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Abstract. A new transformation involving the error function erf(z), the imaginary error
function erfi(z), and an integral analogue of a partial theta function is given along with
its character analogues. Another complementary error function transformation is also ob-
tained which when combined with the first explains a transformation in Ramanujan’s Lost
Notebook termed by Berndt and Xu as the one for an integral analogue of theta function.
These transformations are used to obtain a variety of exact and approximate evaluations
of some non-elementary integrals involving hypergeometric functions. Several asymptotic
expansions, including the one for a non-elementary integral involving a product of the Rie-
mann Ξ-function of two different arguments, are obtained, which generalize known results
due to Berndt and Evans, and Oloa.

1. Introduction

Mordell initiated the study of the integral

∫ ∞
−∞

eax
2+bx

ecx + d
dx, Re(a) < 0, in his two influen-

tial papers [32, 33]. Prior to his work, special cases of this integral had been studied, for
example, by Riemann in his Nachlass [47] to derive the approximate functional equation for
the Riemann zeta function, by Kronecker [26, 27] to derive the reciprocity for Gauss sums,
and by Lerch [29, 30, 31]. Mordell showed that the above integral can be reduced to two
standard forms, namely,

ϕ(z, τ) := τ

∫ ∞
−∞

eπiτx
2−2πzx

e2πx − 1
dx, (1.1)

σ(z, τ) :=

∫ ∞
−∞

eπiτx
2−2πzx

e2πτx − 1
dx,

for Im(τ) > 0, and was the first to study the properties of these integrals with respect to
modular transformations. Bellmann [4, p. 52] coined the terminology ‘Mordell integrals’ for
these types of integrals.

Mordell integrals play a very important role in the groundbreaking Ph.D. thesis of Zwegers
[50] which sheds a clear light on Ramanujan’s mock theta functions. The definition of a
Mordell integral h(z; τ), Im(τ) > 0, employed by Zwegers [50, p. 6], and now standard in the
contemporary literature is,

h(z; τ) :=

∫ ∞
−∞

eπiτx
2−2πzx

coshπx
dx.
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As remarked by Zwegers himself [50, p. 5], h(z; τ) is essentially the function ϕ(z; τ) defined
in (1.1), i.e.,

h(z; τ) = −2i
τ e−(πiτ4 +πiz)ϕ

(
z + τ−1

2 , τ
)
. (1.2)

Kuznetsov [28] has recently used h(z; τ) to simplify Hiary’s algorithm [22] for computing the
truncated theta function

∑n
k=0 exp(2πi(zk+τk2)), which in turn is used to compute ζ

(
1
2 + it

)
to within ±t−λ in Oλ(t

1
3 (ln t)κ) arithmetic operations [21]. We refer the reader to a more

recent article [9] and the references therein for further applications of Mordell integrals.
In [42] and [43], Ramanujan studied the integrals

φω(z) :=

∫ ∞
0

cos(πxz)

cosh(πx)
e−πωx

2
dx,

ψω(z) :=

∫ ∞
0

sin(πxz)

sinh(πx)
e−πωx

2
dx.

Of course, we require Re ω > 0 for the integrals to converge. If we replace ω by −iτ with
Im(τ) > 0 and z by 2iz, then the integral φ is nothing but the Mordell integral. That is,

h(z, τ) = 2φ−iτ (2iz).

Later, Ramanujan briefly worked on these two integrals in a two-page fragment transcribed
by G. N. Watson from Ramanujan’s loose papers and published along with Ramanujan’s Lost
Notebook [46, p. 221-222]. See also [3] for details.

A third integral of this kind studied by Ramanujan on page 198 of the Lost Notebook is

Fω(z) :=

∫ ∞
0

sin(πxz)

tanh (πx)
e−πωx

2
dx.

As before, one needs Re ω > 0 for convergence. One can easily rephrase this integral as

Fω(z) =

∫ ∞
−∞

e−πωx
2

sin(πxz)

e2πx − 1
dx =

∫ ∞
−∞

e−πωx
2+2πx sin(πxz)

e2πx − 1
dx. (1.3)

For Im(τ) > 0, this integral F is connected to the integral ϕ(z, τ) in (1.1) (and hence to the
Mordell integral h(z; τ)) via

F−iτ (2iz) =
1

2iτ
(ϕ(z, τ)− ϕ(−z, τ)) .

Thus Mordell integrals pervade Ramanujan’s papers and his Lost Notebook. In a further
support to this claim, we refer the readers to an interesting paper of Andrews [2].

Berndt and Xu [8] have proved all of the properties of Fω(z) claimed by Ramanujan in
the Lost Notebook. Following Ramanujan, we assume ω > 0. Suppose a certain result holds
for ω > 0, it is clear that by analytic continuation, one may be able to extend it to complex
values of ω in a certain region containing the positive real line. Among the various properties
claimed by Ramanujan is the transformation

Fω(z) =
−i√
ω
e−

πz2

4ω F1/ω

(
iz

ω

)
. (1.4)

In view of this property, Berndt and Xu call Fω(z) as an integral analogue of a theta function.
Assume α > 0, let ω = α2 and replace z by αz/

√
π in (1.4). Using (1.3), one sees that the

above transformation translates into the following identity.
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For α, β > 0 such that αβ = 1,

√
αe

z2

8

∫ ∞
−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx =

√
βe
−z2
8

∫ ∞
−∞

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx. (1.5)

Now consider the integral ∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx. (1.6)

In analogy with the partial theta function which is the same as a theta function but summed
over only half of the integer lattice, we call the above integral an integral analogue of partial
theta function. Note that unlike Fω(z), this integral cannot be expressed solely in terms of
Mordell integrals. Also unlike how the transformation formula for the Jacobi theta function
trivially gives the transformation formula for the corresponding partial theta function [49,
p. 22, Equation (2.6.3)], the transformation in (1.5) does not give rise to a corresponding
transformation for the integral in (1.6). (It is easy to check that the integrands in (1.5) are
not even functions of x). Nevertheless, the primary goal of this paper is to prove a new and
interesting modular transformation for the integral in (1.6) which involves error functions.

The error function erf(z) and the complementary error function erfc(z), defined by [48,
p. 275]

erf(z) =
2√
π

∫ z

0
e−t

2
dt (1.7)

and

erfc(z) = 1− erf(z) =
2√
π

∫ ∞
z

e−t
2
dt

respectively, are two important special functions having a number of applications in prob-
ability theory, statistics, physics and partial differential equations. In probability, they are
related to the Gaussian normal distribution. Glashier [16] was the first person to coin the
term Error-function and then the term Error-function complement in the sequel [17]. How-
ever, his definitions are exactly opposite to the standard definitions given above and do not
involve the normalization factor 2/

√
π.

The imaginary error function erfi(z) is defined by [23, p. 32]1

erfi(z) =
2√
π

∫ z

0
et

2
dt. (1.8)

From (1.7) and (1.8), it is straightforward that

erf(iz) = ierfi(z). (1.9)

We now give below the transformation linking the integrals of the type in (1.6) with the
error functions erf(z) and erfi(z). This transformation is of the form G(z, α) = G(iz, β)
for α, β > 0, αβ = 1 and z ∈ C. It is also related to an integral involving the Riemann
Ξ-function, which is defined by

Ξ(t) := ξ(1
2 + it), (1.10)

where ξ(s) is Riemann’s ξ-function defined by [11, p. 60]

ξ(s) :=
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s), (1.11)

Γ(s) and ζ(s) being the Gamma function and the Riemann zeta function respectively.

1This definition differs from a factor of 2√
π

from the definition in [23].
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Theorem 1.1. Let z ∈ C, α > 0 and let ∆
(
α, z, 1+it

2

)
be defined by

∆(x, z, s) := ω(x, z, s) + ω(x, z, 1− s), (1.12)

with

ω(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
3

2
;
z2

4

)
, (1.13)

where 1F1(a; c; z) is Kummer’s confluent hypergeometric function. Let Ξ(t) be defined in
(1.10). Then for αβ = 1,

√
αe

z2

8

(
erf
(z

2

)
− 4

∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
βe
−z2
8

(
erfi
(z

2

)
− 4

∫ ∞
0

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)

=
z

8π2

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt, (1.14)

where erf(z) and erfi(z) are defined in (1.7) and (1.8) respectively.

