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Abstract. In this paper we compare the concepts of pseudoradial spaces
and the recently defined strongly pseudoradial spaces in the realm of compact

spaces. We show that MA+c = ω2 implies that there is a compact pseudoradial

space that is not strongly pseudoradial. We essentially construct a compact,
sequentially compact space X and a continuous function f : X → ω1 + 1 in

such a way that there is no copy of ω1 + 1 in X that maps cofinally under

f . We also give some conditions that imply the existence of copies of ω1 in
spaces. In particular, PFA implies that compact almost radial spaces of radial

character ω1 contain many copies of ω1.

1. Introduction

All spaces are assumed to be Hausdorff.
Recall that a topological space X is pseudoradial if for every non-closed subset

A ⊂ X there is a point x ∈ A \A and a transfinite sequence ⟨xα⟩α<κ with range in
A and converging to x.

The systematic investigation on the topological properties of pseudoradial spaces
was initiated by Arhangel’skĭı more than 40 years ago. Since then, several subclasses
of pseudoradial spaces have been considered by many authors.

Recently the further notion of strongly pseudoradial spaces appeared in the lit-
erature [2]. All ordinals in this paper will have the order topology when considered
as topological spaces.

1.1. Definition A topological space X is called strongly pseudoradial if for any
non-closed subset A ⊂ X there is a limit ordinal γ and a continuous map f : γ+1 →
X such that f [γ] ⊂ A and f(γ) /∈ A.

In [2] the authors pointed out that, without any loss of generality, in the above
definition the ordinal γ can be assumed to be a regular cardinal and the function
f injective.

Roughly speaking, the difference between pseudoradial and strongly pseudoradial
spaces consists in replacing transfinite converging sequences with compact ordinals.

As ω + 1 is a compact ordinal, we immediately see that every sequential space
is strongly pseudoradial, but this is the only case when we can easily determine if
a space is of that kind. The passage from ω+1 to the successor of an uncountable
cardinal appears much more difficult. However, a remarkable consequence of the
proper forcing axiom (PFA) describes a possibility to do it for γ = ω1 (see also [14,
Theorem 5.14]).
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1.2. Theorem [1] PFA implies that in every countably compact regular space of
character at most ω1, the closure of a subset A can be obtained by first adding all
limits of convergent sequences and then adding to the resulting set Â all points x
for which there is a copy W of ω1 in Â such that W ∪ {x} is homeomorphic to
ω1 + 1.

1.3. Corollary PFA implies that every countably compact regular space of char-
acter at most ω1 is strongly pseudoradial.

On the other hand, the one-point compactification of Ostaszewski’s space shows
that a compact pseudoradial space may fail to be strongly pseudoradial. This
follows from hereditary separability of Ostaszewki’s space.

A natural question is then whether it is possible to obtain the conclusion of
Corollary 1.3 by weakening the topological hypothesis on the character. First, by
means of a counterexample under Martin’s axiom, we were able to show that we
cannot remove that hypothesis altogether.

1.4. Theorem b = c = ω2 implies there is a compact pseudoradial space that is
not strongly pseudoradial.

The radial character of a pseudoradial space X is the smallest cardinal κ such
that the definition of pseudoradiality for X works by taking only transfinite se-
quences of length not exceeding κ. Thus, the following question is natural after
considering Corollary 1.3.

1.5. Question Assume PFA. Is every compact Hausdorff pseudoradial space of
radial character at most ω1 strongly pseudoradial?

We were unable to answer Question 1.5. However, we can achive a partial positive
result for a special class of pseudoradial spaces, as we now explain.

A sequence {xα : α < κ} converging to a point x is called thin if for any β < κ

we have that x /∈ {xα : α < β}. A space is called almost radial if in the usual
definition of pseudoradiality we replace “sequence” with “thin sequence”.

