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Abstract. For fixed u and v such that 0 ≤ u < v < 1/2, the monotonicity of the
quotients of Jacobi theta functions, namely, θj(u|iπt)/θj(v|iπt), j = 1, 2, 3, 4, on 0 <
t <∞ has been established in the previous works of A.Yu. Solynin, K. Schiefermayr,
and Solynin and the first author. In the present paper, we show that the quotients
θ2(u|iπt)/θ2(v|iπt) and θ3(u|iπt)/θ3(v|iπt) are convex on 0 < t <∞.

1. Introduction

Let q = eπiτ with Im τ > 0. The Jacobi theta functions are defined by [8, p. 355,
Section 13.19]

θ1(z|τ) = 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin(2n+ 1)πz, (1.1)

θ2(z|τ) = 2
∞∑
n=0

q(n+
1
2
)2 cos(2n+ 1)πz, (1.2)

θ3(z|τ) = 1 + 2
∞∑
n=1

qn
2

cos 2nπz, (1.3)

θ4(z|τ) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nπz. (1.4)

We denote θi(z|τ) by θi(z), i = 1, 2, 3 and 4, when the dependence on z is to be
emphasized and that on τ is to be suppressed. Moreover when z = 0, we denote the
above theta functions by θi, i.e., θi := θi(0|τ), i = 1, 2, 3 and 4, where it is easy to see
that θ1 = 0.

For u, v ∈ C and τ = iπt with Re t > 0, define Sj(u, v; t), j = 1, 2, 3 and 4, to be the
following quotient of theta functions:

Sj := Sj(u, v; t) :=
θj(u/2|iπt)
θj(v/2|iπt)

. (1.5)

Monotonicity of these quotients has attracted a lot of attention in recent years. Mono-
tonicity of S2(u, v; t) on 0 < t < ∞ arose naturally in the work of A.Yu. Solynin
[14] where it is related to the steady-state distribution of heat. In particular, Solynin
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used it to prove a special case of a generalization of a conjecture due to A.A. Gonchar
[4, Problem 7.45] posed by A. Baernstein II [1]. (For complete history and progress
on Gonchar’s conjecture, the reader should consult [3, 7]). However, the proof for
S2(u, v; t) in [14] contained a small error. This was rectified by A.Yu. Solynin and the
first author in [7], where they also proved monotonicity of S1(u, v; t), S3(u, v; t) and
S4(u, v; t). However, it turns out that K. Schiefermayr [13, Theorem 1] obtained the
same results as those in [7] on monotonicity of S3(u, v; t) and S4(u, v; t) two years be-
fore the appearance of [7], though the proofs in [7] and [13] use entirely different ideas.
These results on monotonicity of Sj(u, v; t), j = 1, 2, 3, 4, are stated in [7] as follows.

For fixed u and v such that 0 ≤ u < v < 1, the functions S1(u, v; t) and S4(u, v; t)
are positive and strictly increasing on 0 < t < ∞, while the functions S2(u, v; t) and
S3(u, v; t) are positive and strictly decreasing on 0 < t <∞.

At the end of the paper [7], based on numerical calculations, it was conjectured
that Sj(u, v; t), j = 1, 2, 3, 4, are completely monotonic on 0 < t < ∞. A function
f is said to be completely monotonic on [0,∞) if f ∈ C[0,∞), f ∈ C∞(0,∞) and
(−1)kf (k)(t) ≥ 0 for any k non-negative and t > 0. Several functions related to gamma
function, digamma function, polygamma function and modified Bessel function etc.
have been shown to be completely monotonic. See [5, 9, 11]. For a survey on properties
of completely monotonic functions, see [12]. The above-mentioned conjecture can be
precisely formulated (and corrected) as follows.

Conjecture 1.1. Let Sj(u, v; t) be defined in (1.5). For fixed u and v such that 0 ≤ u <
v < 1, the functions ∂

∂t
S1(u, v; t), S2(u, v; t), S3(u, v; t) and ∂

∂t
S4(u, v; t) are completely

monotonic on 0 < t <∞.

If this conjecture is indeed true, by a theorem of S.N. Bernstein and D. Wid-
der [6, p. 95, Theorem 1] there exist non-decreasing bounded functions γj such that
Sj(u, v; t) =

∫∞
0
e−stdγj(s) for j = 2, 3, and ∂

∂t
Sj(u, v; t) =

∫∞
0
e−stdγj(s) for j = 1, 4.

In the present paper, we study convexity of S2(u, v; t) and S3(u, v; t) as functions of
t. Figures 1 and 2 seem to indicate that these quotients are convex on 0 < t < ∞,
which is consistent with the above conjecture. Our main result given below shows that
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this is indeed true.

Theorem 1.2. For fixed u and v such that 0 ≤ u < v < 1, the functions S2 and S3

are strictly convex on 0 < t <∞. In other words, ∂S2

∂t
and ∂S3

∂t
are negative and strictly

increasing on 0 < t <∞.

2. Preliminary results

In this section, we collect main ingredients all of which are subsequently required in
the proofs of our results. We then prove certain lemmas also to be used in the later
sections. Then in Section 3, we prove Theorem 1.2 for ∂S2

∂t
. Finally, Section 4 is devoted

to the proof of Theorem 1.2 for ∂S3

∂t
.

