)
1
2Jν(xy)yν+1/2ey

2/4D−2ν−3(y)dy

for Re(ν) > −1, and that

f(s) =

∞w

0

xs−1ex
2/4Dn(x)dx =

Γ(s)Γ(−1
2n−

1
2s)

2n/2+s/2+1Γ(−n)
,
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for 0 < Re(s) < Re(−n). Next, take ν = −1
2 so that we have ϕ(x) = ex

2/4D−2(x) = ψ(x) ∈ K, and

Z1(s) = f−2(s) =
Γ(s)Γ(1− 1

2s)

2s/2Γ(2)
, Z1(1− ρ) =

Γ(1− ρ)Γ(1
2 + 1

2ρ)

21/22−ρ/2Γ(2)
.

Replace it in (1.21) to get

√
a
∞∑
n=1

µ(n)

n
exp

(
a2

4n2

)
D−2

(a
n

)
−
√
b
∞∑
n=1

µ(n)

n
exp

(
b2

4n2

)
D−2

(
b

n

)

=
1

21/2a1/2

∑
ρ∈B

(21/2a)
ρΓ(1− ρ)Γ(1

2 + 1
2ρ)

ζ ′(ρ)
.

Replacing the above in (1.22) gives us√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n
exp

(
a2

4qn2

)
D−2

(
a

q1/2n

)

−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
exp

(
b2

4qn2

)
D−2

(
b

q1/2n

)

=

√
qτ(χ)

2a

∑
ρ∈Bχ

(
21/2a

q1/2

)ρ
Γ(1

2 − ρ)Γ(1
2 + 1

2ρ)

L′(ρ, χ)
.

Finally, taking instead ν = 1
2 so that ϕ(x) = xex

2/4D−4(x) = ψ(x) ∈ K as well as

Z1(s) = f−4(s+ 1) =
Γ(s+ 1)Γ(2− 1

2s−
1
2)

2−1/2+s/2Γ(4)
Z1(1− ρ) =

Γ(2− ρ)Γ(1 + 1
2ρ)

2−ρ/2Γ(4)
.

Replacing this in (1.22) yields

a

q1/2

√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n2
exp

(
a2

4qn2

)
D−4

(
a

q1/2n

)

− b

q1/2

√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n2
exp

(
b2

4qn2

)
D−4

(
b

q1/2n

)

=
1

6

√
qτ(χ)

a

∑
ρ∈Bχ

(
21/2a

q1/2

)ρ
Γ(2− ρ)Γ(1 + 1

2ρ)

L′(ρ, χ)
,

and this ends the proof. �

Proof of Corollary (1.8). From [49] we know that

xν−
1
2 e−

1
4x

2

D−2ν(x) =

∞w

0

(xy)
1
2Jν(xy)yν−

1
2 e−

1
4y

2

D−2ν(y)dy.

Taking ν = 1
2 we see that e−

1
4x

2

D−1(x) is sine reciprocal. So we set ϕ(x) = ψ(x) = e−
1
4x

2

D−1(x) ∈
K. Recalling from (1.31) that

D−1(x) =
√

π
2 e

1
4x

2

Erfc(2−
1
2x)

and using entry 13.5 of [37], which says that
∞w

0

xs−1eb
2x2 Erfc(ax)dx = π−

1
2 s−1a−sΓ

(
1

2
+

1

2
s

)
2F1

( s
2 ,

1+s
2

1 + 1
2s

;
b2

a2

)
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for b < a and Re(s) > 0, we see that the Mellin transform is given by

Z1(s) =

∞w

0

xs−1ϕ(x)dx =

∞w

0

xs−1e−
1
4x

2

D−1(x)dx =
√

π
2

∞w

0

xs−1 Erfc(2−
1
2x)dx

=
√

π
2π
−1

2 s−1(2
1
2 s)Γ

(
1

2
+

1

2
s

)
2F1

( s
2 ,

1+s
2

1 + 1
2s

; 0

)
=

2s/2−1/2Γ(1
2 + s

2)

s
.