We prove Theorem 1.1 by evaluating the integral on the extreme right of (1.14) to be equal
to the extreme left, and by exploiting the fact that it is invariant under the simultaneous
replacement of α by β and z by iz.

This transformation generalizes a formula of Ramanujan which he wrote in his first letter
to Hardy [44, p. XXVI] and which also appears in [40, Equation (13)]. This formula is
equivalent to the first equality in the following identity, valid for αβ = 1, and which is also
due to Ramanujan [41]:

α
1
2 − 4πα

3
2

∫ ∞
0

xe−πα
2x2

e2πx − 1
dx = β

1
2 − 4πβ

3
2

∫ ∞
0

xe−πβ
2x2

e2πx − 1
dx

=
1

4π
√
π

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
cos

(
1

2
t logα

)
dt. (1.15)

Mordell [33, p. 331] rephrased the first equality in the above formula in the form 2∫ ∞
−∞

xe−πix
2/τ

e2πx − 1
dx = (−iτ)3/2

∫ ∞
−∞

xe−πiτx
2

e2πx − 1
dx. (1.16)

That (1.15) is a special case of Theorem 1.1 is not difficult to derive: for z 6= 0, divide both
sides by z, let z → 0 and note that

lim
z→0

erf(z)

z
=

2√
π

= lim
z→0

erfi(z)

z
.

A one-variable generalization of the integral on the extreme right-hand side in (1.15) was
given in [12, Theorem 1.5], which in turn gave a generalization of the extreme left side.
However, this general integral is not invariant under the simultaneous application of α → β
and z → iz, and so a transformation formula generalizing the first equality in (1.15) could
not be obtained there. This shortcoming is overcome in Theorem 1.1.

We also obtain another transformation involving error functions that is complementary to
the one in Theorem 1.1.

2There is a misprint in Mordell’s formulation of Equation (1.16), namely, there is an extra minus sign in
front of the right-hand side which should not be present.
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Theorem 1.2. For α, β > 0, αβ = 1,

√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ 0

−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
βe
−z2
8

(
erfi
(z

2

)
+ 4

∫ 0

−∞

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)
.

(1.17)

It is important to observe here that subtracting the corresponding sides of the first equality
in (1.14) from those of (1.17) results in (1.5), thus providing a new proof of (1.5), and hence
of (1.4).

Let χ denote a primitive Dirichlet character modulo q. The character analogue Ξ(t, χ) of
Ξ(t) is given by

Ξ(t, χ) := ξ

(
1

2
+ it, χ

)
,

where ξ(s, χ) := (π/q)−(s+a)/2 Γ
(
s+a

2

)
L(s, χ), and a = 0 if χ(−1) = 1 and a = 1 if χ(−1) =

−1. The functional equation of ξ(s, χ) is given by ξ(1 − s, χ) = ε(χ)ξ(s, χ), where ε(χ) =

iaq1/2/G(χ) and G(χ) =
∑q

m=1 χ(m)e2πim/q is the Gauss sum. See [11, p. 69-72]. For real
primitive characters, we have

G(χ) =

{√
q, for χ even,

i
√
q, for χ odd.

Hence the functional equation in this case reduces to ξ(1 − s, χ) = ξ(s, χ), which also gives
Ξ(−t, χ) = Ξ(t, χ).

We now give below the analogues of Theorem 1.1 for real primitive characters.

Theorem 1.3. Let z ∈ C and let α and β be positive numbers such that αβ = 1. Let χ be a
real primitive Dirichlet character modulo q.

(i) If χ is even,

√
αe

z2

8

∫ ∞
0

e
−πα

2x2

q sin

(√
παxz
√
q

) ∑q−1
r=1 χ(r)e

− 2πrx
q

1− e−2πx
dx

=
√
βe
−z2
8

∫ ∞
0

e
−πβ

2x2

q sinh

(√
πβxz
√
q

) ∑q−1
r=1 χ(r)e

− 2πrx
q

1− e−2πx
dx

=
z
√
q

16π2

∫ ∞
0

Γ

(
3 + it

4

)
Γ

(
3− it

4

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt. (1.18)

(ii) If χ is odd,

√
αe

z2

8

∫ ∞
0

e
−πα

2x2

q cos

(√
παxz
√
q

) ∑q−1
r=1 χ(r)e

− 2πrx
q

1− e−2πx
dx

=
√
βe
−z2
8

∫ ∞
0

e
−πβ

2x2

q cosh

(√
πβxz
√
q

) ∑q−1
r=1 χ(r)e

− 2πrx
q

1− e−2πx
dx

=
1

16π
3
2

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt. (1.19)
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Note that the sums inside the integrals in the above theorem are Gauss sums of purely
imaginary arguments.

The first equality in (1.15) can be rewritten for αβ = π2 as

α−
1
4

(
1 + 4α

∫ ∞
0

xe−αx
2

e2πx − 1
dx

)
= β−

1
4

(
1 + 4β

∫ ∞
0

xe−βx
2

e2πx − 1
dx

)
. (1.20)

In [45, Volume 2, p. 268], Ramanujan gives an elegant approximation to the above expressions.

Let α > 0, β > 0, αβ = π2. Define

I(α) := α−
1
4

(
1 + 4α

∫ ∞
0

xe−αx
2

e2πx − 1
dx

)
.

Then

I(α) =

(
1

α
+

1

β
+

2

3

)1/4

, “nearly”. (1.21)

As mentioned by Berndt and Evans in [7], Ramanujan frequently used the words “nearly”
or “very nearly” at the end of his asymptotic expansions and approximations. The above
approximation is very good for values of α that are either very small or very large. A proof
of the above fact was given in [7], where as an intermediate result, the following asymptotic
expansion for I(α) as α→ 0 was first obtained:

I(α) ∼ 1

α1/4
+
α3/4

6
− α7/4

60
+ · · · .

Observe that for αβ = π2 and z 6= 0, the first equality in Theorem 1.1 can be rephrased
as follows:

I(z, α) :=

√
π

z
α−

1
4 e

z2

8 erf
(z

2

)
+

4

z
α

1
4 e−

z2

8

∫ ∞
0

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx

=

√
π

z
β−

1
4 e−

z2

8 erfi
(z

2

)
+

4

z
β

1
4 e

z2

8

∫ ∞
0

e−βx
2

sin(
√
βxz)

e2πx − 1
dx =: I(iz, β), (1.22)

of which (1.20) is the special case when z → 0. The following general asymptotic expansion
holds for the two sides in the above identity as α→ 0, or equivalently as β →∞.

Theorem 1.4. Fix z ∈ C. As α→ 0,

I(z, α) ∼ −2√
π
α−1/4ez

2/8
∞∑
m=0

(
−α
π2

)m
ζ(2m)Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
. (1.23)

That is,

I(z, α) ∼
√
π

z
ez

2/8erf
(z

2

)
α−1/4 +

e−z
2/8

6
α3/4 +

(z2 − 6)e−z
2/8

360
α7/4

+
(60− 20z2 + z4)e−z

2/8

15120
α11/4 + · · · .
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Note that both sides of (1.22) are even functions of z. If we successively differentiate (1.22)
n times with respect to z and then let z → 0, we do not get anything interesting for odd n.
However for n even, two different behaviors are noted.

First, n ≡ 0 (mod 4), i.e., n = 4k, k ∈ N ∪ {0}, gives the following transformation of the
form Hk(α) = Hk(β).

Theorem 1.5. Let αβ = π2. Then for a non-negative integer k,

α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= β−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 4β3/4

∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx. (1.24)

Ramanujan’s approximation in (1.21) is a special case, when k = 0, of the following result:

Theorem 1.6. Let k be a non-negative integer. Both sides of (1.24) are approximated by

α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= 2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2 ; 2
))1/4

, “nearly”. (1.25)

Again, the above right side is a very good approximation of the left side for the values of
α that are either very small or very large.

When n ≡ 2 (mod 4), i.e., n = 4k + 2, k ∈ N ∪ {0}, we get a transformation of the form
Jk(α) = −Jk(β) given below.

Theorem 1.7. Let αβ = π2 and let k be a non-negative integer. Then,

Jk(α) := α−1/4
2F1

(
−2k − 1, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx

= −β−1/4
2F1

(
−2k − 1, 1;

3

2
; 2

)
− 4β3/4

∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2βx2

)
dx =: −Jk(β).

(1.26)

In particular, Jk(π) = 0, which results in a beautiful exact evaluation of the integral in
(1.26).