Our counterexample X from Theorem 1.4 is a compact, sequentially compact
space X with a point ρ ∈ X of character ω1 such that there are no countable
sequences or copies of ω1 converging to ρ (see Theorem 5.2).

In Section 4 we include several results on existence of copies of ω1. In particu-
lar, we highlight the following result that contrasts with our counterexample from
Theorem 1.4.

1.6. Theorem Assume PFA. Let X be a compact almost radial space of radial
character at most ω1. Then every point of X is either the limit of a countable
sequence or the limit of a copy of ω1.

The search of copies of ω1 goes back to [13, Problem 1.3] where Nyikos asks
whether there exists a first countable, countably compact, non-compact space which
does not contain a copy of ω1. Nyikos himself proved that a consequence of ♢, which
is in fact compatible with MA + c > ω1, gives a positive answer to his question
(see [8, 19.1]). In [8] Fremlin, assuming PFA, gives sufficient conditions for the
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existence of copies of ω1 for spaces that can be mapped onto ω1 and gives a series
of applications. This question was also considered under PFA in [1], where other
conditions for the existence of copies of ω1 are given. Later, Eisworth and Nyikos
in [7] give a model of CH in which every first countable, countably compact, non-
compact space contains a copy of ω1. Also, in [6] Eisworth shows that any perfect
pre-image of ω1 with countable tightness contains a closed copy of ω1.

2. T -algebras

In order to construct the space from Theorem 1.4, we will use Koszmider’s notion
of T -algebra from [12]. T -algebras are special kinds of the minimally generated
Boolean algebras first studied by Koppelberg [11]. All our Boolean algebras will be
subalgebras of P(ω)/fin with the order relation ⊂∗ of almost inclusion. Section 3
of [4] contains a a thorough analysis of the following discussion.

Given a Boolean algebra A ⊂ P(ω) and x ⊂ ω, the Boolean algebra generated
by A ∪ {x} is

A(x) = {(a0 ∩ x) ∪ (a1 \ x) : a0, a1 ∈ A}.

Let A ⊂ P(ω) be a Boolean algebra and u an ultrafilter of A. An element x ⊂ ω
is called minimal for ⟨A, u⟩ if u is the only ultrafilter in A that does not generate
an ultrafilter in the Boolean algebra A(x). Notice that in this case, ω \ x is also
minimal for ⟨A, u⟩.

Let λ ≤ c and A = {aα+1 : α < λ} ⊂ [ω]ω. For each α ≤ λ, define Bα to be the
Boolean algebra generated by {aβ+1 : β < α}. We will say that A is a coherent
minimal sequence if for every α < λ the filter uα in Bα generated by {aβ+1 : β < α}
is an ultrafilter and aα+1 is minimal for ⟨Bα, uα⟩.

Let us describe the Stone space of Bλ. Consider α < λ. Let xα the filter in Bλ
generated by uα ∪ {ω \ aα+1}. Since aα+1 is minimal for ⟨Bα, uα⟩, xα ∩Bα+1 is an
ultrafilter (thus, proper) in Bα+1. By recursion it is possible to show that, xα ∩Bβ
is in fact an ultrafilter in Bβ for all α < β ≤ λ. It is not hard to conclude that the
Stone space of Bλ is equal to Xλ = {uλ} ∪ {xα : α < λ}.

Let α < λ. Then the clopen set defined by ω \ aα+1 in the Stone space misses
{xβ : α < β < λ} ∪ {uλ}. Thus, the segment {xβ : β ≤ α} is open. This easily
implies that the Stone space of Bλ is scattered.

Next, we define T -algebras. First, given t ∈ 2<c such that dom(t) = α + 1 for
some α, we define t⋆ = (t↾α)⌢(1− t(α)). Each T -algebra will be defined by using
a tree. A subtree T of 2<c is called acceptable if the following two conditions hold:

(i) the domain of each member of T is a successor ordinal,
(ii) if t ∈ T and α < dom(t), then t↾α+1∈ T , and
(iii) for all t ∈ 2<c, t ∈ T if and only if t⋆ ∈ T .