Replacing this in (1.22) yields√
aτ(χ)

∞∑
n=1

χ(n)µ(n)

n
exp

(
− a2

4qn2

)
D−1

(
a

q1/2n

)

−
√
bτ(χ̄)

∞∑
n=1

χ̄(n)µ(n)

n
exp

(
− b2

4qn2

)
D−1

(
b

q1/2n

)

= 2
q1/2

√
τ(χ)

a1/2

∑
ρ∈Bχ

(
a

21/2q1/2

)ρΓ(1− ρ
2)

1− ρ
1

L′(ρ, χ)
,

as it was to be shown. �

5. Proof of Theorem (1.3)

A similar argument as in the beginning of the proof of Theorem 1.1 yields F (s) = ζ(s) and
ν = −1/2. Therefore, Z1(s) is meromorphic with simple poles at s = 0,−2,−4, · · · . Thus for
0 < c < 1 we define

W (x) :=
1

2πi

c+i∞w

c−i∞

Z1(−s)
ζ(1 + s)

xsds.

By using the fact that c > 0 we can write

W (x) =
1

2πi

c+i∞w

c−i∞
Z1(−s)

∞∑
n=1

µ(n)

n1+s
xsds =

∞∑
n=1

µ(n)

n

1

2πi

c+i∞w

c−i∞
Z1(−s)

(n
x

)−s
ds.

The change of variable w = −s yields

W (x) =
∞∑
n=1

µ(n)

n

1

2πi

−c+i∞w

−c−i∞
Z1(w)

(x
n

)−w
dw =

∞∑
n=1

µ(n)

n

{
ϕ
(x
n

)
− res
w=0

Z1(w)
(x
n

)−w}

=
∞∑
n=1

µ(n)

n

{
ϕ
(x
n

)
− 23/4Φ(0)

}
=

∞∑
n=1

µ(n)

n
ϕ
(x
n

)
= Pϕ(x),

where in the second line we have used the fact that −1 < −c < 0 and the prime number theorem
on the fourth line. By the theory of Mellin transforms we obtain

Υ(s) :=

∞w

0

Pϕ(x)x−s−1dx =
Z1(−s)
ζ(1 + s)

.(5.1)

Therefore, multiplying both sides by s we have that

sζ(1 + s)Υ(s) = sZ1(−s),(5.2)

for 0 < Re(s) < 1. Now we will study (5.1) for −1
2 < Re(s) ≤ 0. To do this, we split the integral

representation of Υ(s) at x =1 and apply the bound Pϕ(x) � x−
1
2 +δ for any δ > 0 as x → ∞ so
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that

Υ(s) =

1w

0

Pϕ(x)x−s−1dx+

∞w

1

Pϕ(x)x−s−1dx = O(1) +O

( ∞w
1

x−
1
2 +δx−σ−1dx

)
= O(1).

Thus one can now see that the application of the bound Pϕ(x)� x−
1
2 +δ makes the integral analytic

on the interval −1
2 < Re(s) ≤ 0. We reason as follows. Since the simple pole of ζ(1+s) and Z1(−s)

is annihilated by the zero of s at s = 0 we see that the left-hand side of (5.2) is analytic. Since (5.2)
holds for 0 < Re(s) < 1, by the theory of analytic continuation, it also holds on −1

2 < Re(s) ≤ 0.

If Z1(−s) does not have any zeros in the interval −1
2 < Re(s) ≤ 0, then the left-hand side of

(5.2) is non-zero in −1
2 < Re(s) ≤ 0. However, since Υ(s) has been shown to be analytic in this

interval when the bound on Pϕ(x) is applied, this implies that ζ(1 + s) does not have zeros in
−1

2 < Re(s) ≤ 0. This implies the Riemann hypothesis.
If Z1(−s) actually had zeros then all the zeros of the Riemann zeta-function would still lie on the
critical line except for the zeros that coincide with the zeros of Z1(−s).