We first start with some important properties of Weierstrass elliptic function. For
z ∈ C, let ℘(z) denote the Weierstrass elliptic function with periods 1 and τ . It is
known [8, p. 376] that ℘(z) maps the period parallelogram R (rectangle in our case)
with vertices 0, ω = 1/2, ω+ω′ = 1/2 + τ/2 and ω′ = τ/2 conformally and one-to-one
onto the lower half plane {ω : Imω < 0}. Moreover, ℘(z) is real and decreases from
∞ to −∞ as z describes the boundary of R in the counterclockwise direction starting
from 0. It is known that ℘(z) and ℘′(z) are respectively even and odd functions of z.

Let g2 and g3 denote the invariants of ℘(z). The following differential equations for
℘ are well-known and can be found in [8, p. 332]:

℘′
2
(z) = 4℘3(z)− g2℘(z)− g3,

℘′′(z) = 6℘2(z)− g2
2
,

℘′′′(z) = 12℘(z)℘′(z). (2.1)

The first equation in (2.1) can also be represented in the form [8, p. 331]

℘′
2
(z) = 4 (℘(z)− e1) (℘(z)− e2) (℘(z)− e3) , (2.2)

where e1, e2 and e3 are values of the ℘(z) at z = 1/2, (τ + 1)/2 and τ/2 respectively
[8, p. 330]. As can be easily seen from (2.2), ℘′(z) vanishes at these values of z. It is
known that e3 < e2 < e1, that e3 < 0 and that e1 > 0. Again, from [8, p. 332], we find
that

e1 = −e2 − e3
g2 = −4(e1e2 + e2e3 + e3e1)

g3 = 4e1e2e3. (2.3)

Further, the quantities e1, e2 and e3 are related to theta functions by [8, p. 361]

(e1 − e3)1/2 = πθ23,

(e1 − e2)1/2 = πθ24. (2.4)

An important quantity which arises while expressing ℘(z) in terms of theta functions
is the following multiple of weight 2 Eisenstein series given by

c0 = c0(q) = −π
2

3

(
1− 24

∞∑
n=1

nqn

1− qn

)
. (2.5)
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See [7]. Using [7, Equation 4.4], we have

e3 < c0 < e2 < e1. (2.6)

We note that θ2(x|iπt) and θ3(x|iπt) are related to θ1(x|iπt) by following simple rela-
tions:

θ2(x|iπt) = θ1(1/2− x|iπt),
θ3(x|iπt) = iq−1/4e−iπxθ1(x|iπt). (2.7)

Observe that from [7, Equation (2.9)], we have on 0 < x < 1/2,

2
θ′1(x)

θ1(x)
+

℘′(x)

℘(x)− c0
> 0, (2.8)

which when combined with (2.7) implies that on 0 < x < 1/2,

2
θ′2(x)

θ2(x)
+

℘′(x− 1/2)

℘(x− 1/2)− c0
< 0. (2.9)

Finally, we use the fact that each of the theta functions θj(x/2|iπt), j = 1, 2, 3 and 4,
satisfies the heat equation [8, Section 13.19]

∂θ

∂t
=
∂2θ

∂x2
. (2.10)

We now prove an inequality which will be instrumental in our proof of monotonicity
of S2 on 0 < t <∞.

Lemma 2.1. Let 0 < q < 1. Let e1, g2, g3 and c0 be defined as above. Then the
following inequality holds:

e21(g2 − 12c20) + e1(6g3 + 4g2c0) +

(
g22
4

+ g2c
2
0 + 6g3c0

)
< 0. (2.11)

Proof. Let T (q) denote the left-hand side of (2.11). We view T (q) as a quadratic
function in c0 rather than that in e1, i.e.,

T (q) = (g2 − 12e21)c
2
0 + (6g3 + 4g2e1)c0 +

(
g22
4

+ g2e
2
1 + 6g3e1

)
. (2.12)

Employing (2.3) in (2.12), we see that

T (q) = −4(2e22 + 5e2e3 + 2e23)c
2
0 − 8(2e32 + 7e22e3 + 7e2e

3
3 + 2e33)c0

+ (8e42 + 44e32e3 + 76e22e
2
3 + 44e2e

3
3 + 8e43)

= −4(2e2 + e3)(e2 + 2e3)(c
2
0 + 2(e2 + e3)c0 − (e22 + 3e2e3 + e23)). (2.13)

The quadratic in c0 in the last expression in (2.13) has discriminant

4(e2 + e3)
2 + 4(e22 + 3e2e3 + e23) = 4(2e2 + e3)(e2 + 2e3) = 4(e1 − e2)(e1 − e3), (2.14)

where we utilized (2.3) in the last equality. Hence,

T (q) =− 4(e1 − e2)(e1 − e3)
(
c0 −

(
−(e2 + e3) + π2θ23θ

2
4

)) (
c0 −

(
−(e2 + e3)− π2θ23θ

2
4

))
= −4(e1 − e2)(e1 − e3)(c0 − e1 − π2θ23θ

2
4)(c0 − e1 + π2θ23θ

2
4), (2.15)
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where we invoked (2.4) in the first equality and (2.3) in the second. Using (2.6) and
(2.15), it suffices to show that e1 − c0 > π2θ23θ

