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Abstract. In this paper we present some identities involving convolutions of Dirich-
let characters and the Möbius function, which are related to a well known identity of
Ramanujan, Hardy and Littlewood.

1. Introduction

In the present paper we consider a class of sums which involve Dirichlet characters
and the Möbius function convolved with itself. We are interested in potential identities
which involve such sums together with sums over zeros of the Riemann zeta-function,
but which do not involve the zeros of the given Dirichlet L-function.

Let us consider the arithmetic functions a1(n) and a2(n) given by the convolutions

(1.1) a1 := χ ∗ µ ∗ µ,

and

(1.2) a2 := χ3 ∗ χ2µ ∗ χ1µ,

where µ denotes the Möbius function and χ, χ1, χ2, χ3 are Dirichlet characters. Alter-
natively one may first define a1(n) on prime powers by letting

(1.3) a1(pk) =

{
χ(p)− 2 if k = 1,
χ(pk−2)(χ(p)− 1)2 if k ≥ 2,

and then extend the definition of a1(n) by multiplicativity. Similarly one may define
a2(n) to be the unique arithmetic function which is multiplicative and which is defined
on prime powers by

(1.4) a2(pk) =

{
χ3(p)− χ2(p)− χ1(p) if k = 1,
χ3(pk−2)(χ3(p)− χ2(p))(χ3(p)− χ1(p)) if k ≥ 2.

Ramanujan (see [2, 3, 4, 13, 14]) communicated an identity to Hardy and Littlewood
during his stay in Cambridge, which was missing the contribution of the non-trivial
zeros of the Riemann zeta-function. The corrected version, established by Hardy and
Littlewood in [11], is as follows:
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Let α and β be two positive numbers such that αβ = π. Assume that the series∑
ρ

(
Γ
(

1−ρ
2

)
/ζ
′
(ρ)
)
βρ converges, where ρ runs through the non-trivial zeros of ζ(s),

and that the non-trivial zeros of ζ(s) are simple. Then

√
α

∞∑
n=1

µ(n)

n
e−α

2/n2 −
√
β

∞∑
n=1

µ(n)

n
e−β

2/n2

= − 1

2
√
β

∑
ρ

Γ
(

1−ρ
2

)
ζ ′(ρ)

βρ.(1.5)

For more work related to this identity, the reader is referred to Berndt [4, p. 470],
Bhaskaran [5], Paris and Kaminiski [12, p. 143] and Titchmarsh [16, p. 219, Section
9.8]. In [7], Dixit obtained the following character analogue of the Ramanujan-Hardy-
Littlewood identity (1.5):

Let χ be a primitive character modulo q, and α and β be two positive numbers

such that αβ = 1. Assume the series
∑

ρ
πρ/2βρΓ((1+a−ρ)/2)

qρ/2L′(ρ,χ̄)
converges, where ρ denotes

a non-trivial zero of L(s, χ̄) and that the non-trivial zeros of the associated Dirichlet
L-function are simple. Then

αa+ 1
2
√
εχ

∞∑
n=1

χ(n)µ(n)

n1+a
e
−πα

2

qn2 − βa+ 1
2
√
εχ̄

∞∑
n=1

χ̄(n)µ(n)

n1+a
e
−πβ

2

qn2(1.6)

= −
√
εχ̄

2
√
β

( q
π

) 1+a
2
∑
ρ

Γ
(

1+a−ρ
2

)
L′(ρ, χ̄)

(
π

q

) ρ
2

βρ.

Here

(1.7) a =

{
0 if χ(−1) = 1,
1 if χ(−1) = −1

and εχ denotes the Gauss sum

εχ :=

q∑
n=1

χ(n)e
2πin
q
,

which satisfies
|εχ| =

√
q and εχεχ̄ = qχ(−1),

for a primitive character χ mod q.
In [8], Dixit obtained a one-variable generalization of (1.5), and in [9] and [10] Dixit

and two of the authors obtained a one variable generalization of (1.6) and respectively
analogues of these identities to Hecke forms.

We remark that it is not necessary to assume convergence of the series on the right-
hand side of (1.5) and (1.6), instead one can bracket the terms of the series as explained
in [11, p. 158] and [16, p. 220].