Let us now prove that the Riemann hypothesis implies the bound Pϕ(y)� y−
1
2 +δ as y →∞ for

all δ > 0. We recall a formulation of the Riemann hypothesis involving Mertens’s function due to
Littlewood [30] which says that

M(x)� x
1
2 +ε.

An application of partial summation allows us to transform this into

M(ν, n) :=
n∑

m=ν

µ(m)

m
�ε ν

−1
2 +ε(5.3)

uniformly in n. Recalling the definition of Pϕ we have

Pϕ(y) =
∞∑
n=1

µ(n)

n
ϕ
(y
n

)
=

(ν−1∑
n=1

+
∞∑
n=ν

)
µ(n)

n
ϕ
(y
n

)
=: Pϕ,1(y) + Pϕ,2(y),

where ν = by1−εc. We handle each sum separately. For the first sum

Pϕ,1(y) =

ν−1∑
n=1

µ(n)

n
ϕ
(y
n

)
�

ν−1∑
n=1

e−y/n

n
,

since ϕ ∈ K(ω, 0) and where we have used the asymptotic of ϕ for large y. Therefore,

Pϕ,1(y)� ye−y.(5.4)

For the second sum, we have

Pϕ,2(y) =

∞∑
n=ν

µ(n)

n
ϕ
(y
n

)
=

∞∑
n=ν

M(ν, n)

{
ϕ
(y
n

)
− ϕ

(
y

n+ 1

)}

=

∞∑
n=ν

M(ν, n)

{
− y

λ2
n

ϕ′
(
y

λn

)}
,

� ν−
1
2 +ε

(β−1∑
n=ν

+

∞∑
n=β

)∣∣∣∣ yλ2
n

ϕ′
(
y

λn

)∣∣∣∣
=: Pϕ,3(y) + Pϕ,4(y)(5.5)
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where in the last line we have used the mean value theorem with a = n < λn(= c) < n+ 1 = b and
where

Pϕ,3(y)� ν−
1
2 +ε

β−1∑
n=ν

∣∣∣∣ yλ2
n

ϕ′
(
y

λn

)∣∣∣∣, Pϕ,4(y)� ν−
1
2 +ε

∞∑
n=β

∣∣∣∣ yλ2
n

ϕ′
(
y

λn

)∣∣∣∣
with β = by1+εc. We start with Pϕ,4(y) first. By the definition of the class K and by Cauchy’s
integral formula we see that

ϕ′
(
y

λn

)
� e−y/λn

for λn ≥ β. Thus

Pϕ,4(y)� ν−
1
2 +ε

∞∑
n=β

∣∣∣∣ yλ2
n

e−y/λn
∣∣∣∣� ν−

1
2 +εe−y/ββ−1+(δ+ε)y

∞∑
n=β

1

λ1+ε
n
� y−

1
2 +ε′ .(5.6)

For the sum Pϕ,3 we reason as follows. First, ϕ is analytic, thus ϕ′ is continuous in a compact
interval containing I(ε, y) = (y−ε, yε) ⊂ [0, y]. Therefore, there exists a point c ∈ I(ε, y) such that

ϕ′(c) = max
[0,y]

ϕ′(x).

The value of c is independent of y. To see this, note that ϕ′(x)� e−x when x→∞. Then we can
find a positive real number C independent of y such that ϕ′(c) > ϕ′(y) for all y > C. Therefore,

Pϕ,3(y)� ν−
1
2 +ε y

ν2
ϕ′(c)

β−1∑
n=ν

1� y−
1
2 +ε′′ .(5.7)

Putting together (5.4), (5.5), (5.6) and (5.7) we see that the Riemann hypothesis implies the bound

Pϕ(y)� y−
1
2 +δ as y →∞ for all δ > 0.
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