For each p ∈ 2≤c, o(p) will denote its order type. Given an acceptable tree T ⊂
2<c, a T -algebra is a Boolean algebra generated by a sequence {at : t ∈ T} ⊂ [ω]ω

such that the following properties hold

(a) given t ∈ T , {at↾α+1 : α+ 1 < o(t)} is a coherent minimal sequence, and
(b) given t ∈ T , at = ω \ at⋆ .
It turns out that the Stone space of a T -algebra is easy to describe. In fact, the

set of ultrafilters of a T -algebra A = {at : t ∈ T} is in one-to-one correspondence
with the set bT of branches of T . Given p ∈ bT , {ap↾α+1

: α < dom(p)} generates
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the ultrafilter that corresponds to p. So without loss of generality, we will identify
the Stone space of A with bT .

It also turns out that some of the topological properties of bT can be checked by
looking at the topology generated by the branches. For every branch p ∈ bT , by
property (a) in the definition of T -algebra, there is a topological space Xp = {xp↾α :
α < o(p)} ∪ {p} defined by the coherent minimal sequence {ap↾α+1 : α < o(p)} as
described above.

Given p, q ∈ bT with p ̸= q, we define p∧ q to be the largest common predecesor
of p and q. Thus, o(p ∧ q) is the ordinal α such that p↾α= q↾α but p(α) ̸= q(α).

Fix p ∈ bT . Then there is a continuous function πp : bT → Xp that projects
the Stone space of the T -algebra onto the branch space. For every q ∈ bT \ {p},
πp(q) = xp↾o(p∧q) and πp(p) = p. Equivalently, for every α < o(p)

π←p (xp↾α) = {q ∈ bT : o(p ∧ q) = α}.

The relation we are interested in is summarized with the following results.

2.1. Lemma [5, Proposition 3.4] Let p ∈ bT , S ⊂ bT \ {p}. Then p ∈ clbT (S) if
and only if p ∈ clXp({πp(q) : q ∈ S}).

2.2. Lemma [5, Proposition 3.4] Let p ∈ bT and {pn : n < ω} ⊂ bT \ {p}. Then
{pn : n < ω} converges to p in bT if and only if {πp(pn) : n < ω} converges to p in
Xp.

Since we are interested in copies of ω1, we would like to find a necessary condition
for the existence of copies of ω1 that can be checked in branches and avoided through
careful construction of the T -algebra.

2.3. Lemma Let f : ω1 + 1 → bT be an embedding. Then there is a closed,
unbounded set S ⊂ ω1 such that (πf(ω1) ◦ f)↾S is one-to-one and increasing. Thus,
Xf(ω1) contains a copy of ω1 + 1.

Proof. Let p = f(ω1). First, notice that the fibers of points of Xp \{p} under πp ◦f
are all countable. Otherwise, there is an uncountable R ⊂ ω1 and β < o(p) such
that (πp ◦ f)[R] = {xp↾β}. This would imply that ap↾β+1 and ω \ ap↾β+1 define
clopen sets that separate p = (πp ◦f)(ω1) from (πp ◦f)[R] in Xp, which contradicts
the continuity of πp ◦ f .

Thus, there is an increasing enumeration {ξ(α) : α < ω1} of the set {β < o(p) :
∃α < ω1(πp(f(α)) = xp↾β)}. For each α < ω1, let Rα = {β < ω1 : πp(f(β)) =
xp↾ξ(α)}. We shall recursively define an increasing injective function σ : ω1 → ω1

and an element sα ∈ Rσ(α) for each α < ω1.
For every non-limit ordinal α < ω1, let σ(α) = min(ω1 \ σ[α]) and let sα be

the first element of Rσ(α). Now assume that α < ω1 is a limit ordinal. Define
sα = sup{sβ : β < α} < ω1, then there exists γ < ω1 such that sα ∈ Rγ . We then
define σ(α) = γ.