2
4. To that end, observe that using [2,

p. 15, Equation (1.3.32)], we have

θ3θ4 = θ24(0|2τ). (2.16)

Also, from [10, Equation 4],

θ44 = 1 + 8
∞∑
n=1

(−1)nqn

(1 + qn)2
. (2.17)

Using (2.16) and (2.17), we deduce that

π2θ23θ
2
4 = π2 + 8π2

∞∑
n=1

(−1)nq2n

(1 + q2n)2
. (2.18)

But from [7, Equation 4.1],

e1 − c0 = π2 + 8π2

∞∑
n=1

q2n

(1 + q2n)2
. (2.19)

Thus (2.18) and (2.19) along with the fact that 0 < q < 1 imply the inequality
e1 − c0 > πθ23θ

2
4. This proves (2.11). �

Lemma 2.2. Let 0 < q < 1. Let e2, g2, g3 and c0 be defined as above. Then the
following inequality holds:

e22(g2 − 12c20) + e2(6g3 + 4g2c0) +

(
g22
4

+ g2c
2
0 + 6g3c0

)
> 0. (2.20)

Proof. Let U(q) denote the left-hand side of (2.20). From (2.3) and (2.6),

U(q) = (g2 − 12e22)c
2
0 + (6g3 + 4g2e2)c0 +

(
g22
4

+ g2e
2
2 + 6g3e2

)
= −4(e2 − e3)(2e2 + e3)(c

2
0 − 2e2c0 − (e22 − e2e3 − e23))

= 4(e1 − e2)(e2 − e3)((c0 − e2)2 + (e1 − e2)(e2 − e3))
> 0. (2.21)

�

3. Proof of monotonicity of
∂S2

∂t

From [7, Theorem 1], since S2(u, v; t) is decreasing on 0 < t < ∞, we see at once
that ∂S2

∂t
< 0. Let L2 := logS2(u, v; t). Observe that

∂S2

∂t
= S2

∂L2

∂t
. (3.1)



6 ATUL DIXIT, ARINDAM ROY AND ALEXANDRU ZAHARESCU

In order to show that ∂S2

∂t
is increasing on 0 < t <∞, it suffices to show that ∂2S2

∂t2
> 0.

Now from (3.1),

∂2S2

∂t2
=

∂

∂t

(
S2
∂L

∂t

)
= S2

(
∂2L2

∂t2
+

(
∂L2

∂t

)2
)
. (3.2)

We claim that ∂2L2

∂t2
> 0 whence we will be done. Using (2.10) twice, we see that

∂2

∂t2
θ2(x/2|iπt) =

∂

∂t

(
∂2

∂x2
θ2(x/2|iπt)

)
=

∂2

∂x2

(
∂

∂t
θ2(x/2|iπt)

)
=

∂4

∂x4
θ2(x/2|iπt).

(3.3)
Hence,

∂2L2

∂t2
=

∂

∂t

(
∂
∂t
θ2(u/2|iπt)
θ2(u/2|iπt)

−
∂
∂t
θ2(v/2|iπt)
θ2(v/2|iπt)

)

=
θ
(4)
2 (u/2|iπt)
θ2(u/2|iπt)

− θ
(4)
2 (v/2|iπt)
θ2(v/2|iπt)

−
((

θ′′2(u/2|iπt)
θ2(u/2|iπt)

)2

−
(
θ′′2(v/2|iπt)
θ2(v/2|iπt)

)2)
. (3.4)

Thus it suffices to show that the function θ
(4)
2 (x|iπt)/θ2(x|iπt)− (θ′′2(x|iπt)/θ2(x|iπt))2

decreases on 0 < x < 1/2. From now on, we fix t where 0 < t < ∞ and henceforth
suppress the dependence of θ2(x/2|iπt) on t. From (2.7) and the relation [7, Equation
(2.6)] (

θ′1(x)

θ1(x)

)′
= − (℘(x)− c0) , (3.5)

we find that (
θ′2(x)

θ2(x)

)′
= − (℘ (x− 1/2)− c0) , (3.6)

since ℘(x) is an even function of x. Then by a repeated application of quotient rule
for derivatives and (3.6), it is easy to see that the following are true:

θ′′2(x)

θ2(x)
=

(
θ′2(x)

θ2(x)

)2

− (℘ (x− 1/2)− c0) ,

θ′′′2 (x)

θ2(x)
=

(
θ′2(x)

θ2(x)

)3

− 3
θ′2(x)

θ2(x)
(℘ (x− 1/2)− c0)− ℘′ (x− 1/2) ,

θ
(4)
2 (x)

θ2(x)
=

(
θ′2(x)

θ2(x)

)4

− 6

(
θ′2(x)

θ2(x)

)2

(℘ (x− 1/2)− c0)− 4
θ′2(x)

θ2(x)
℘′ (x− 1/2)

+ 3 (℘ (x− 1/2)− c0)2 − ℘′′ (x− 1/2) , (3.7)
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from which it easily follows that

θ
(4)
2 (x)

θ2(x)
−
(
θ′′2(x)

θ2(x)

)2

= −4

(
θ′2(x)

θ2(x)