Corollary 1.8. For any non-negative integer k,∫ ∞
0

xe−πx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2πx2

)
dx = − 1

4π
2F1

(
−2k − 1, 1;

3

2
; 2

)
. (1.27)

Results corresponding to the ones in Theorem 1.5 - Corollary 1.8 that can be obtained by
writing Theorem 1.2 in an alternate form (see (4.12) below) are collectively put in Theorem
5.1 at the end of Section 5. When we combine the results from Theorem 1.5-Corollary 1.8
with those in Theorem 5.1, we obtain the following interesting theorem.

Theorem 1.9. Let α, β be two positive numbers such that αβ = π2 and let k be any non-
negative integer. Then

(i) α3/4

∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx = β3/4

∫ ∞
−∞

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx.
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(ii) α3/4

∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

=
1

2
· 2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2 ; 2
))1/4

, “nearly”. (1.28)

(iii) α3/4

∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx

= −β3/4

∫ ∞
−∞

xe−βx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2βx2

)
dx. (1.29)

In particular when α = β = π, we have∫ ∞
−∞

xe−πx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2πx2

)
dx = 0. (1.30)

In [41], Ramanujan considered two integrals, one being that on the extreme right of (1.15),
and the second one given by∫ ∞

0
Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos(1

2 t logα) dt

t2 + (z + 1)2
. (1.31)

Oloa [35, Equation 1.5] found the asymptotic expansion3 of the special case of this integral
when z = 0, namely, as α→∞,

1

π3/2

∫ ∞
0

Ξ2

(
1

2
t

) ∣∣∣∣Γ(−1 + it

4

)∣∣∣∣2 cos
(

1
2 t logα

)
1 + t2

dt

∼ 1

2

logα√
α

+
1

2
√
α

(log 2π − γ) +
π2

72α3/2
− π4

10800α7/2
+ · · · .

In the following theorem, we obtain the asymptotic expansion of the general integral (1.31)
as α→∞.

Theorem 1.10. Fix z such that −1 < Re z < 1. As α→∞,

1

π
z+3
2

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos(1

2 t logα) dt

t2 + (z + 1)2

∼ −Γ(z)ζ(z)α
z−1
2

(2π)z
− Γ(z + 1)ζ(z + 1)

2α
z+1
2 (2π)z

+ 2α
z+1
2

∞∑
m=0

(−1)m

(2πα)2m+z+2
Γ(2m+ 2 + z)ζ(2m+ 2)ζ(2m+ z + 2). (1.32)

This paper is organized as follows. In Section 2, we state preliminary theorems and lemmas
that are subsequently used. Section 3 contains proofs of Theorems 1.1 and 1.3. In Section 4,
we prove Theorems 1.2 and 1.4. The analogues of Theorem 1.4 corresponding to the second
error function transformation and to Ramanujan’s transformation (1.5) are also given in this
section. Section 5 is devoted to proofs of Theorem 1.5 - Corollary 1.8 and their analogues. We

3There is a misprint in this asymptotic expansion given in Oloa’s paper. The minus sign in front of the
second expression on the right should be a plus.
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prove Theorem 1.10 in Section 6. Finally, Section 7 is reserved for some concluding remarks
and open problems.

2. Nuts and bolts

Let f be an even function of t of the form f(t) = φ(it)φ(−it), where φ is analytic in t as a
function of a real variable. Using the functional equation for ζ(s) in the form ξ(s) = ξ(1− s),
where ξ(s) is defined in (1.11), it is easy to obtain the following line integral representation
for the integral on the left side below, of which the integral on the extreme right of (1.14) is
a special case∫ ∞

0
f

(
t

2

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt =

2

i

∫ 1
2

+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s)ω(α, z, s) ds,

(2.1)
whenever the integral on the left converges. Here ∆(x, z, s) and ω(x, z, s) are the same as
defined in (1.12) and (1.13). Analogous to these, define

∇(x, z, s) := ρ(x, z, s) + ρ(x, z, 1− s), (2.2)

where

ρ(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
1

2
;
z2

4

)
.

Then for χ, a real primitive character modulo q, the following formulas can be similarly
proved.∫ ∞

0
f

(
t

2

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt =

2

i

∫ 1
2

+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s, χ)ρ(α, z, s) ds,

∫ ∞
0

f

(
t

2

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt =

2

i

∫ 1
2

+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s, χ)ω(α, z, s) ds,

(2.3)

whenever the integrals on the left-hand sides converge. Note that for αβ = 1,

∆

(
α, z,

1 + it

2

)
= ∆

(
β, iz,

1 + it

2

)
,∇
(
α, z,

1 + it

2

)
= ∇

(
β, iz,

1 + it

2

)
, (2.4)

both of which can be proved using Kummer’s first transformation for 1F1(a; c;w) [39, p. 125,
Equation (2)] given by

1F1(a; c;w) = ew1F1(c− a; c;−w). (2.5)

The formulas in (2.4) render the integrals on the left-hand sides of (2.1) and (2.3) invariant
under the simultaneous replacement of α by β and z by iz, and hence, as a by-product of
the evaluation of these integrals, we obtain identities of the form G(z, α) = G(iz, β) and
G(z, α, χ) = G(iz, β, χ).

In proving Theorem 1.3, we make use of the following special case [6, Theorem 2.1] of a
result due to Berndt [5, Theorem 10.1]:

Theorem 2.1. Let x > 0. If χ is even with period q and Re ν ≥ 0, then

∞∑
n=1

χ(n)nνKν

(
2πnx

q

)
=

π
1
2

2xG(χ)

(qx
π

)ν+1
Γ

(
ν +

1

2

) ∞∑
n=1

χ(n)(n2 + x2)−ν−
1
2 ;
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if χ is odd with period k and Re ν > −1, then

∞∑
n=1

χ(n)nν+1Kν

(
2πnx

q

)
=

iπ
1
2

2x2G(χ)

(qx
π

)ν+2
Γ

(
ν +

3

2

) ∞∑
n=1

χ(n)n(n2 + x2)−ν−
3
2 . (2.6)

The following two lemmas, given in [18, p. 503, Formula (3.952.7)] and [15, p. 318, 320,
Formulas (10), (30)] respectively, will also be employed in the proof of Theorem 1.3.

Lemma 2.2. For c = Re s > −1 and Re a > 0, we have

1

2πi

∫ c+i∞

c−i∞

b

2
a−

1
2
− s

2 e−
b2

4aΓ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
b2

4a

)
x−s ds = e−ax

2
sin bx.

Lemma 2.3. For c = Re s > 0 and Re a > 0, we have

1

2πi

∫ c+i∞

c−i∞

1

2
a−

s
2 Γ
(s

2

)
e−

b2

4a 1F1

(
1− s

2
;
1

2
;
b2

4a

)
x−s ds = e−ax

2
cos bx. (2.7)

We note that [12, Equation (2.10)]

1F1

(
1
4 − λ; 1

2 ; z
2

4

)
∼ ez2/8 cos

(√
λz
)
,

as |λ| → ∞ and | arg(λz)| < 2π, and the Stirling’s formula for Γ(s), s = σ + it, in a vertical
strip α ≤ σ ≤ β given by

|Γ(s)| = (2π)
1
2 |t|σ−

1
2 e−

1
2π|t|

(
1 +O

(
1

|t|

))
, (2.8)

as |t| → ∞ give convergence of the integrals on the extreme right-hand sides of (1.14), (1.18)
and (1.19). If F (s) and G(s) denote the Mellin transforms of f(x) and g(x) respectively and
s with Re s = c lies in a common strip where both F and G are analytic, then a variant of
Parseval’s formula [38, p.83, Equation (3.1.13)] gives

1

2πi

∫ c+i∞

c−i∞
F (s)G(s)w−s ds =

∫ ∞
0

f(x)g
(w
x

) dx
x
. (2.9)

Watson’s lemma [36, p. 71] is given by

Lemma 2.4. If q(t) is a function of the positive real variable t such that

q(t) ∼
∞∑
s=0

ast
(s+λ−µ)/µ (t→ 0)

for positive constants λ and µ, then∫ ∞
0

e−xtq(t) dt ∼
∞∑
s=0

Γ

(
s+ λ

µ

)
as

x(s+λ)/µ
(x→∞), (2.10)

provided that this integral converges throughout its range for all sufficiently large x.