Assume that for some δ < α we have that γ ≤ σ(δ). By continuity, {(πp ◦
f)(sβ) : β < α} converges to (πp ◦ f)(sα). However, initial segments are open in
Xp so {xp↾β : β ≤ ξ(σ(δ))} is an open set that contains (πp ◦ f)(sα) and misses
{(πp ◦ f)(sβ) : δ < β < α}. This is a contradiction so we obtain that σ(α) > σ(δ)
for all δ < α.
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This completes the construction and it easily follows that the set S = {sα : α <
ω1} has the properties required. □

In our arguments below, we will construct our acceptable tree T by recursion.
So we will have the typical situation where we have constructed a tree T ′ which
will eventually be a subtree of T . Clearly, at this point of the construction, it is
possible to consider the space of branches bT ′ of T ′. We will use the notation we
defined for the branch space on bT ′. Also, notice that if q ∈ bT ′ and p ∈ bT is such
that q ⊂ p, then there is a projection map πpq : Xp → Xq where πpq (x) = x if x ⊂ q
and πpq (x) = q if q ⊂ x ⊂ p.

3. Proof of Theorem 1.4

We will assume b = c = ω2 in this section. In order to construct the space
required in Theorem 1.4, we will construct a sequence {tα : α < c} ⊂ 2<c with the
property that for all β < c there is α < β and i ∈ 2 such that tβ = (tα)

⌢i. Then
our acceptable tree will be

T = {(tα)⌢i : α < c, i ∈ 2}.

We will also recursively define a T -algebra {at : t ∈ T} (with the notation of Section
2) along with the definition of the tree. Then the branch space bT will be the space
we are looking for. Clearly, bT is compact.

For α < ω1, define tα ∈ 2α to be such that tα(β) = 0 for all β < α and let
{atα+1

: α < ω1} be any strictly ⊂∗-decreasing sequence of infinite subsets of ω.
We remark that by the discussion above, both (tα)

⌢0 = tα+1 and (tα)
⌢1 = t∗α+1

will be in T , and both atα+1 and at∗α+1
= ω \ atα+1 are defined, for every α < ω1.

Let ρ ∈ 2ω1 be such that ρ(β) = 0 for all β < ω1.
Clearly, the topology defined on Xρ = {xtα : α < ω1}∪{ρ} is the order topology.

For sake of notational simplicity, for each α < ω1, the filter xtα will be denoted by
yα. Once we have the tree T completely defined, if p ∈ bT is such that ρ ⊂ p, then
the function πpρ ◦ πp maps bT onto Xρ. We make a record of this fact as follows.

3.1. Claim Xρ is naturally homeomorphic to ω1 + 1.

In fact, in our construction, ρ will never be extended so ρ ∈ bT (see Claim 3.5
below). However, even before we know that, we can already prove that bT has
uncountable tightness.

3.2. Claim There exists p ∈ bT such that ρ ⊂ p and p has uncountable tightness
in bT .

Proof. For each α < ω1, choose any qα ∈ bT such that tα+1 ⊂ qα and qα(α+ 1) =
1 ̸= tα+2(α + 1). Define A = {qα : α < ω1} and let p ∈ bT be any complete
accumulation point of A. We claim that there is no countable subset of A with p
in its closure.