)2

(℘ (x− 1/2)− c0) + 2 (℘ (x− 1/2)− c0)2

− 4
θ′2(x)

θ2(x)
℘′ (x− 1/2)− ℘′′ (x− 1/2) . (3.8)

Again using (3.6), we find that

d

dx

(
θ
(4)
2 (x)

θ2(x)
−
(
θ′′2(x)

θ2(x)

)2
)

= 8
θ′2(x)

θ2(x)
(℘ (x− 1/2)− c0)2 − 4

(
θ′2(x)

θ2(x)

)2

℘′ (x− 1/2)

+ 8 (℘ (x− 1/2)− c0)℘′ (x− 1/2)− 4
θ′2(x)

θ2(x)
℘′′ (x− 1/2)

− ℘′′′ (x− 1/2) . (3.9)

From the monotonicity of ℘ along the boundary of the rectangular lattice as mentioned
in Section 2, in the case at hand, we have in particular that ℘(x) is strictly decreasing
on 0 < x < 1/2. Hence ℘(1/2 − x) is strictly increasing on 0 < x < 1/2. Since
℘(1/2− x) = ℘(x− 1/2), this implies that ℘′(x− 1/2) > 0 on 0 < x < 1/2. Define the
function F2(x) as

F2(x) :=
1

℘′(x− 1/2)

d

dx

(
θ
(4)
2 (x)

θ2(x)
−
(
θ′′2(x)

θ2(x)

)2
)

= 8
θ′2(x)

θ2(x)

(℘ (x− 1/2)− c0)2

℘′ (x− 1/2)
− 4

(
θ′2(x)

θ2(x)

)2

+ 8 (℘ (x− 1/2)− c0)

− 4
θ′2(x)

θ2(x)

℘′′ (x− 1/2)

℘′ (x− 1/2)
− ℘′′′ (x− 1/2)

℘′ (x− 1/2)
. (3.10)

It suffices to prove that F2(x) < 0. We prove this by showing that F2(1/2) = 0
and F ′2(x) > 0, since then, the mean value theorem implies that for any x ∈ (0, 1/2),
F2(x)−F2(1/2) = F ′2(c)(x−1/2) for some c ∈ (x, 1/2). We begin by showing F2(1/2) =
0. We require the following series expansions in order to establish this. First, from [8,
p. 358, Section 13.19],

θ′2(z)

θ2(z)
= −π tanπz + 4π

∞∑
n=1

(−1)n
q2n

1− q2n
sin 2nπz

=

(
1

z − 1/2
− π2

3
(z − 1/2)− · · ·

)
+ 4π

∞∑
n=1

(−1)n
q2n

1− q2n
sin 2nπz. (3.11)
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Further, the Laurent series expansions of ℘(z − 1/2) and ℘′(z − 1/2) around z = 1/2
are as follows [8, p. 330, Section 13.12].

℘(z − 1/2) =
1

(z − 1/2)2
+
g2(z − 1/2)2

22.5
+
g3(z − 1/2)4

22.7
+
g22(z − 1/2)6

24.3.52
+ ...,

℘′(z − 1/2) =
−2

(z − 1/2)3
+
g2(z − 1/2)

10
+
g3(z − 1/2)3

7
+
g22(z − 1/2)5

23.52
+ .... (3.12)

Using (3.11), (3.12), the third differential equation in (2.1) and simplifying, we find
that F2(1/2) = 0. Differentiating both sides of (3.10) with respect to x, using (2.1),
(3.6) and simplifying, we get

F
′
2(x)

4
=
θ′2(x)

θ2(x)
·
℘2(x− 1/2) (g2 − 12c20) + ℘ (x− 1/2) (6g3 + 4g2c0) +

(
6g3c0 + g2c

2
0 +

g22
4

)
℘′2(x− 1/2)

+
℘ (x− 1/2) (g2/2− 6c20) + g3 + 2c30 + g2c0/2

℘′(x− 1/2)
. (3.13)

Now we show that F ′2(x) > 0. Let

A1(x) := ℘(x− 1/2)
(
g2/2− 6c20

)
+ g3 + 2c30 + g2c0/2,

A2(x) := ℘2(x− 1/2)
(
g2 − 12c20

)
+ ℘ (x− 1/2) (6g3 + 4g2c0) +

(
6g3c0 + g2c

2
0 + g22/4

)
.

(3.14)

By Remark 1 in [7], we have

e1 <
−(2g3 + 4c30 + g2c0)

g2 − 12c20
. (3.15)

This along with the fact that ℘(x − 1/2) is strictly increasing on 0 < x < 1/2 from
e1 to ∞ implies that A1 has a unique zero, say a1 in (0, 1/2). Now Lemma 2 from [7]

implies that g2 − 12c20 > 0. This along with the fact that ℘ (x− 1/2)→∞ as x→ 1
2

−

implies that A2(x) → ∞ as x → 1
2

−
. Using the fact that ℘(1/2) = ℘(−1/2) = e1 and

Lemma 2.1, we have A2(0) < 0. Since A2 is quadratic in ℘(x− 1/2) and ℘(x− 1/2) is
strictly increasing on 0 < x < 1/2, there exists a unique value a2 of x in (0, 1/2) such
that A2(a2) = 0. Let P := ℘(a2− 1/2). Note that a2 is not a double root of A2. Next,
P has two possibilities, say,