The above result also holds [48, p. 32] for complex λ with Re λ > 0, and for x ∈ C with
the integral being convergent for all sufficiently large values of Re x.
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3. The first error function transformation and its character analogues

We begin by proving the first error function transformation given in Theorem 1.1 and then
proceed to a proof of its character analogues given in Theorem 1.3.

Proof of Theorem 1.1. Let φ(s) = Γ
(−1

4 + s
2

)
and let

J(z, α) =

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt.

Use (1.10), (1.11), (2.1), the functional equation for Γ(s) and the reflection formula to see
that

J(z, α) =
2
√
αe−

z2

8

i

∫ 1
2

+i∞

1
2
−i∞

Γ

(
s+ 1

2

)
Γ
(
−s

2

)
Γ
(

1 +
s

2

)
ζ(s)1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
)−s

ds

= −4
√
αe−

z2

8

i

∫ 1
2

+i∞

1
2
−i∞

π

sin
(

1
2πs
)Γ

(
s+ 1

2

)
ζ(s)1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
)−s

ds.

Now in order to use the series representation for ζ(s), we shift the line of integration from Re
s = 1

2 to Re s = 1 + δ, where 0 < δ < 1. Consider a positively oriented rectangular contour

with sides [1
2 + iT, 1

2 − iT ], [1
2 − iT, 1 + δ− iT ], [1 + δ− iT, 1 + δ+ iT ] and [1 + δ+ iT, 1

2 + iT ],
where T is any positive real number. We have to consider the contribution of the pole of
order 1 of the integrand (due to ζ(s)). Using the residue theorem, noting that by (2.8) the
integrals along the horizontal line segments tend to zero as T →∞, and then interchanging
the order of summation and integration we have

J(z, α) = −4
√
αe−

z2

8

i

( ∞∑
n=1

∫ 1+δ+i∞

1+δ−i∞

π

sin
(

1
2πs
)Γ

(
s+ 1

2

)
× 1F1

(
1− s

2
;
3

2
;
z2

4

)(√
παn

)−s
ds− 2πiL

)
,

where

L = lim
s→1

(s− 1)ζ(s)
π

sin
(

1
2πs
)Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
)−s

.

It is easy to see that

L =

√
π

α
1F1

(
1

2
;
3

2
;
z2

4

)
.

Now using the fact [38, p. 98] that for 0 < c = Re s < 2,

1

2πi

∫ c+i∞

c−i∞

π

sin
(

1
2πs
)x−s ds =

2

(1 + x2)
,

combined with the special case when b = z 6= 0, a = 1 of Lemma 2.2, and (2.9), we see that

J(z, α) = −8π
√
αe−

z2

8

(
4e

z2

4

z

∞∑
n=1

∫ ∞
0

e−x
2

sinxz

1 +
(√

παn
x

)2

dx

x
−
√
π

α
1F1

(
1

2
;
3

2
;
z2

4

))
.
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Employ the change of variable x→
√
παx and (2.5) to see that

J(z, α) = −8π
√
αe

z2

8

(
4e

z2

4

z

∞∑
n=1

∫ ∞
0

xe−πα
2x2 sin (

√
παxz)

n2 + x2
dx−

√
π

α
1F1

(
1;

3

2
;
−z2

4

))
.

(3.1)

Now for t 6= 0 [10, p. 191],

∞∑
n=1

1

t2 + n2
=
π

t

(
1

e2πt − 1
− 1

2πt
+

1

2

)
. (3.2)

Thus, interchanging the order of summation and integration in (3.1) and then substituting
(3.2) and simplifying, we observe that

J(z, α) = −8π
√
αe

z2

8

(
4π

z

∫ ∞
0

e−πα
2x2 sin (

√
παxz)

e2πx − 1
dx− 2

z

∫ ∞
0

e−πα
2x2 sin (

√
παxz)

x
dx

+
2π

z

∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx−

√
π

α
1F1

(
1;

3

2
;
−z2

4

))
. (3.3)

However from [18, p. 488, formula 3.896, no. 3],∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx =

z

2
√
πα

1F1

(
1;

3

2
;
−z2

4

)
(3.4)

and by [18, p. 503, formula 3.952, no. 7] and [18, p. 889, formula 8.253, no. 1] (see also [17,
p. 421]), ∫ ∞

0

e−πα
2x2 sin (

√
παxz)

x
dx =

π

2
erf
(z

2

)
. (3.5)

Thus, substituting (3.4) and (3.5) in (3.3) and simplifying, we finally arrive at

1

8π2
J(z, α) =

√
αe

z2

8

z

(
erf
(z

2

)
− 4

∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)
. (3.6)

Using (1.9), it is clear that simultaneously replacing α by β and z by iz in (3.6) and employing
(2.4) and (1.9) gives (1.14) since J(z, α) is invariant. �

Proof of Theorem 1.3. We prove the theorem only for odd real χ. The case when χ is even
and real can be similarly proved. Let φ(s) = Γ

(
1
4 + s

2

)
and let

P (z, α, χ) =

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt.

Using the first equality in (2.3), we see that

P (z, α, χ) =
2
√
αqe−

z2

8

i
√
π

∫ 1
2

+i∞

1
2
−i∞

Γ
(s

2

)
Γ

(
1− s

2

)
Γ

(
s+ 1

2

)
L(s, χ)

× 1F1

(
1− s

2
;
1

2
;
z2

4

)(√
πα
√
q

)−s
ds

=
2
√
αqe−

z2

8

i
√
π

∫ 1
2

+i∞

1
2
−i∞

π

cos
(

1
2πs
)Γ
(s

2

)
L(s, χ)1F1

(
1− s

2
;
1

2
;
z2

4

)(√
πα
√
q

)−s
ds,
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where in the last step, we used a different version of the reflection formula, namely, Γ
(

1
2 + z

)
Γ
(

1
2 − z

)
=

π
cosπz for z − 1

2 /∈ Z. As before, shift the line of integration from Re s = 1
2 to Re s = 1 + δ,

0 < δ < 2, employ the residue theorem and take into account the contribution from the pole
of order 1 at s = 1 of the integrand (due to cos 1

2πs). This gives,

P (z, α, χ) =
2
√
αqe−

z2

8

i
√
π

( ∞∑
n=1

χ(n)

∫ 1+δ+i∞

1+δ−i∞

π

cos
(

1
2πs
)Γ
(s

2

)
× 1F1

(
1− s

2
;
1

2
;
z2

4

)(√
παn
√
q

)−s
ds− 2πiL1

)
,

(3.7)

where

L1 = lim
s→1

(s− 1)π

cos
(

1
2πs
)Γ
(s

2

)
L(s, χ)1F1

(
1− s

2
;
1

2
;
z2

4

)(√
πα
√
q

)−s
= −

2
√
q

α
L(1, χ). (3.8)

Also replacing s by (s+ 1)/2, x by x2 in the formula [38, p. 91, Equation (3.3.10)]

1

2πi

∫ c+i∞

c−i∞

x−s

sinπs
ds =

1

π(1 + x)
,

and simplifying, we see that for −1 < Re s < 1,

1

2πi

∫ c+i∞

c−i∞

π

cos
(

1
2πs
)x−s ds =

2x

1 + x2
.

Another application of the residue theorem yields for 0 < c < 1,∫ 1+δ+i∞

1+δ−i∞

π

cos
(

1
2πs
)Γ
(s

2

)
1F1

(
1− s

2
;
1

2
;
z2

4

)(√
παn
√
q

)−s
ds

=

∫ c+i∞

c−i∞

π

cos
(

1
2πs
)Γ
(s

2

)
1F1

(
1− s

2
;
1

2
;
z2

4

)(√
παn
√
q

)−s
ds−

4πi
√
q

αn

= 2πi

(
4e

z2

4

∫ ∞
0

n

x2 + n2
e
−πα

2x2

q cos

(√
παxz
√
q

)
dx−

2
√
q

αn

)
, (3.9)

where in the last step we used Lemma 2.3 with a = 1, x =
√
παn√
q and b = z, and (2.9), followed

by a change of variable x →
√
παx√
q . Now substitute (3.9) and (3.8) in (3.7) and simplify to

obtain

P (z, α, χ) = 16
√
παqe

z2

8

∫ ∞
0

( ∞∑
n=1

nχ(n)

x2 + n2

)
e
−πα

2x2

q cos

(√
παxz
√
q

)
dx. (3.10)

Now use (2.6) with χ real and ν = −1/2 to see that

∞∑
n=1

nχ(n)

x2 + n2
=

π
√
q

∞∑
n=1

χ(n)e
− 2πnx

q . (3.11)

Employing (3.11) in (3.10), we have

P (z, α, χ) = 16
√
π3αe

z2

8

∫ ∞
0

e
−πα

2x2

q cos

(√
παxz
√
q

) ∞∑
n=1

χ(n)e
− 2πnx

q dx. (3.12)
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Writing n = mq + r, 0 ≤ m < ∞, 0 ≤ r ≤ q − 1, noting that χ is periodic with period q, we
have

∞∑
n=1

χ(n)e
− 2πnx

q =

∑q−1
r=0 χ(r)e

− 2πrx
q

1− e−2πx
. (3.13)

Finally, (3.13) along with (3.12) gives

1

16π
3
2

P (z, α, χ) =
√
αe

z2

8

∫ ∞
0

e
−πα

2x2

q cos

(√
παxz
√
q

) ∑q−1
r=1 χ(r)e

− 2πrx
q

1− e−2πx
dx.