It is worth mentioning that the proofs of the above results in (1.5) and (1.6) are
quite sensitive to the type of functional equation satisfied by the L-functions involved
in those identities. Also, specific knowledge of a certain Mellin transform obtained
from those functional equations is needed. One new class of identities where one can
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handle the corresponding functional equations and where one does have knowledge of
the needed Mellin transform is discussed in the present paper.

We will prove the following result.

Theorem 1. Let χ be an even primitive Dirichlet character mod q. Assume that the
zeros of ζ(s) are simple, and distinct from the zeros of L(s, χ). Let α and β be two
positive real numbers such that αβ = qπ. Then,

(1.8)

√
α

εχ̄

∞∑
n=1

ã1(n)

n
e
−α2
n2 −

√
β

εχ

∞∑
n=1

a1(n)

n
e
−β2

n2 = − 1

2
√
βεχ

∑
ρ

Sρ,

where ã1(n) = (χ̄ ∗µ ∗µ)(n), ρ = τ + iν runs through the non-trivial zeros of ζ(s), and
Sρ is given by

Sρ =
βρL(ρ, χ)Γ

(
1−ρ

2

)
(ζ ′(ρ))2

(
log β − ζ ′′(ρ)

ζ ′(ρ)
+
L′(ρ, χ)

L(ρ, χ)
− 1

2
ψ

(
1− ρ

2

))
,

where ψ denotes the digamma function. The sum over ρ involves bracketing the terms
so that the terms for which

|ν − ν ′| < exp(−A1ν/ log ν) + exp(−A1ν
′/ log ν ′),

where A1 is a suitable positive constant, are included in the same bracket.

Let us remark that, while the Dirichlet L-function L(s, χ) and its derivative do
appear in the above identity, the summation on the right-hand side of (1.8) is over the
zeros of the Riemann zeta-function only. The exact location of the zeros of L(s, χ) is
irrelevant for the above identity, as long as these zeros differ from the zeros of ζ(s). This
is widely believed to be so. In fact, by the Grand Simplicity Hypothesis (see Rubinstein
and Sarnak [15]), combined with the Generalized Riemann Hypothesis, these zeros
should not only be simple and distinct, but they should all lie on the critical line and
their imaginary parts should be linearly independent over Q. The same remark applies
to the hypotheses from the statement of Theorem 2 below. Returning to Theorem 1, it
is worth mentioning that numerical computations show that, despite the complicated
shape of the sum over the zeros of the Riemann zeta-function on the right-hand side of
the identity, in practice this sum is rapidly convergent. For example, in Table 1 below
it was enough to take the first 100 zeros in order for the first six digits on both sides
of the identity to coincide.

By the same method one can prove the following result.

Theorem 2. Let χ1, χ2 and χ3 be primitive Dirichlet characters of conductors q1, q2

and q3 respectively. Assume that the zeros of L(s, χ1)L(s, χ2) are simple and distinct
from the zeros of L(s, χ3). Let α and β be two positive numbers such that αβ = πq3

q1q2
.

Let ã2(n) = (χ̄3 ∗ χ̄1µ ∗ χ̄2µ)(n). Then,

a) If χ1, χ2 and χ3 are all even, we have√
αεχ̄1εχ̄2

εχ̄3

∞∑
n=1

ã2(n)

n
e
−α2
n2 −

√
βεχ1εχ2

εχ3

∞∑
n=1

a2(n)

n
e
−β2

n2
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= −
√
εχ1εχ2

2
√
βεχ3

∑
ρ

Γ
(

1−ρ
2

)
L(ρ, χ3)

L′(ρ, χ1)L(ρ, χ2)
βρ +

∑
ρ′

Γ
(

1−ρ′
2

)
L(ρ′, χ3)

L(ρ′, χ1)L′(ρ′, χ2)
βρ
′

 .(1.9)

b) If χ1, χ2 and χ3 are all odd, we have

α

√
αεχ̄1εχ̄2

εχ̄3

∞∑
n=1

ã2(n)

n2
e
−α2
n2 − β

√
βεχ1εχ2

εχ3

∞∑
n=1

a2(n)

n2
e
−β2

n2

= −
√
εχ1εχ2

2
√
βεχ3

∑
ρ

Γ
(

2−ρ
2

)
L(ρ, χ3)