P = P1 :=
−6g3 − 4g2c0 −

√
∆

2(g2 − 12c20)
or P = P2 :=

−6g3 − 4g2c0 +
√

∆

2(g2 − 12c20)
,

where

∆ := (6g3 + 4g2c0)
2 − 4(g2 − 12c20)(6g3c0 + g2c

2
0 + g22/4) > 0, (3.16)

the last inequality coming from the above discussion. We now claim that P = P2. Now

P2 >
−6g3 − 4g2c0
2(g2 − 12c20)

(3.17)
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Figure 3: Graphs of 10A1HxL and A2HxL on 0<x<
1
2

.

and

−6g3 − 4g2c0
2(g2 − 12c20)

+
2g3 + 4c30 + g2c0

g2 − 12c20
=
−g3 − g2c0/2− 2c30

(g2 − 12c20)
+

6c30 − g2c0/2
g2 − 12c20

>
e1 − c0

2
> 0,

(3.18)
where we utilized (3.15) in the penultimate step and (2.6) in the ultimate step. There-
fore, by (3.15), (3.17) and (3.18),

e1 <
−(2g3 + 4c30 + g2c0)

g2 − 12c20
< P2. (3.19)

This shows that ℘(x− 1/2) attains the value P2 for a unique x in the interval (0, 1/2).
This combined with the facts that P1 < P2 and A2 has a unique root in 0 < x < 1/2
implies that P = P2.

Remark 1. The above discussion implies that P1 < e1 < P2. As the real period of
℘ is 1, this tells us that there is no real number x such that ℘(x− 1/2) = P1.

Using P = P2 and (3.19), it is clear that 0 < a1 < a2 < 1/2. Figure 3 shows the
graphs of 10A1(x)1 and A2(x). Define

G2(x) :=
F ′2(x)℘′2(x− 1/2)

4A2(x)

=
θ′2(x)

θ2(x)
+

℘′(x− 1/2)
(
℘ (x− 1/2) +

2g3+4c30+g2c0
g2−12c20

)
2
(
℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0

g2−12c20
+

6g3c0+g2c20+g
2
2/4

g2−12c20

) . (3.20)

Next, we differentiate extreme sides of (3.20) with respect to x and use (3.6) so that
θ′2(x)/θ2(x) is eliminated from the right-hand side of (3.20) and we have everything in

1The graph of A1(x) is scaled by the factor of 10 for better view without changing the fact 0 <
a1 < a2 < 1/2.
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terms of ℘ and ℘′. This along with the second differential equation in (2.1) gives

G′2(x) = −(℘(x− 1/2)− c0) +
(6℘2(x− 1/2)− g2

2
)
(
℘(x− 1/2) +

2g3+4c30+g2c0
g2−12c20

)
2
(
℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0

g2−12c20
+

6g3c0+g2c20+g
2
2/4

g2−12c20

)
+

℘′2(x− 1/2)

2
(
℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0

g2−12c20
+

6g3c0+g2c20+g
2
2/4

g2−12c20

)
−
℘′2(x− 1/2)

(
℘(x− 1/2) +

2g3+4c30+g2c0
g2−12c20

)(
2℘(x− 1/2) + 6g3+4g2c0

g2−12c20

)
2
(
℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0

g2−12c20
+

6g3c0+g2c20+g
2
2/4

g2−12c20

)2 .

(3.21)

Simplifying the first three terms of (3.21), we obtain

G′2(x) =
℘′2(x− 1/2)(

℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0
g2−12c20

+
6g3c0+g2c20+g

2
2/4

g2−12c20

)
−
℘′2(x− 1/2)

(
℘(x− 1/2) +

2g3+4c30+g2c0
g2−12c20

)(
2℘(x− 1/2) + 6g3+4g2c0

g2−12c20

)
2
(
℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0

g2−12c20
+

6g3c0+g2c20+g
2
2/4

g2−12c20

)2 .

(3.22)

Consider three cases: 0 < x < a1, a1 ≤ x ≤ a2 and a2 < x < 1/2.

Case 1: 0 < x < a1.
Then, A1(x) < 0 and A2(x) < 0. We show that G2(x) < 0. Note that from (2.2),

(3.11), (3.15) and Lemma 2.1, it readily follows that G2(0) = 0. Since A1(x) < 0,
A2(x) < 0 and g2 − 12c20 > 0, we have

℘ (x− 1/2) +
2g3 + 4c30 + g2c0

g2 − 12c20
< 0, (3.23)

℘2(x− 1/2) + ℘(x− 1/2)
6g3 + 4g2c0
g2 − 12c20

+
6g3c0 + g2c

2
0 + g22/4

g2 − 12c20
< 0. (3.24)

From (3.23) and (3.18), we see that

2℘(x− 1/2) +
6g3 + 4g2c0
g2 − 12c20

< 0. (3.25)

Therefore, (3.23), (3.24) and (3.25) imply that G′2(x) < 0. By the mean value theo-
rem, for any x ∈ (0, a1), G2(x) = xG′2(d) for some d ∈ (0, x). Hence G2(x) < 0. Thus
F ′2(x) > 0 in 0 < x < a1.