First, notice that p extends ρ. Otherwise, there is some β < ω1 such that
tα+1 ⊂ p for α < β and p(β) ̸= tβ+1(β). Then ω \ atβ+1

is in the ultrafilter defined
by p but not in the ultrafilter defined by qα for all β ≤ α < ω1. Thus, we obtain a
contradiction.
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Now, let N ⊂ ω1 be countable, we will show that {qα : α ∈ N} does not have p
in its closure. Let β < ω1 be an upper bound of N . If α ∈ N , by the definition of
qα, ω \ atα+1 is in the ultrafilter defined by qα. Since atβ+1

⊂∗ atα+1 , ω \ atβ+1
is in

the ultrafilter defined by qα. Thus, atβ+1
gives a neighborhood of q that does not

contain qα, for all α ∈ N . Thus, the conclusion follows. □

So we are left to define {tα : ω1 ≤ α < c} and we will do this by recursion. Given
ω1 ≤ α < c, let Tα be the nodes of the tree that have been defined before step α, that
is, the set {(tβ)⌢i : β < α, i ∈ 2}. On step α ∈ c\ω1, we will choose tα among bTα,
the branches of Tα (notice that all branches are of length < c), and define a(tα)⌢0

and a(tα)⌢1. Consider a surjective function e = (e0, e1) : c \ ω1 → (c \ ω1)× c such
that for all α < c, e0(α) < α.

It is known that under c ≤ ω2, every sequentially compact, compact space is
pseudoradial. This was proved by Šapirovskĭı under CH [15] and by Juhász and
Szentmiklóssy under c = ω2 [10]. Thus, in order to make the space pseudoradial, it
is enough to make it sequentially compact.

Let ω1 ≤ α < c. Let {f⟨α,β⟩ : β < c} ⊂ ωTα be an enumeration of all increasing
ω-sequences of elements of Tα. In other words, f⟨α,β⟩ : ω → Tα is such that
f⟨α,β⟩(n) ⊂ f⟨α,β⟩(n + 1) for all n < ω. We will require the following inductive
assumption.

(a)α For every ω1 ≤ β < α, there are Aβ ∈ [ω]ω and q ∈ bTα such
that fe(β)[Aβ ] ⊂ q and {xfe(β)(n) : n ∈ Aβ} converges to q in Xq.

3.3. Claim (a)α for all ω ≤ α < ω1 implies that bT is sequentially compact.

Proof. By Lemma 2.2, bT is sequentially compact if and only if for every increasing
ω-sequence f of elements of T , there is a branch p extending f such that some
subsequence of f converges to p in Xp. Indeed, f = fe(β) for some β < ω1, and this
implies that {xfe(β)(n) : n ∈ Aβ} converges to some p ∈ bT . To see this, notice that

(a)α is preserved under limits in the following sense: if λ ≤ c is a limit ordinal and
{qα : α < λ} ⊂ T are such that {xfe(β)(n) : n ∈ Aβ} converges to qα in Xqα for all

α < λ, then {xfe(β)(n) : n ∈ Aβ} converges to q =
∪
{qα : α < λ} in Xq. □

Next we would like to add some inductive hypothesis so that at the end of the
construction, we obtain a point with no copies of ω1 converging to it. Our strategy
will be to never split the branch ρ ∈ bTω1

so that it remains a branch of bT at the
end of the construction, and kill all possible copies of ω1 converging to it. According
to Lemma 2.3, we can test convergence to ρ just by looking at copies of ω1 contained
in Xρ. Also, all copies of ω1 contain copies of the ordinal

ω·2 + 1 = {ω · n+m : n, n < ω}

which is homeomorphic to the one-point compactification of the free union of count-
ably many convergent sequences.

So the strategy will be to consider all copies of ω·2+1 contained in Xρ and make
sure that they are not lifted to copies of ω·2 + 1 in bT . Thus, let {s(α) : α < c} be
the set of all continuous bijective functions with domain ω·2+1 and image contained
in ω1. We require the following inductive assumption.
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(b)α For every ω1 ≤ β < α, there are Cβ ∈ [ω]ω, a function φβ ∈
ωω, and t ∈ Tα with ts(ω·2) ⊂ t such that at ∈ ys(ω·n) and at⋆ ∈
ys(ω·n+φβ(n)) for every n ∈ Cβ .

So assume that we are in step α < c of the construction. We need to choose tα,
Aα, Cα, φα and define the partition ω = a(tα)⌢0 ∪ a(tα)⌢1.