L′(ρ, χ1)L(ρ, χ2)
βρ +

∑
ρ′

Γ
(

2−ρ′
2

)
L(ρ′, χ3)

L(ρ′, χ1)L′(ρ′, χ2)
βρ
′

 .(1.10)

Here ρ = τ + iν and ρ′ = τ ′ + iν ′ run through the non-trivial zeros of L(s, χ1) and
L(s, χ2) respectively, and the sums over ρ and ρ′ involve bracketing the terms so that
the terms for which

|ν1 − ν2| < exp(−A1ν1/ log ν1) + exp(−A1ν2/ log ν2)

and
|ν ′1 − ν ′2| < exp(−A2ν

′
1/ log ν ′1) + exp(−A2ν

′
2/ log |ν ′2),

where A1 and A2 are suitable positive constants, are included in the same bracket.

2. Preliminaries

The Riemann zeta-function

(2.1) ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1, for Re s > 1,

has an analytic continuation to the entire complex plane except for a simple pole at
s = 1, and satisfies the functional equation

(2.2) ξ(s) :=
s(s− 1)

2
π
−s
2 Γ(

s

2
)ζ(s) = ξ(1− s).

For a primitive Dirichlet character χ mod q, the Dirichlet L-function

(2.3) L(s, χ) =
∞∑
n=1

χ(n)n−s =
∏
p

(1− χ(p)p−s)−1, for Re s > 1,

has an analytic continuation to the entire complex plane and satisfies the functional
equation

(2.4) ξ(s, χ) :=

(
π

q

)− s+a
2

Γ(
s+ a

2
)L(s, χ) = i−aq−

1
2 εχξ(1− s, χ̄),

where a and εχ are as in the Introduction (see [6]).
Let us consider the functions

(2.5) F (s, χ) :=
ζ2(s)

L(s, χ)



IDENTITIES FOR CONVOLUTIONS OF CHARACTERS AND THE MÖBIUS FUNCTION 5

and

(2.6) G(s, χ1, χ2, χ3) :=
L(s, χ1)L(s, χ2)

L(s, χ3)
.

The Dirichlet series associated to F and G converge absolutely for Re s > 1. From
(2.2) and (2.4) we see that for an even primitive character χ mod q, the function F (χ, s)
satisfies the functional equation

(2.7)
Γ
(

1−s
2

)
F (s, χ)

=
√
πεχ(πq)−s

Γ
(
s
2

)
F (1− s, χ̄)

.

Similarly we obtain a functional equation for G(s, χ1, χ2, χ3). For primitive char-
acters χ1, χ2 and χ3 of the same parity and conductors q1, q2 and q3 respectively, we
have

(2.8)
Γ
(
s+a

2

)
G(1− s, χ̄1, χ̄2, χ̄3)

= i−aπ−
1
2
εχ1εχ2

εχ3

(
πq3

q1q2

)s Γ
(

1−s+a
2

)
G(s, χ1, χ2, χ3)

.

Using (1.1), (2.1), and (2.3) one sees that

1

F (s, χ)
=
∞∑
n=1

a1(n)

ns

for Re s > 1. Similarly using (1.2) and (2.3) one has

1

G(s, χ1, χ2, χ3)
=
∞∑
n=1

a2(n)

ns

for Re s > 1.
We will also need the following result, which is Lemma 3.1 from [1].

Lemma 1. Let χ be a primitive character of conductor N , and let k ≥ 2 be an integer
such that χ(−1) = (−1)k. Then

(2.9)
(k − 2)!Nk−2εχ
2k−1πk−2ik−2

L(k − 1, χ̄) = L
′
(2− k, χ).

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Throughout this proof we assume that χ is an even primitive
character mod q. We make use of the inverse Mellin transform for the Γ-function,

(3.1)
1

2πi

c+i∞∫
c−i∞

Γ(s)x−s ds =

{
e−x if c > 0,
e−x − 1 if − 1 < c < 0.