Case 2: a1 ≤ x ≤ a2.
Note that A1(a1) = 0, A2(a1) < 0, A1(a2) > 0 and A2(a2) = 0. Also, A1(x) > 0 and

A2(x) < 0 when a1 < x < a2.
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Since ℘(x− 1/2) is strictly increasing on 0 < x < 1/2, we have ℘′(x− 1/2) > 0 and
℘(x− 1/2)− c0 > e1− c0 > 0, where we invoked (2.6) in the last step. This along with
(2.9) shows that θ′2(x)/θ2(x) < 0 on 0 < x < 1/2. Using all of the above facts and
(3.13), we observe that F ′2(x) > 0 on a1 ≤ x ≤ a2.

Case 3: a2 < x < 1/2. Since A1(x) > 0, A2(x) > 0 and g2 − 12c20 > 0, we have

℘ (x− 1/2) +
2g3 + 4c30 + g2c0

g2 − 12c20
> 0, (3.26)

℘2(x− 1/2) + ℘(x− 1/2)
6g3 + 4g2c0
g2 − 12c20

+
6g3c0 + g2c

2
0 + g22/4

g2 − 12c20
> 0. (3.27)

From (3.20), as x→ 1
2

−
,

G2(x) =
θ′2(x)

θ2(x)
+
℘′(x− 1/2)

2℘(x− 1/2)

(
1 +O

(
1

℘(x− 1/2)

))
. (3.28)

Using (3.11) and (3.12), it is easy to check that G2(1/2) = 0. Next we show that
G′2(x) < 0. From (3.22),

G′2(x) =
℘′2(x− 1/2)(1−Q(x))(

℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0
g2−12c20

+
6g3c0+g2c20+g

2
2/4

g2−12c20

) , (3.29)

where

Q(x) :=

(
℘(x− 1/2) +

2g3+4c30+g2c0
g2−12c20

)(
2℘(x− 1/2) + 6g3+4g2c0

g2−12c20

)
2
(
℘2(x− 1/2) + ℘(x− 1/2)6g3+4g2c0

g2−12c20
+

6g3c0+g2c20+g
2
2/4

g2−12c20

) . (3.30)

We claim that Q(x) > 1. Note that the denominator of Q(x) can be simplified as
follows:

2

(
℘2(x− 1/2) + ℘(x− 1/2)

6g3 + 4g2c0
g2 − 12c20

+
6g3c0 + g2c

2
0 + g22/4

g2 − 12c20

)
=

(
2℘(x− 1/2) +

6g3 + 4g2c0
g2 − 12c20

)(
℘(x− 1/2) +

6g3 + 4g2c0
2(g2 − 12c20)

)
+

(
2

6g3c0 + g2c
2
0 + g22/4

g2 − 12c20
− (6g3 + 4g2c0)

2

2(g2 − 12c20)
2

)
. (3.31)

Now

2℘(x− 1/2) +
6g3 + 4g2c0
g2 − 12c20

> 2℘(a2 − 1/2) +
6g3 + 4g2c0
g2 − 12c20

= 2P +
6g3 + 4g2c0
g2 − 12c20

=

√
∆

(g2 − 12c20)

> 0. (3.32)
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Figure 4: Graph of G2HxL on 0<x<
1
2

.

From (3.18), we have

℘(x− 1/2) +
2g3 + 4c30 + g2c0

g2 − 12c20
> ℘(x− 1/2) +

6g3 + 4g2c0
2(g2 − 12c20)

. (3.33)

By (3.16), the last term on the right-hand side of (3.31) is negative. Hence, (3.31),
(3.32), (3.33) and (3.27) imply that Q(x) > 1. Therefore G′2(x) < 0. By the mean
value theorem, for any x ∈ (a2, 1/2), G2(x) − G2(1/2) = G′2(b)(x − 1/2) for some
b ∈ (x, 1/2). Hence G2(x) > 0. Since A2(x) > 0, this implies that F

′
2(x) > 0.

From the above three cases, we conclude that F
′
2(x) > 0 in 0 < x < 1/2. Since

F2(1/2) = 0, by another application of the mean value theorem, we conclude that
F2(x) < 0 in 0 < x < 1/2. This completes the proof. Figure 4 shows the graph of
G2(x) on 0 < x < 1/2.

4. Proof of monotonicity of
∂S3

∂t

The method for proving monotonicity of ∂S3

∂t
is similar to that of ∂S2

∂t
and so we will

be brief. From [7, Theorem 1], since S3(u, v; t) is decreasing on 0 < t < ∞, we see at
once that ∂S3

∂t
< 0. Let L3 := logS3(u, v; t). Observe that

∂S3

∂t
= S3

∂L3

∂t
. (4.1)

It suffices to show that ∂2S3

∂t2
> 0. Now,

∂2S3

∂t2
=

∂

∂t

(
S3
∂L

∂t

)
= S3

(
∂2L3

∂t2
+

(
∂L3

∂t

)2
)
. (4.2)