This gives (1.19) as P (z, α, χ) is invariant under the simultaneous application of the maps
α→ β and z → iz, which can be seen from (2.4). �

4. The second error function transformation and an asymptotic expansion

We first establish the second error function transformation given in Theorem 1.2 and then
the asymptotic expansion from Theorem 1.4.

Proof of Theorem 1.2. Note that from (3.4) and [18, p. 889, formula 8.253, no. 1],∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx =

1

2α
e−

z2

4 erfi
(z

2

)
. (4.1)

Also,

√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ 0

−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx+ 4

∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)
,

where in the first step, we replaced x by −x in the integral, and then simplified it using
e2πx/(e2πx− 1) = 1 + 1/(e2πx− 1). Now use (4.1) and the first error function transformation
in (1.14) to replace the second integral in the above equation to obtain

√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ 0

−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
αe

z2

8

(
2erf

(z
2

)
+

1

α
e−

z2

4 erfi
(z

2

)
+

4

α
e−

z2

4

∫ ∞
0

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)

=
√
βe
−z2
8

(
erfi
(z

2

)
+

2

β
e
z2

4 erf
(z

2

)
+ 4

∫ ∞
0

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)
, (4.2)

where we used the fact αβ = 1 to simplify the last step. Now replace α by β and z by iz in
(4.1), and use (1.9) to obtain∫ ∞

0
e−πβ

2x2 sinh
(√
πβxz

)
dx =

1

2β
e
z2

4 erf
(z

2

)
. (4.3)

Finally, use (4.3) to simplify the extreme right of (4.2), thereby obtaining (1.17) and thus
completing the proof. �
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Proof of Theorem 1.4. By a change of variable x2 = t,∫ ∞
0

e−βx
2

sin(
√
βxz)

e2πx − 1
dx =

∫ ∞
0

e−βt sin(z
√
βt)

2
√
t(e2π

√
t − 1)

dt.

Let

f(t, z) =
sin(z

√
βt)

2
√
t(e2π

√
t − 1)

.

First consider, for |t| < 1,

2πt sin(at)

e2πt − 1
=
∞∑
m=0

Bm(2π)mtm

m!

∞∑
n=0

(−1)na2n+1t2n+1

(2n+ 1)!

=
∞∑
j=1

 ∑
m+2n+1=j

Bm(2π)m

m!

(−1)na2n+1

(2n+ 1)!

 tj

=
∞∑
j=1

 j−1∑
k=0
k even

Bj−1−k(2π)j−1−k

(j − 1− k)!

(−1)k/2ak+1

(k + 1)!

 tj

= t
∞∑
j=0

 j∑
k=0
k even

Bj−k(2π)j−k

(j − k)!

(−1)k/2ak+1

(k + 1)!

 tj ,

Replacing t by
√
t and a = z

√
β, we have for |t| < 1,

sin(z
√
βt)

2
√
t(e2π

√
t − 1)

=
1

4π

∞∑
j=0

 j∑
k=0
k even

Bj−k(2π)j−k

(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!

 t
j−1
2

Thus, as t→ 0+,

f(t, z) ∼ 1

4π

∞∑
j=0

 j∑
k=0
k even

Bj−k(2π)j−k

(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!

 t
j−1
2

Hence by Watson’s lemma, as β →∞,∫ ∞
0

e−βt sin(z
√
βt)

2
√
t(e2π

√
t − 1)

dt ∼
∞∑
j=0

Γ
(
j+1

2

)
β
j+1
2

j∑
k=0
k even

Bj−k(2π)j−k−1

2(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!
. (4.4)

From (4.4) and the notation in (1.22), we find that

I(iz, β) ∼
√
π

z
β−

1
4 e−

z2

8 erfi
(z

2

)
+

∞∑
j=0

Ij,z, (4.5)

where

Ij,z =
4

z
β

1
4 e

z2

8

Γ
(
j+1

2

)
β
j+1
2

j∑
k=0
k even

Bj−k(2π)j−k−1

2(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!
.
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We first evaluate Ij,z when j is odd, say j = 2n + 1. Since all of the odd-indexed Bernoulli
numbers except B1 are equal to zero and B1 = −1/2, only the last term, namely j = 2n+ 1
and k = 2n, contributes to the sum giving

I2n+1,z =
(−1)n+1n!

(2n+ 1)!
z2nez

2/8β−1/4. (4.6)

Now let j be even, say j = 2n. Then using the fact [48, p. 5, Equation (1.14)] that

(−1)m−122m−1π2m

(2m)!
B2m = ζ(2m)

in the second step below, we see that

∞∑
n=0

I2n,z =
2

z
β

1
4 e

z2

8

∞∑
n=0

Γ
(
n+ 1

2

)
βn+ 1

2

n∑
m=0

B2n−2m(2π)2n−2m−1

(2n− 2m)!

(−1)m(z
√
β)2m+1

(2m+ 1)!

=
2

z
β

1
4 e

z2

8

∞∑
n=0

(−1)n(z
√
β)2n+1

βn+ 1
2

Γ

(
n+

1

2

) n∑
m=0

B2m(2π)2m−1

(2m)!

(−1)m(z
√
β)−2m

(2n− 2m+ 1)!

=
−2

πz
β

1
4 e

z2

8

∞∑
n=0

(−1)nz2n+1Γ

(
n+

1

2

) n∑
m=0

ζ(2m)

(z
√
β)2m(2n− 2m+ 1)!

=
−2

π
β

1
4 e

z2

8

∞∑
m=0

ζ(2m)

(z
√
β)2m

∞∑
n=m

(−1)nz2n

(2n− 2m+ 1)!
Γ

(
n+

1

2

)

=
−2

π
β

1
4 e

z2

8

∞∑
m=0

(−1)mζ(2m)

βm
Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

(4.7)

From (4.5), (4.6) and (4.7), we obtain the asymptotic expansion of I(iz, β) as β →∞ as

I(iz, β) ∼

(√
π

z
e−

z2

8 erfi
(z

2

)
− e

z2

8

∞∑
m=0

(−1)mm!z2m

(2m+ 1)!

)
β−

1
4

− 2

π
β

1
4 e

z2

8

∞∑
m=0

(−1)mζ(2m)

βm
Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
. (4.8)

Note that erf(z) has the following Taylor series expansion, which is valid for all z ∈ C [37,
p. 162, 7.6.1]:

erf(z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
. (4.9)

From (1.9),

erfi(z) =
2√
π

∞∑
n=0

z2n+1

n!(2n+ 1)
. (4.10)

It is now easy to see that

∞∑
m=0

(−1)mm!z2m

(2m+ 1)!
=

√
π

z
e−z

2/4erfi
(z

2

)
. (4.11)
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Substituting (4.11) in (4.8), we arrive at

I(iz, β) ∼ − 2

π
β

1
4 e

z2

8

∞∑
m=0

(−1)mζ(2m)

βm
Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

Since αβ = π2, using (1.22), this also gives the asymptotic expansion of I(z, α) as α→ 0 as
claimed in (1.23). �

The second error function transformation in Theorem 1.2 can be rephrased for αβ = π2

and z 6= 0 as follows:

K(z, α) :=

√
π

z
α−

1
4 e

z2

8 erf
(z

2

)
− 4

z
α

1
4 e−

z2

8

∫ 0

−∞

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx

=

√
π

z
β−

1
4 e−

z2

8 erfi
(z

2

)
− 4

z
β

1
4 e

z2

8

∫ 0

−∞

e−βx
2

sin(
√
βxz)

e2πx − 1
dx =: K(iz, β). (4.12)

The analogue of Theorem 1.4 for the above identity is given below. The details are similar
to those in the proof of Theorem 1.4 and hence avoided.