One has

(3.2)
∞∑
n=1

ã1(n)

n
=
∞∑
n=1

(χ̄ ∗ µ ∗ µ)(n)

n
= 0,
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as a consequence of the prime number theorem (consistent with the fact that 1/F (s, χ̄)
vanishes at s = 1). Using (3.1) and (3.2) for −1 < Re s = c < 0, we have

(3.3)
∞∑
n=1

ã1(n)

n
e
−α2
n2 =

1

2πi

∞∑
n=1

ã1(n)

n

c+i∞∫
c−i∞

Γ(s)

(
α2

n2

)−s
ds.

By an application of Stirling’s formula one sees that the right-hand side of (3.3)
converges uniformly, and the summation and integration in (3.3) can be interchanged.
For −1 < c < 0 we obtain

∞∑
n=1

ã1(n)

n
e
−α2
n2 =

1

2πi

c+i∞∫
c−i∞

Γ(s)
∞∑
n=1

ã1(n)

n1−2s
α−2s ds(3.4)

=
1

2πi

c+i∞∫
c−i∞

Γ(s)

F (1− 2s, χ̄)
α−2s ds.

Using the functional equation (2.7) in (3.4) we find that

∞∑
n=1

ã1(n)

n
e
−α2
n2 =

1√
πεχ2πi

c+i∞∫
c−i∞

Γ
(

1−2s
2

)
F (2s, χ)

π2sq2sα−2s ds,

for −1 < c < 0. For a large positive real number T , consider the contour C determined
by the line segments [c− iT, c+ iT ], [c+ iT, λ+ iT ], [λ+ iT, λ− iT ], and [λ− iT, c− iT ]
in order, where 1

2
< λ < 3

2
. By the residue theorem,

(3.5)
1

2πi

∫
C

Γ
(

1−2s
2

)
F (2s, χ)

π2sq2sα−2s ds = −
∑

−T< Im (ρ/2)<T

resρ/2,

where the sum is over nontrivial zeros ρ of the Riemann zeta-function. Note that by our
assumptions, every nontrivial zero ρ of the Riemann zeta-function is a zero of F (s, χ),
and hence ρ/2 is a pole for the integrand on the left-hand side above. Therefore each
such ρ which lies inside the above rectangle needs to be counted on the right hand side
above. Letting mρ denote the multiplicity of ρ, the residue resρ/2 is given by

resρ/2 =
1

(mρ − 1)!

dmρ−1

dsmρ−1
(s− ρ/2)mρ

Γ
(

1−2s
2

)
F (2s, χ)

(πq
α

)2s ∣∣
s=ρ/2

.

Moreover, by our assumptions, all the zeros of the Riemann zeta-function are simple,
and all the above poles are double poles. Therefore

resρ/2 =
d

ds
(s− ρ/2)2 Γ

(
1−2s

2

)
F (2s, χ)

(πq
α

)2s ∣∣
s=ρ/2

.
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Using the equality αβ = qπ we write

resρ/2 = lim
s→ρ/2

d

ds

[
(s− ρ/2)2 Γ

(
1−2s

2

)
F (2s, χ)

β2s

]
(3.6)

=
βρL(ρ, χ)Γ

(
1−ρ

2

)
2 (ζ ′(ρ))2

(
log β − ζ ′′(ρ)

ζ ′(ρ)
+
L′(ρ, χ)

L(ρ, χ)
− 1

2
ψ

(
1− ρ

2

))
,

where ψ(z) = Γ′

Γ
(z) is the digamma function. By (3.5), we may write

(3.7)

1

2πi

λ+iT∫
λ−iT

Γ
(

1−2s
2

)
F (2s, χ)

(πq
α

)2s

ds− 1

2πi

c+iT∫
c−iT

Γ
(

1−2s
2

)
F (2s, χ)

(πq
α

)2s

ds =
∑

−T< Im (ρ/2)<T

resρ/2+I2+I3,

where

I2 =
1

2πi

λ+iT∫
c+iT

Γ
(

1−2s
2

)
F (2s, χ)

(πq
α

)2s

ds,

and

I3 =
1

2πi

c−iT∫
λ−iT

Γ
(

1−2s
2

)
F (2s, χ)

(πq
α

)2s

ds.