We show that ∂2L3

∂t2
> 0. Observe that using (2.10) twice, we have ∂2

∂t2
θ3(x/2|iπt) =

∂4

∂x4
θ3(x/2|iπt). It suffices to show that the function θ

(4)
3 (x|iπt)/θ3(x|iπt)−(θ′′3(x|iπt)/θ3(x|iπt))2

decreases on 0 < x < 1/2. Fix t where 0 < t <∞. Using (2.7) and (3.5), we find that(
θ′3(x)

θ3(x)

)′
= −

(
℘

(
x+

τ − 1

2

)
− c0

)
. (4.3)
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Observe that

θ
(4)
3 (x)

θ3(x)
−
(
θ′′3(x)

θ3(x)

)2

= −4

(
θ′3(x)

θ3(x)

)2(
℘

(
x+

τ − 1

2

)
− c0

)
+ 2

(
℘

(
x+

τ − 1

2

)
− c0

)2

− 4
θ′3(x)

θ3(x)
℘′
(
x+

τ − 1

2

)
− ℘′′

(
x+

τ − 1

2

)
. (4.4)

Using (4.3), we find that

d

dx

(
θ
(4)
3 (x)

θ3(x)
−
(
θ′′3(x)

θ3(x)

)2
)

= 8
θ′3(x)

θ3(x)

(
℘

(
x+

τ − 1

2

)
− c0

)2

− 4

(
θ′3(x)

θ3(x)

)2

℘′
(
x+

τ − 1

2

)
+ 8

(
℘

(
x+

τ − 1

2

)
− c0

)
℘′
(
x+

τ − 1

2

)
− 4

θ′3(x)

θ3(x)
℘′′
(
x+

τ − 1

2

)
− ℘′′′

(
x+

τ − 1

2

)
. (4.5)

Since ℘
(
x+ τ−1

2

)
decreases on 0 < x < 1/2, we have ℘′

(
x+ τ−1

2

)
< 0. Define a

function F3(x) as

F3(x) :=
1

℘′(x+ τ−1
2

)

d

dx

(
θ
(4)
3 (x)

θ3(x)
−
(
θ′′3(x)

θ3(x)

)2
)

= 8
θ′3(x)

θ3(x)

(
℘
(
x+ τ−1

2

)
− c0

)2
℘′
(
x+ τ−1

2

) − 4

(
θ′3(x)

θ3(x)

)2

+ 8

(
℘

(
x+

τ − 1

2

)
− c0

)
− 4

θ′3(x)

θ3(x)

℘′′
(
x+ τ−1

2

)
℘′
(
x+ τ−1

2

) − ℘′′′
(
x+ τ−1

2

)
℘′
(
x+ τ−1

2

) . (4.6)

It suffices to prove that F3(x) > 0. We prove this by showing that F ′3(x) < 0 and
F3(1/2) > 0, because then by the mean value theorem, for any x ∈ (0, 1/2), we have
F3(x) − F3(1/2) = F ′3(e)(x − 1/2) for some e ∈ (x, 1/2) whence F3(x) > 0. We first
show that F3(1/2) > 0. Using the thirs differential equation in (2.1), we have

F3(1/2) = 8(e3 − c0)2 lim
x→ 1

2

−

θ′3(x)/θ3(x)

℘′
(
x+ τ−1

2

) − 4 lim
x→ 1

2

−

(
θ′3(x)

θ3(x)

)2

+ 8(e3 − c0)

− 4℘′′(τ/2) lim
x→ 1

2

−

θ′3(x)/θ3(x)

℘′
(
x+ τ−1

2

) − 12e3. (4.7)

Now [8, p. 358, Section 13.19]

θ′3(z)

θ3(z)
= 4π

∞∑
n=1

(−1)n
qn

1− q2n
sin 2nπz (4.8)

implies that θ′3(x)/θ3(x) vanishes at x = 1/2. Note that ℘′
(
x+ τ−1

2

)
= 0 at x = 1/2

too. Hence, using L’Hopital’s rule in (4.7), then (4.3), the second differential equation
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in (2.1) and simplifying, we see that

F3(1/2) =
16(e3 − c0)3

g2 − 12e23
− 12c0. (4.9)

Now using (2.3) and (2.6), note that

g2 − 12e23 = −4(e1e2 + e2e3 + e3e1)− 12e23

= 4(e3 − e1)(e2 − e3)
< 0. (4.10)

Thus, we need to show that 16(e3−c0)3−12c0(g2−12e23) < 0 or equivalently, (e3−c0)3 <
3c0(e3 − e1)(e2 − e3). Consider two cases.
Case 1: c0 ≤ 0.
By (2.6), the left-hand side is less than zero but the right-hand side is greater than

or equal to zero. This proves the required inequality.
Case 2: c0 > 0.
Using (2.3),

3c0(e3 − e1)(e2 − e3)− (e3 − c0)3

= (e1 + e2 + c0)
3 − 3c0(2e1 + e2)(e1 + 2e2)

=
1

27

(
((2e1 + e2) + (e1 + 2e2) + 3c0)

3 − 27 · 3c0(2e1 + e2)(e1 + 2e2)
)
. (4.11)

The last expression is clearly positive by the Arithmetic mean-Geometric mean in-
equality and since 2e1 +e2, e1 +2e2 are positive by (2.6) and since 3c0 is positive. From
the above two cases, we conclude that F3(1/2) > 0. Our next task is to show that
F ′3(x) < 0. From (4.6), we have

F
′
3(x)

4
=
θ′3(x)

θ3(x)

A2(x+ τ
2
)

℘′2
(
x+ τ−1

2

) +
A1(x+ τ

2
)

℘′
(
x+ τ−1

2

) , (4.12)

where A1(x) and A2(x) are defined in (3.14). Now

A′2

(
x+

τ

2

)
= ℘′

(
x+

τ − 1

2

)(
2
(
g2 − 12c20

)
℘

(
x+

τ − 1

2

)
+ (6g3 + 4g2c0)

)
.