First, we explain how to choose Aα. Let q∅ =
∪
fe(α) and B∅ = ω; then it is easy

to see that in Xq∅ , {xfe(α)(n) : n ∈ B∅} converges to q∅. If there is q ∈ bTα such

that {xfe(α)(n) : n ∈ B∅} converges to q in Xq, we define Aα = ω. Otherwise, there

exists q′∅ ∈ Tα such that {xfe(α)(n) : n ∈ B∅} converges to q′∅ in Xq′∅
but for i ∈ 2,

{xfe(α)(n) : n ∈ B∅} does not converge to (q′∅)
⌢i in X(q′∅)

⌢i. Let qi = (q′∅)
⌢i for

i ∈ 2. Then by the definition of T -algebra, there is a partition B∅ = ω = B0 ∪ B1

such that {xfe(α)(n) : n ∈ Bi} converges to qi for i ∈ 2. Continuing in this fashion,

by recursion on <ωω, we try to construct a sequence of nodes {qs : s ∈ <ωω} ⊂ Tα
and a sequence of sets {Bs : s ∈ <ωω} ⊂ [ω]ω such that {xfe(α)(n) : n ∈ Bs}
converges to qs in Xqs . If there is some s such that there is a branch q ∈ bTα with
{xfe(α)(n) : n ∈ Bs} converging to q in Xq, we define Aα = Bs. Otherwise, given

s ∈ <ωω, we can always choose incompatible qs⌢0, qs⌢1 above qs and a partition
Bs = Bs⌢0 ∪Bs⌢1 as required. Assume that we never stopped in the construction
(otherwise, we are done). For each φ ∈ ωω, let qφ = ∪{qs : s ⊂ φ} and let Bφ be
any pseudointersection of {Bs : s ⊂ φ}; it easily follows that {xfe(α)(n) : n ∈ Bφ}
converges to qφ in Xqφ . The set {Bφ : φ ∈ ωω} is of size c and |Tα| < c, so this
means that there is ψ ∈ ωω such that qψ ∈ bTα. Define Aα = Bψ and let r = qψ.
Then {xfe(α)(n) : n ∈ Aα} converges to r ∈ bTα in Xr.

The next step is to choose tα ∈ bTα and Cα ∈ [ω]ω. Consider the copy of ω·2

given by {ys(α)(ξ) : ξ ∈ ω·2} in Xρ. By an argument similar to the one in the
previous paragraph, it is possible to find Cα ⊂ ω and some tα ∈ bTα such that∪
s(α) ⊂ tα and the sequence {ys(α)(ω·n) : n ∈ Cα} converges to tα in Xα.
Recall that according to (a)α+1, we need to preserve the convergence of each

sequence fe(β)↾Aβ
for all β ≤ α. Since we are choosing to split tα, we only need

to worry about those sequences with fe(β)[Aβ ] ⊂ tα (and in fact only those that
converge to tα).

Thus, we have to define φα : ω → ω \ {0} in such a way that the sequence
{ys(α)(ω·n+φα(n)) : n ∈ Bα} is almost disjoint with each of fe(β)[Aβ ] for all β ≤ α.
Consider the set

S =
{
β ≤ α : sup(fe(β)[Aβ ]) = s(α)(ω·2)

}
Let β ≤ α. If β /∈ S, there is nothing to worry about. Otherwise, there exists a

function ψβ : ω → ω such that for every n < ω,{
ys(β)(ω·n+m) : ψβ(n) ≤ m

}
∩
{
fe(β)(n) : n ∈ Aβ

}
= ∅.

Consider also the following result the proof of which, being standard, we shall
omit.

3.4. Lemma Assume that we have a topological space with underlying set ω·2+1
that satisfies the following properties.

(1) Every point of the form ω · n+m with n < ω and 0 < m < ω is isolated.
(2) For each n < ω, {ω · n+m : m < ω} converges to ω · (n+ 1).
(3) {ω · n : n < ω} converges to ω·2.
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(4) ω·2 has character strictly less than b.