We now proceed to show that I2 → 0 and I3 → 0 as T → ∞ along a suitable
sequence of values. We have

I2 =
1

2πi

λ+iT∫
c+iT

Γ
(

1−2s
2

)
F (2s, χ)

(πq
α

)2s

ds

=
1

2πi

λ+iT∫
c+iT

Γ
(

1−2s
2

)
L(2s, χ)

ζ2(2s)

(πq
α

)2s

ds

=
1

2πi

λ∫
c

Γ
(

1
2
(1− 2x− 2iT )

)
L(2x+ 2iT, χ)

ζ2(2x+ 2iT )

(πq
α

)2x+2iT

dx.

Thus

|I2| �
λ∫
c

∣∣Γ (1−2x
2
− iT

)∣∣ |L(2x+ 2iT, χ)|
|ζ2(2x+ 2iT )|

(πq
α

)2x

dx.

Substituting x = σ/2, we have
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(3.8) |I2| �
2λ∫

2c

∣∣Γ (1−σ
2
− iT

)∣∣ |L(σ + 2iT, χ)|
|ζ2(σ + 2iT )|

(πq
α

)σ
dσ.

By Stirling’s formula for Γ(s), s = σ + it in a vertical strip α ≤ σ ≤ β,

|Γ(s)| = |(2π)
1
2 |t|σ−

1
2 e−

1
2
π|t|
(

1 +O

(
1

|t|

))
,

as |t| → ∞, so we get

(3.9)

∣∣∣∣Γ(1− σ
2
− iT

)∣∣∣∣ = (2π)
1
2 |T |−

1
2
σe−

1
2
π|T |
(

1 +O

(
1

|T |

))
.

From [16, p. 218, Equation(9.7.3)], we find that

log |ζ(σ + i2T )| ≥
∑

|2T−γ|≤1

log |2T − γ|+O(log T ).

Let N(T ), T > 0, denote the number of zeros of ζ(s) in the region 0 < σ < 1, 0 ≤ t ≤
T , where s = σ + it. Then,

N(T + 1)−N(T ) = O(log T ) as T →∞

(see [16, p. 211, Equation(9.2.1)] ). So, we may find T with arbitrarily large absolute
value such that for any ordinate γ of a zero of ζ(s),

|2T − γ| � 1

log T
.

In what follows, we only require that T is such that for any ordinate γ of a zero of ζ(s),

|2T − γ| > e−
A1γ
log γ ,

where A1 is some suitable positive constant. Let us remark that this vastly increases
the set of admissible values of T . At the same time let us also note that, while the
assumptions from the statement of the theorem force zeros to be distinct, this does
not prohibit two consecutive zeros from being extremely close to each other. In that
case we may not be able to find a T which is admissible in the above sense, and such
that 2T lies between the ordinates of these two zeros. This remark explains the idea,
alluded to in the Introduction, of bracketing such zeros together. Returning to the
proof of the theorem, for T admissible in the above sense, and large, we have

log |ζ(σ + i2T )| ≥ −
∑

|2T−γ|≤1

A1γ

log γ
+O(log T )

> − 4A1T

log 2T

∑
|2T−γ|≤1

1 + O(log T )

> −A2T,
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where A2 <
π
4

if A1 is small enough. It follows that

1

|ζ(σ + i2T )|
< eA2T .(3.10)

From [6, p. 82, Equation(14)] we know that

|L(s, χ)| ≤ 2q|s| for Re s ≥ 1

2
.

Applying the functional equation of L(s, χ), we see that

(3.11) |L(σ + 2iT, χ)| � |T |A0 for all σ ∈ [2c, 2λ],

where A0 is a positive constant. Using the relations (3.9), (3.10), and (3.11) in (3.8),
we find that

|I2| � TA exp

(
−1

2
π|T |+ 2A2T

)
We conclude that I2 → 0 as T → ∞ through the above values. One finds similarly
that I3 → 0 as T →∞ through these values.