(4.13)
From (2.6), (3.15) and the facts that e3 < ℘

(
x+ τ−1

2

)
< e2 and ℘′

(
x+ τ−1

2

)
< 0 on

0 < x < 1/2, we find that A′2(x+ τ
2
) > 0. Also by Lemma 2.2, A2(

τ
2
) > 0. By the mean

value theorem, for any x ∈ (0, 1/2), we have A2(x + τ
2
) = A2(

τ
2
) + xA′2(k + τ

2
) > 0 for

some k ∈ (0, x). Figure 5 shows the graphs of A1(
τ
2
) and A2(

τ
2
) on 0 < x < 1/2. Now

define G3 by

G3(x) :=
F ′3(x)℘′2(x+ τ−1

2
)

4A2(x+ τ
2
)

=
θ′3(x)

θ3(x)
+

℘′(x+ τ−1
2

)
(
℘
(
x+ τ−1

2

)
+

2g3+4c30+g2c0
g2−12c20

)
2
(
℘2(x+ τ−1

2
) + ℘(x+ τ−1

2
)6g3+4g2c0
g2−12c20

+
6g3c0+g2c20+g

2
2/4

g2−12c20

) . (4.14)
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Figure 5: Graphs of A1Hx+
Τ

2
L and A2Hx+

Τ

2
L on 0<x<

1
2

.

From the above discussion, it suffices to show that G3(x) < 0. Now, from (4.8) and
the fact that ℘′

(
τ−1
2

)
= 0 = ℘′

(
τ
2

)
, it is easy to see that G3(0) = 0 = G3(1/2). This

implies that G′3(x) has at least one zero in 0 < x < 1/2. Differentiating both sides of
(4.14) with respect to x and simplifying, we observe that

G′3(x) =
℘′2(x+ τ−1

2
)(1−Q(x+ τ

2
))(

℘2(x+ τ−1
2

) + ℘(x+ τ−1
2

)6g3+4g2c0
g2−12c20

+
6g3c0+g2c20+g

2
2/4

g2−12c20

) , (4.15)

where Q(x) is defined in (3.30). Now

1−Q
(
x+

τ

2

)
= 1−

(
℘(x+ τ−1

2
) +

2g3+4c30+g2c0
g2−12c20

)(
2℘(x+ τ−1

2
) + 6g3+4g2c0

g2−12c20

)
2
(
℘2(x+ τ−1

2
) + ℘(x+ τ−1

2
)6g3+4g2c0
g2−12c20

+
6g3c0+g2c20+g

2
2/4

g2−12c20

)
=

2℘(x+ τ−1
2

)
g3+g2c0−4c30
g2−12c20

+ C

2
(
℘2(x+ τ−1

2
) + ℘(x+ τ−1

2
)6g3+4g2c0
g2−12c20

+
6g3c0+g2c20+g

2
2/4

g2−12c20

) , (4.16)

where

C :=
2(6g3c0 + g2c

2
0 + g22/4)

g2 − 12c20
− (6g3 + 4g2c0)(2g3 + 4c30 + g2c0)

(g2 − 12c20)
2

. (4.17)

The numerator in the last expression of (4.16) has atmost one zero since it is linear in
℘(x+ τ−1

2
) and ℘(x+ τ−1

2
) is monotone. Hence, G′3(x) has exactly one zero, say x0, in

0 < x < 1/2. Thus we will be done if we can show that G3(x) < 0 at some point in
the interval 0 < x < 1/2. In fact, we show that G3(x) < 0 on (0, x0).

For any x in (0, x0), we have ℘
(
x+ τ−1

2

)
> ℘

(
x0 + τ−1

2

)
. Also,

g3 + g2c0 − 4c30
g2 − 12c20

=
g3 + g2c0/2 + 2c30

g2 − 12c20
+
c0(g2/2− 6c20)

g2 − 12c20
<
−(e1 − c0)

2
< 0,

where last two inequalities follows from (3.15) and (2.6). Therefore

2℘

(
x+

τ − 1

2

)
g3 + g2c0 − 4c30
g2 − 12c20

+ C < 2℘

(
x0 +

τ − 1

2

)
g3 + g2c0 − 4c30
g2 − 12c20

+ C = 0,

(4.18)
where the last equality comes from the fact that G′3(x0) = 0. Hence, G′3(x) < 0 for
0 < x < x0. Then it is clear by the mean value theorem that for any x ∈ (0, x0),
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G3(x) = xG′3(x1) < 0 for some x1 ∈ (0, x). So finally G3(x) < 0 for 0 < x < 1/2. This
completes the proof. Figure 6 shows the graph of G3(x) on 0 < x < 1/2.
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