Theorem 4.1. Fix z ∈ C. As α→ 0,

K(z, α) ∼ 2√
π
α−1/4ez

2/8
∞∑
m=0

(
−α
π2

)m
ζ(2m)Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

Combining Theorems 1.4 and 4.1 leads us to the following asymptotic expansion of the
integral analogue of theta function.

Theorem 4.2. Fix z ∈ C. As α→ 0,∫ ∞
−∞

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx

∼ −z√
πα

ez
2/4

∞∑
m=0

(
−α
π2

)m
ζ(2m)Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

5. Generalization of Ramanujan’s approximation and integral identities
involving hypergeometric functions

The results from this section follow from successively differentiating the first error function
transformation in the form (1.22) with respect to z. The presence of −x2 in the exponential
term in the numerator of either sides justifies differentiation under the integral sign. As
mentioned in the introduction, differentiating (1.22) n times where n is odd just gives 0 = 0.
However when n is even, two different behaviors are observed accordingly as n ≡ 0 (mod 4)
and as n ≡ 2 (mod 4).

5.1. The case n ≡ 0 (mod 4).

Proof of Theorem 1.5. Let n = 4k for a non-negative integer k. Let

G(z, α) :=

√
π

z
α−

1
4 e

z2

8 erf
(z

2

)
+

4

z
α

1
4 e−

z2

8

∫ ∞
0

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx (5.1)

and let

Hk(α) :=
d4k

dz4k
G(z, α)

∣∣∣∣
z=0

. (5.2)
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Using (1.22) leads us to a transformation of the form Hk(α) = Hk(β) since

Hk(α) =
d4k

dz4k
G(z, α)

∣∣∣∣
z=0

=
d4k

d(iz)4k
G(iz, β)

∣∣∣∣
z=0

= Hk(β). (5.3)

Multiply the power series expansion of ez
2/8 with that of erf(z) given in (4.9) and extract the

coefficient of z4k in the product. This gives

d4k

dz4k

e
z2

8

z
erf
(z

2

)∣∣∣∣∣∣
z=0

=
2(4k)!√

π

2k∑
m=0

(−1)m

24k+2m+1m!(2k −m)!(4k − 2m+ 1)

=
(4k)!

24k
√
π(2k)!(4k + 1)

2F1

(
−1

2
− 2k,−2k;

1

2
− 2k;

1

2

)
.

In [48, p. 113, Equation (5.12)], we find the following hypergeometric transformation, valid
for | arg(1− z)| < π:

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1− z)−a2F1

(
a, c− b; a− b+ 1;

1

1− z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(1− z)−b2F1

(
b, c− a; b− a+ 1;

1

1− z

)
. (5.4)

Use this transformation with z = 1/2, a = −1
2 − 2k, b = −2k, c = 1

2 − 2k to obtain

2F1

(
−1

2
− 2k,−2k;

1

2
− 2k;

1

2

)
=

(4k + 1)

22k 2F1

(
−2k, 1;

3

2
; 2

)
.

This gives

d4k

dz4k

e
z2

8

z
erf
(z

2

)∣∣∣∣∣∣
z=0

=
(4k)!

26k
√
π(2k)!

2F1

(
−2k, 1;

3

2
; 2

)
. (5.5)

Similarly multiplying the power series expansion of e−z
2/8 with that of sinh(

√
αxz) and

extracting the coefficient of z4k in the product, we get

d4k

dz4k

e−
z2

8

z
sinh(

√
αxz)

∣∣∣∣∣∣
z=0

= (4k)!
2k∑
m=0

(−1)m(
√
αx)4k−2m+1

8mm!(4k − 2m+ 1)!

=
(4k)!

√
αx

26k

2k∑
m=0

(−8)m(
√
αx)2m

(2k −m)!(2m+ 1)!
,

where we replaced m by 2k −m in the last step. It can be seen that

2k∑
m=0

(−8)m(
√
αx)2m

(2k −m)!(2m+ 1)!
=

1

(2k)!
1F1

(
−2k;

3

2
; 2αx2

)
.

Thus

d4k

dz4k

e−
z2

8

z
sinh(

√
αxz)

∣∣∣∣∣∣
z=0

=
(4k)!

√
αx

26k(2k)!
1F1

(
−2k;

3

2
; 2αx2

)
. (5.6)
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Hence from (5.1), (5.2), (5.5) and (5.6), we obtain

Hk(α) =
(4k)!

26k(2k)!

{
α−1/4

2F1

(
−2k, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

}
,

which when combined with (5.3), proves Theorem 1.5. �

Next, we prove a generalization of Ramanujan’s approximation in (1.21).

Proof of Theorem 1.6. Let Hk(β) be as defined in (5.2) and consider the integral∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx. (5.7)

Employing the change of variable x =
√
t, using the series definition of 1F1 and interchanging

the order of summation and integration, it is seen that∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx =

1

2

2k∑
m=0

(−2k)m(2β)m(
3
2

)
m
m!

∫ ∞
0

e−βttm

e2π
√
t − 1

dt.

Now use the generating function for Bernoulli numbers to obtain for |t| < 1,

tm

e2π
√
t − 1

=
∞∑
j=0

Bj(2π)j−1

j!
t
j−1+2m

2 .

Using Watson’s lemma from (2.10), we find that as β →∞,

Hk(β) ∼ β−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 2β3/4

2k∑
m=0

(−2k)m(2β)m(
3
2

)
m
m!

∞∑
j=0

Bj(2π)j−1

j!β
j+2m+1

2

Γ

(
j + 2m+ 1

2

)
.

Since Hk(α) = Hk(β), using the fact β = π2/α yields for α→ 0,

Hk(α) ∼ α1/4

√
π

2F1

(
−2k, 1;

3

2
; 2

)
+

2√
π
α−1/4

2k∑
m=0

(−2k)m2m(
3
2

)
m
m!

∞∑
j=0

Bj2
j−1αj/2

j!
Γ

(
j + 2m+ 1

2

)

=
α−1/4

√
π

∞∑
j=0
j 6=1

Bj2
jαj/2

j!
Γ

(
j + 1

2

)
2F1

(
−2k,

1 + j

2
;
3

2
; 2

)

= α−1/4
2F1

(
1

2
,−2k;

3

2
; 2

)
+
α3/4

6
+
α−1/4

√
π

∞∑
j=3

Bj2
jαj/2

j!
Γ

(
j + 1

2

)
2F1

(
−2k,

1 + j

2
;
3

2
; 2

)
.

We now find a simpler function, namely the one claimed on the right-hand side of (1.25), that
is “nearly” equal to Hk(α) when α is very small in the sense that the asymptotic expansion
of this simpler function as α → 0 matches the first two terms in those of Hk(α). Note that
such a function should preserve the invariance under replacing α by β and vice-versa. In
order to match the leading term in the asymptotic expansion, we raise 1/α to the power 1/4

and have its coefficient as 2F1

(
1

2
,−2k;

3

2
; 2

)
, which is equal to 2F1

(
−2k, 1; 3

2 ; 2
)

by Pfaff’s

transformation [48, p. 110, Equation (5.5)]

2F1(a, b; c; z) = (1− z)−b2F1

(
c− a, b; c; z

z − 1

)
.
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Since the approximating function has to be symmetric, we need to raise 1/β along with 1/α
to the power 1/4. So the function we are seeking assumes the form

2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+ c(k)

)1/4

,

where c(k) is some constant depending on only k. Since α is very small, the main contribution
in the asymptotic expansion comes from 1/α and c(k) but not from 1/β. Thus, the next term
in the Taylor series of this function is

α3/4

4
2F1

(
−2k, 1;

3

2
; 2

)
c(k).

As we want this to be equal to α3/4

6 , it is clear that c(k) = 2
3·2F1(−2k,1; 3

2
;2)

. Thus the required

function is

2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2 ; 2
))1/4

.