Therefore, using αβ = πq, (3.4) and (3.7) we find that

(3.12)
∞∑
n=1

ã1(n)

n
e
−α2
n2 =

1√
πεχ2πi

λ+i∞∫
λ−i∞

Γ
(

1−2s
2

)
F (2s, χ)

β2s ds− 1√
πεχ

∑
ρ

resρ/2,

for 1
2
< λ < 3

2
. Taking w = 1−2s

2
, we may rewrite the integral on the right-hand side of

(3.12) as

(3.13)
1√

πεχ2πi

δ+i∞∫
δ−i∞

Γ(w)

F (1− 2w, χ)
β1−2w dw =

β√
πεχ

∞∑
n=1

a1(n)

n
e
−β2

n2 ,

for −1 < δ < 0. The above identity is obtained by proceeding similarly as in (3.4).
Denoting resρ/2 by Sρ/2 and combining (3.6), (3.12) and (3.13) one finds that

∞∑
n=1

ã1(n)

n
e
−α2
n2 − β√

πεχ

∞∑
n=1

a1(n)

n
e
−β2

n2 = − 1

2
√
πεχ

∑
ρ

Sρ,

from which one obtains the desired formula√
α

εχ̄

∞∑
n=1

ã1(n)

n
e
−α2
n2 −

√
β

εχ

∞∑
n=1

a1(n)

n
e
−β2

n2 = − 1

2
√
βεχ

∑
ρ

Sρ,

which completes the proof of the theorem. �
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Proof of Theorem 2. For the sake of completeness we will give a brief proof of part a)
and we will skip the proof of part b), which is similar.

Using (3.1) for −1 < Re s = c < 0, we have

∞∑
n=1

ã2(n)

n

(
e
−α2
n2 − 1

)
=

1

2πi

∞∑
n=1

ã2(n)

n

c+i∞∫
c−i∞

Γ(s)

(
α2

n2

)−s
ds

=
1

2πi

c+i∞∫
c−i∞

Γ(s)
∞∑
n=1

ã2(n)

n1−2s
α−2s ds

=
1

2πi

c+i∞∫
c−i∞

Γ(s)

G(1− 2s, χ̄1, χ̄2, χ̄3)
α−2s ds,(3.14)

where in the penultimate step one uses Stirling’s formula to justify the interchange
of summation and integration. Employing the functional equation (2.8) in (3.14) for
a = 0 we find that

(3.15)
∞∑
n=1

ã2(n)

n

(
e
−α2
n2 − 1

)
=
εχ1εχ2√
πεχ3

1

2πi

c+i∞∫
c−i∞

Γ
(

1−2s
2

)
G(2s, χ1, χ2, χ3)

(
πq3

q1q2α

)2s

ds.

Consider the contour C defined by the line segments [c + iT, c − iT ], [c − iT, λ − iT ],
[λ− iT, λ+ iT ], and [λ+ iT, c+ iT ] in the counterclockwise direction, where 1

2
< λ < 3

2
.

By the residue theorem,

1

2πi

∫
C

Γ
(

1−2s
2

)
G(2s, χ1, χ2, χ3)

(
πq3

q1q2α

)2s

ds = res0 + res1/2

(3.16)

+
∑

−T< Im (ρ/2)<T

resρ/2 +
∑

−T< Im (ρ′/2)<T

resρ′/2,

where ρ and ρ′ denote the non-trivial zeros of L(s, χ1) and L(s, χ2) respectively. Next,
recalling (2.6),

res0 = lim
s→0

sΓ
(

1−2s
2

)
G(2s, χ1, χ2, χ3)

(
πq3

q1q2α

)2s

=

√
πL

′
(0, χ3)

2L′(0, χ1)L′(0, χ2)

=

√
πεχ3L(1, χ̄3)

εχ1εχ2L(1, χ̄1)L(1, χ̄2)
,(3.17)

where in the last step we used Lemma 1 with k = 2. Similarly,

res1/2 = lim
s→1/2

(s− 1/2)Γ
(

1−2s
2

)
G(2s, χ1, χ2, χ3)

(
πq3

q1q2α

)2s
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= − βL(1, χ3)

L(1, χ1)L(1, χ2)
.(3.18)