Then there exists φ : ω → ω \{0} such that {ω ·n+φ(n) : n < ω} converges to ω·2.

This implies that we can choose φα : Cα → ω \ {0} such that {ys(α)(ω·n+φα(n)) :
n ∈ Cα} converges to tα in Xtα .

By b = ω2 we can further assume that for every β ∈ S we have that {n ∈ Cα :
φα(n) ≤ ψβ(n)} is finite. Thus, we obtain that {ys(α)(ω·n+φα(n)) : n ∈ Cα} is
almost disjoint from fe(β)[Aβ ] for all β ≤ α.

So all that remains is to define the partition ω = a(tα)⌢0 ∪ a(tα)⌢1 in such a
way that (a)α+1 and (b)α+1 hold. For the sake of notational simplicity, let zn =
ys(α)(ω·n+φα(n)) for all n ∈ Cα. Given a ∈ Btα \ utα , we will denote its associated
clopen set as

a∗ = {xt : t ⊂ tα, a ∈ xt}.
For each n ∈ Cα, since zn is a point of first countability of Xtα so let {c(n,m) :

m < ω} ⊂ Btα define a local open base at zn.
Assume β < o(tα). The point xtα↾β is not a limit point of {zn : n ∈ Cα} (in

Xtα). By normality, there are open sets Uβ and Vβ with Uβ ∩ Vβ = ∅ such that
xtα↾β ∈ Uβ and {zn : n ∈ Cα} ⊂∗ Vβ . Then there exists a function gβ : Cα → ω
such that {n ∈ Cα : c(n, gβ(n))

∗ ̸⊂ Vβ} is finite.
Now, let ω1 ≤ β ≤ α. We know that {zn : n ∈ Cα} is almost disjoint with

fe(β)[Aβ ] so we can find a function hβ : Cα → ω such that {n ∈ Cα : fe(β)[Aβ ] ∩
c(n, gβ(n))

∗ ̸= ∅} is finite. Also, there exists a function h : Cα → ω such that for
all n < ω, ys(α)(ω·n) /∈ c(n, h(n)).

The set of functions

{gβ : β < o(tα)} ∪ {hβ : ω1 ≤ β ≤ α} ∪ {h}

is of size < b so there exists g : Cα → ω that bounds them all mod finite. We obtain
an open set W =

∪
{c(n, g(n))∗ : n ∈ Cα} of Xtα with the following properties:

(i) {zn : n ∈ Cα} ⊂W ,
(ii) the only limit point of W in Xtα is tα,
(iii) {ys(α)(ω·n) : n ∈ Cα} ∩W = ∅, and
(iv) for every ω1 ≤ β < ω1 such that fe(β)[Aβ ] ⊂ tα then one of the two following

conditions holds:
(a) {xfe(β)(n) : n < ω} ∩W is finite, or

(b) {xfe(β)(n) : n < ω} does not converge to tα in Xtα .

Thus, we define

a(tα)⌢0 =
∪

{c(n, g(n)) : n ∈ Cα},

and a(tα)⌢1 = ω \ a(tα)⌢0. From properties (i) to (iv) above it is easy to see that
both (a)α+1 and (b)α+1 will hold. Thus, we have finished our construction.

Notice that in our construction, the branches that we split in every step have
subsequences of Xρ converging to them. Thus, we can infer the following.