This completes the proof of Theorem 1.25. �

5.2. The case n ≡ 2 (mod 4).

Proof of Theorem 1.7. Now let n = 4k + 2, where k is again any non-negative integer. Let

Jk(α) :=
d4k+2

dz4k+2
G(z, α)

∣∣∣∣
z=0

,

where G(z, α) is defined in (5.1). This time (1.22) gives us a transformation of the form
Jk(α) = −Jk(β) since

Jk(α) =
d4k+2

dz4k+2
G(z, α)

∣∣∣∣
z=0

=
d4k+2

dz4k+2
G(iz, β)

∣∣∣∣
z=0

= − d4k+2

d(iz)4k+2
G(iz, β)

∣∣∣∣
z=0

= −Jk(β).

The proof is now similar to that of Theorem 1.5 and so we state only the important steps.
Let us start with the fact that

−Jk(β) =
d4k+2

dz4k+2
G(iz, β)

∣∣∣∣
z=0

. (5.8)

Multiply the power series expansion of e−z
2/8 with that of erfi

(
z
2

)
given in (4.10) and extract

the coefficient of z4k+2 in the product. Then identifying the coefficient as a hypergeometric
function and using the transformation (5.4) with z = 1/2, a = −3

2 − 2k, b = −1 − 2k, c =

−1
2 − 2k to simplify this hypergeometric function results in

d4k+2

dz4k+2

e
−z2
8

z
erfi
(z

2

)∣∣∣∣∣∣
z=0

=
(4k + 2)!

26k+3
√
π(2k + 1)!

2F1

(
−2k − 1, 1;

3

2
; 2

)
.

Similarly,

d4k+2

dz4k+2

e
z2

8

z
sin(

√
βxz)

∣∣∣∣∣∣
z=0

= −(4k + 2)!

2k+1∑
m=0

(−1)m(
√
βx)4k−2m+3

8mm!(4k − 2m+ 3)!

=
(4k + 2)!

√
βx

26k+3

2k+1∑
m=0

(−8)m(
√
βx)2m

(2k + 1−m)!(2m+ 1)!
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=
(4k + 2)!

√
βx

26k+3(2k + 1)!
1F1

(
−2k − 1;

3

2
; 2βx2

)
. (5.9)

From (5.8) and (5.9),

−Jk(β) =
(4k + 2)!

26k+3(2k + 1)!

{
β−1/4

2F1

(
−2k − 1, 1;

3

2
; 2

)
+ 4β3/4

∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2βx2

)
dx

}
.

This proves Theorem 1.7. �

As remarked in the introduction, results corresponding to the ones in Theorem 1.5 - Corollary
1.8 can be obtained using similar techniques through (4.12). These results are collectively
put in the following theorem. We refrain from giving the proof since the details are similar
to those of Theorem 1.5 - Corollary 1.8.

Theorem 5.1. Let α, β be two positive numbers such that αβ = π2. Then

(i) α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
− 4α3/4

∫ 0

−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= β−1/4
2F1

(
−2k, 1;

3

2
; 2

)
− 4β3/4

∫ 0

−∞

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx.

(ii) α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
− 4α3/4

∫ 0

−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= −2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2 ; 2
))1/4

, “nearly”.

(iii) − α−1/4
2F1

(
−2k − 1, 1;

3

2
; 2

)
+ 4α3/4

∫ 0

−∞

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx

= β−1/4
2F1

(
−2k − 1, 1;

3

2
; 2

)
− 4β3/4

∫ 0

−∞

xe−βx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2βx2

)
dx.

In particular when α = β = π, we have∫ 0

−∞

xe−πx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2πx2

)
dx =

1

4π
· 2F1

(
−2k − 1, 1;

3

2
; 2

)
. (5.10)

6. Generalization of an asymptotic expansion of Oloa

We first explain how the integral in (1.31) is related to the one on the extreme right of
(1.15). Write the latter integral as∫ ∞

0
(1 + t2)Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ
(
t
2

)
1 + t2

cos

(
1

2
t logα

)
dt. (6.1)

If we now square the expression
Ξ( t2)
1+t2

in (6.1), then as discussed in [13], this amounts to
squaring the functional equation of the Riemann zeta function, and moreover the squared
expression admits a generalization

Ξ
(
t+iz

2

)
Ξ
(
t−iz

2

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

.
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This is what Ramanujan may have had at the back of his mind when he worked [41, Section
5] with the generalization∫ ∞

0
(t2+(z−1)2)Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ
(
t+iz

2

)
Ξ
(
t−iz

2

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

cos

(
1

2
t logα

)
dt,

of (6.1), which upon simplification gives (1.31). Ramanujan [41] obtains a transformation
formula associated with this integral. In [13], Moll and one of the authors found the following
new representation of this transformation, which generalizes a transformation of Koshliakov
[24, Equation (6)] [25, Equations (21), (27)].

Assume −1 < Re z < 1. Let Ω(x, z) be defined by

Ω(x, z) = 2
∞∑
n=1

σ−z(n)nz/2
(
eπiz/4Kz(4πe

πi/4√nx) + e−πiz/4Kz(4πe
−πi/4√nx)

)
,

where σ−z(n) =
∑

d|n d
−z and Kν(z) denotes the modified Bessel function of order ν. Then

for α, β > 0, αβ = 1,

α(z+1)/2

∫ ∞
0

e−2παxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx

= β(z+1)/2

∫ ∞
0

e−2πβxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx

=
1

2π(z+5)/2

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos(1

2 t logα) dt

(t2 + (z + 1)2)
.

(6.2)

Theorem 1.10 is now proved using (6.2).

Proof of Theorem 1.10. We obtain the asymptotic expansion of the integral indirectly by
obtaining the same for the integral on the extreme left of (6.2). Let

g(t, z) := tz/2
(

Ω(t, z)− 1

2π
ζ(z)tz/2−1

)
.

We use the following identity established in [13, Proposition 6.1].

Ω(t, z) = −Γ(z)ζ(z)

(2π
√
t)z

+
tz/2−1

2π
ζ(z)− tz/2

2
ζ(z + 1) +

tz/2+1

π

∞∑
n=1

σ−z(n)

n2 + t2
.

Since for |t| < 1,
∞∑
n=1

σ−z(n)

n2 + t2
=

∞∑
n=1

σ−z(n)

n2

1(
1 +

(
t
n

)2)
=
∞∑
n=1

σ−z(n)

n2

∞∑
m=0

(−1)m
(
t

n

)2m

=

∞∑
m=0

(−1)mt2m
∞∑
n=1

σ−z(n)

n2m+2

=
∞∑
m=0

(−1)mζ(2m+ 2)ζ(2m+ 2 + z)t2m,
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we see that if

h(t, z) := g(t, z) +
Γ(z)ζ(z)

(2π)z
+
tz

2
ζ(z + 1),

then

h(t, z) =

∞∑
m=0

(−1)m

π
ζ(2m+ 2)ζ(2m+ 2 + z)t2m+z+1,

so also as t→ 0,

h(t, z) ∼
∞∑
m=0

(−1)m

π
ζ(2m+ 2)ζ(2m+ 2 + z)t2m+z+1.

We now apply Lemma 2.4 with λ = (z + 2)/2 and µ = 1/2. The condition −1 < Re z < 1
guarantees that Re λ > 0 which is necessary as remarked after Lemma 2.4. Then as α→∞,∫ ∞

0
e−2παth(t, z) dt ∼

∞∑
m=0

(−1)m

π(2πα)2m+z+2
Γ(2m+ 2 + z)ζ(2m+ 2)ζ(2m+ 2 + z). (6.3)

Note that∫ ∞
0

e−2παth(t, z) dt =

∫ ∞
0

e−2παtg(t, z) dt+
Γ(z)ζ(z)

(2π)z

∫ ∞
0

e−2παt dt

+
ζ(z + 1)

2

∫ ∞
0

e−2παttz dt

=

∫ ∞
0

e−2παtg(t, z) dt+
Γ(z)ζ(z)

α(2π)z+1
+
ζ(z + 1)Γ(z + 1)

2(2πα)z+1
. (6.4)

From (6.3) and (6.4) and (6.2), one now obtains (1.32) after simplification. �

7. Concluding remarks and some open questions

1. In this paper, we found two new transformations involving error functions, namely
the ones in Theorems 1.1 and 1.2, which when combined give Ramanujan’s transformation
(1.5) (or equivalently (1.4)) for an integral analogue of theta functions, thus giving a better
understanding of Ramanujan’s transformation. Also, the results in Theorem 1.9 could have
been obtained directly without having to resort to Theorems 1.5 - Corollary 1.8 and Theorem
5.1. However, obtaining Theorem 1.9 from these theorems is useful since they give us many
interesting results which otherwise would not have been revealed. For example, one could
have proved (1.30) directly through (1.29). However, proving it through (1.27) and (5.10)
gives those non-trivial integral evaluations in addition.