In the last step we used the fact αβ = πq3
q1q2

. By the assumptions from the statement

of the theorem it follows that ρ and ρ′ run over all the zeros of G(s, χ1, χ2, χ3) in the
critical strip, and are simple. Hence

resρ/2 = lim
s→ρ/2

(s− ρ/2)Γ
(

1−2s
2

)
G(2s, χ1, χ2, χ3)

(
πq3

q1q2α

)2s

(3.19)

=
Γ
(

1−ρ
2

)
L(ρ, χ3)

2L′(ρ, χ1)L(ρ, χ2)
βρ ,

and

resρ′/2 = lim
s→ρ′/2

(s− ρ′/2)Γ
(

1−2s
2

)
G(2s, χ1, χ2, χ3)

(
πq3

q1q2α

)2s

(3.20)

=
Γ
(

1−ρ′
2

)
L(ρ′, χ3)

2L(ρ′, χ1)L′(ρ′, χ2)
βρ
′
.

Arguing as with I2 in the proof of Theorem 1, one similarly shows that the integrals
along the horizontal lines on the left-hand side of (3.16) tend to 0 as T tends to infinity
along a suitable sequence of values. Next, the integral along the entire vertical line on
the right equals

(3.21)
1

2πi

λ+i∞∫
λ−i∞

Γ
(

1−2s
2

)
G(2s, χ1, χ2, χ3)

(
πq3

q1q2α

)2s

ds = β
∞∑
n=1

a2(n)

n

(
e
−β2

n2 − 1

)
.

Therefore from (3.15) (3.16), (3.17), (3.18) (3.19) and (3.20) we have

∞∑
n=1

ã2(n)

n

(
e
−α2
n2 − 1

)
− β εχ1εχ2√

πεχ3

∞∑
n=1

a2(n)

n

(
e
−β2

n2 − 1

)(3.22)

= − L(1, χ̄3)

L(1, χ̄1)L(1, χ̄2)
+
εχ1εχ2√
πεχ3

βL(1, χ3)

L(1, χ1)L(1, χ2)

− εχ1εχ2√
πεχ3

∑
ρ

Γ
(

1−ρ
2

)
L(ρ, χ3)

2L′(ρ, χ1)L(ρ, χ2)
βρ +

∑
ρ′

Γ
(

1−ρ′
2

)
L(ρ′, χ3)

2L(ρ′, χ1)L′(ρ′, χ2)
βρ
′

 .
This further gives√
αεχ̄1εχ̄2

εχ̄3

∞∑
n=1

ã2(n)

n
e
−α2
n2 −

√
βεχ1εχ2

εχ3

∞∑
n=1

a2(n)

n
e
−β2

n2

= −
√
εχ1εχ2

2
√
βεχ3

∑
ρ

Γ
(

1−ρ
2

)
L(ρ, χ3)

L′(ρ, χ1)L(ρ, χ2)
βρ +

∑
ρ′

Γ
(

1−ρ′
2

)
L(ρ′, χ3)

L(ρ′, χ1)L′(ρ′, χ2)
βρ
′

 ,
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which completes the proof of the theorem. �

Table 1. LHS and RHS of (1.8) for non-principal even χ mod 5.

β Left Hand Side Right Hand Side (100 zeros only)

1 0.000079785691396833 0.00007928285295117631754

e 0.000169777686441965 0.00016973590106011563813

π −0.000012303600084319 −0.00001233307922499084479
√

5π 0 0

4 0.000020154154038479 0.00002013709331659680732

7 0.000180011886465743 0.00018000254564760968655

10 −0.000043358710204736 −0.00004337362445789078109

20 0.000029713242212197 0.00002963758777799228780

23 −0.000308430762980821 −0.00030853785736609676219

36 −0.00037242097928460 −0.00037274868444915176415

37 −0.00031730534266211 −0.00031765627245956205028

45 0.00040595940742795 0.00040538700768650472134

50 −0.00004301685266729 −0.00004376172325350321380

68 0.00045206867413433 0.00045046206080427273606

70 0.00047588610091427 0.00047415873947210204156

100 0.00020807117871447 0.00020385783736287122257
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