In light of existence of the integral on the extreme right of (1.14) which equals two sides
of the first error function transformation, it is natural to ask if similar such integral exists for
the second error function transformation in (1.2). We were unable to find such an integral
and so we leave it as an open problem. However, it is important to state here the difficulty
in finding this integral, if it exists.

If we reverse the steps used in proving the equality of the extreme sides of the transforma-
tion (1.14) in Theorem 1.1, we notice that a crucial step was to use the integral representation
for the error function given in (3.5). However, employing the same method to the left-hand
side of (1.2) does not help as the error function there does not cancel with the integral

2

π

∫ ∞
0

e−πα
2x2+2πx sin (

√
παxz)

x
dx. Another reason why this is a difficult problem is that
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while the Mellin transform of e−ax
2

sin bx is essentially just a 1F1 (see Lemma 2.2), that of

e−ax
2−cx sin bx involves parabolic cylinder functions [18, p. 503, formula 3.953, no. 1].

We now explain the significance of this integral, provided it exists. As remarked in the
introduction, subtracting the first error function transformation in (1.14) from the second
given in (1.17) leads to Ramanujan’s transformation (1.5) for, what is called, an integral
analogue of the Jacobi theta function. The corresponding transformation for the Jacobi
theta function, which has an integral involving Ξ(t) equal to it [12, Theorem 1.2] as well, is

√
α

(
e−

z2

8

2α
− e

z2

8

∞∑
n=1

e−πα
2n2

cos(
√
παnz)

)
=
√
β

(
e
z2

8

2β
− e−

z2

8

∞∑
n=1

e−πβ
2n2

cos(i
√
πβnz)

)
=

1

π

∫ ∞
0

Ξ(t/2)

1 + t2
∇
(
α, z,

1 + it

2

)
dt, (7.1)

where the ∇ function is defined in (2.2).
The equality of the extreme left and right sides of the special case z = 0 of the above

identity was used by Hardy [19, Eqn.(2)] to prove that infinitely many non-trivial zeros of
ζ(s) lie on the critical line Re s = 1

2 . Thus if an integral involving Ξ(t) equal to both sides
of (1.5) is found, then this integral analogue of Hardy’s formula may be used to obtain more
information on the non-trivial zeros of ζ(s). However, this requires us to first obtain an
integral involving Ξ(t) equal to the two sides of (1.17).

Further, since our results involve an extra parameter z, it may be important to see what
else about ζ(s), or some generalization of it, could be extracted from them. It would also
be worth further studying these two error function transformations from the point of view of
further applications in analytic number theory.

Remark. Hardy [20] conjectured that Ramanujan’s formula (1.15) may also be used for
proving the infinitude of the zeros of ζ(s) on the critical line. However, we believe that it
is not this formula but rather the special case z = 0 of the identity which has an integral
involving Ξ(t) equal to both sides of (1.5) which leads to the existence of infinitely many zeros.

2. Consider the transformation in (1.15) and its equivalent version (1.16) given by Mordell.
Let q = eiπw and let

Λ(w) :=
∞∑
n=1

F (n)qn, (7.2)

where F (D) denotes the number of classes of positive definite binary quadratic forms ax2 +
2hxy+by2 with a, b not both even, and determinant −D. Then Mordell [33, Equation (2.18)]
proved that∫ ∞

0

xeπiwx
2

e2πx − 1
dx = − i

4πw
− Λ(w) +

√
−iw
w2

Λ

(
− 1

w

)
+

1

8

( ∞∑
n=−∞

eiπn
2w

)3

, (7.3)

so that with α2 = −iw, we have for Re α2 > 0,∫ ∞
0

xe−πα
2x2

e2πx − 1
dx =

−1

4πα2
−
∞∑
n=1

F (n)e−πnα
2 − 1

α3

∞∑
n=1

F (n)e−πn/α
2

+
1

8

( ∞∑
n=−∞

e−πα
2n2

)3

.

(7.4)



AN INTEGRAL ANALOGUE OF PARTIAL THETA FUNCTION 25

It will be interesting whether the above result admits a generalization when we work with
the integral in (1.14).

3. For a fixed z ∈ C, consider the integral∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
z;

3

2
; 2αx2

)
dx. (7.5)

Using the asymptotic expansion of the confluent hypergeometric function [1, p. 508, Equa-
tion 13.5.1], it can be seen that as |x| → ∞,

1F1

(
z;

3

2
; 2αx2

)
∼
√
π

2

(
eiπz(2αx2)−z

Γ
(

3
2 − z

) +
e2αx2(2αx2)z−

3
2

Γ(z)

)
.

Note that because of the presence of e2αx2 in the second expression of the asymptotic expan-
sion, and since α > 0, the only way the integral in (7.5) can converge is if this expression is
annihilated by Γ(z). This happens only when z is a non-positive integer. This leads us to
consider two cases based on the parity of such z.

Case 1: z is a non-positive even integer. Note that for α either very small or very
large, the integral in (1.28) is nicely approximated by the expression on its right side, as in
this case β is respectively very large or very small. However, the case α = β = π is the worst
in terms of approximating this integral, i.e., the integral∫ ∞

0

xe−πx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2πx2

)
dx,

since then α and β are not only of the same order of magnitude but in fact equal. Table 1
below shows how the integral in (1.28) is approximated by the right side of (1.28) for some
small values of α. (The calculations in this table are done for the identity obtained by divid-

ing both sides of (1.28) by α3/4. They are performed in Mathematica.)

Case 2: z is a non-positive odd integer. When α = π in the integral (7.5), we have
shown in (1.30) that it is equal to zero.

Thus there is a trade-off in that (1.28) has no restriction on α (except α > 0) but is an
approximation, where as we can exactly evaluate the integral (7.5), but only for a specific
value of α, i.e., when α = π. This leads us to two open questions:

Question 1: Find an exact evaluation of

∫ ∞
0

xe−πx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2πx2

)
dx for k ∈

Z+ ∪ {0}.

Question 2: Find an exact evaluation of, or at least an approximation to, the inte-

gral

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx when α 6= π is a positive real number and

k ∈ Z+ ∪ {0}.

It is interesting to note that in Theorem 1.3, the integral involving Ξ(t, χ) involves the
∆ function when χ is even and the ∇ function when χ is odd, which is exactly opposite of
what happens in Theorems 1.3, 1.4 and 1.5 in [14]. Besides the fact that, in doing so, one
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can explicitly evaluate the Mellin transforms and that one does get what one is looking for,
is there some intrinsic reason behind this reversal?

Table 1. Both side of (1.28) (after dividing throughout by α3/4)

α .0000009 .000007 1.5 2.378 9361.79

k LHS RHS LHS RHS LHS RHS LHS RHS LHS RHS

1 259259 259259 33333.4 33333.4 .212975 .210775 0.1483410 0.1465060 0.00136109 0.001361096

2 188713 188713 24263.1 24263.1 .162014 .161821 0.112982 0.112883 0.000990862 0.000990862

3 154475 154475 19861.2 19861.2 .135921 .137363 0.0948065 0.0960151 0.000811187 0.000811187

4 133517 133517 17166.6 17166.6 .11939 .122057 0.0832805 0.085431 0.000701201 0.000701201

5 119074 119074 15309.6 15309.6 .107718 .111318 0.0751402 0.07799044 0.000625405 0.000625405

6 108375 108375 13934 13934 .0989131 .103239 0.0689983 0.0723852 0.000569256 0.000569256

7 100053 100053 12864 12864 .091965 .096872 0.0641517 0.0679618 0.000525582 0.000525583

8 93348.4 93348.4 12002 12002 .0863014 .0916811 0.060201 0.0643522 0.000490396 0.000490397

9 87801.4 87801.4 11288.8 11288.8 .0815698 .0873407 0.0569004 0.0613316 0.000461286 0.000461287

10 83116.1 83116.1 10686.4 10686.4 .0775398 .0836389 0.0540892 0.0587534 0.000436698 0.000436698
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