3.5. Claim The branch ρ ∈ bTω1 is never split, so ρ ∈ bTα.

By inductive hypothesis (a)α for all α ∈ c \ ω1 we obtain that bT is sequentially
compact (Claim 3.3). Since c = ω2 we obtain, as discussed above, that bT is
pseudoradial.
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Finally, we prove that bT is not strongly pseudoradial. We will prove that this
property fails at ρ ∈ bT . If bT were strongly pseudoradial, there would be an infinite
cardinal κ and an embedding f : κ+1 → T such that f [κ] ⊂ bT \{ρ} and f(κ) = ρ.
By Claims 3.2 and 3.5, and by the fact that ρ has character ω1 in bT , we obtain
that κ = ω1. By Lemma 2.3, we may assume that πρ ◦ f is injective. Since πρ ◦ f
is continuous, it is an embedding so (πρ ◦ f)[ω1] is a copy of ω1 contained in Xρ.
So in particular, there is a copy of ω·2 + 1 contained in Xρ, we may assume that
the first one in our enumeration is {ys(γ)(ξ) : ξ ∈ ω·2 + 1}. According to Lemma

2.2, there is q ∈ bT such that ys(γ)(ω·2) ⊂ q and {ys(γ)(ξ) : ξ ∈ ω·2} ∪ {q} ⊂ Xq is

homeomorphic to ω·2 +1 . But then, according to (b)γ+1, it easily follows that the
sets {ys(ω·n) : n ∈ Cγ} and {ys(ω·n+φγ(n)) : n ∈ Cγ} are separated by clopen sets of
Xq. This is a contradiction so indeed bT is not strongly pseudoradial.

4. Forcing copies of ω1

Here we give a generalization of several results ([8], [1] and [6]) concerning the
existence of a proper forcing that forces a copy of ω1.

Let X be any completely regular countably compact non-compact space with a
base B of open sets such that X ∈ B and ∅ /∈ B. Given x ∈ X, Bx will denote
{B ∈ B : x ∈ B}. For a subset H of X, we consider the ω-closure of H

clω(H) =
∪

{a : a ∈ [H]≤ℵ0}.

Say that H is ω-closed if clω(H) = H.
Suppose that F is a countably complete maximal free filter of ω-closed subsets

of X. Choose any regular cardinal κ such that X,B,F , ω1 ∈ H(κ).

4.1. Definition For any countable set M , we define the trace of the filter F as

Tr(F ,M) =
∩

{F ∩M : F ∈M ∩ F}.

We will need the following fact. We refer the reader to [3] for the use of elemen-
tary submodels in topology.

4.2. Lemma For any countable elementary submodel M ≺ H(κ), such that
F ∈M , then for any subset H of X that is in M , then

(1) if H ∩ Tr(F ,M) is not empty, then H ∈ F+,
(2) if H ∈ F+ then H ∩M contains Tr(F ,M).

Proof. Assume that H ∈ M and that H ∩ Tr(F ,M) ̸= ∅. Since Tr(F ,M) ⊂
(
∩
F) ∩M , it follows that H ∩ F ∩M ̸= ∅ for all F ∈ F ∩M . By elementarity,

it follows that H ∩ F ̸= ∅ for all F ∈ F so H ∈ F+. By the maximality of F and
elementarity, clω(H) ∈ F ∩M . Again by elementarity, clω(H) ∩M is contained in
H ∩M . This completes the proof. □

We next define a poset PX,B,F,κ.

4.3. Definition A condition p ∈ PX,B,F,κ is a function with domain Mp such
that, for each M,M1 ∈ Mp,

(1) Mp is a finite ∈-chain of countable elementary submodels of H(κ), each
containing ω1, X, B, and F ,
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(2) p(M) = ⟨xp(M),Up(M),Fp(M)⟩ is an element of X × [B]<ℵ0 × [F ]<ℵ0 ,
(3) xp(M) ∈ Tr(F ,M),
(4) if M ∈M1, then p(M) ∈M1.

We define p ≤ q provided:

(5) Mq ⊂ Mp,
(6) for each M ∈ Mq, xp(M) = xq(M), Fq(M) = Fp(M), and Uq(M) ⊂ Up(M),
(7) for each M1 ∈ Mq and M ∈ (Mp \Mq) ∩M1 such that Mq ∩M1 ∈ M ,

then xp(M) ∈ U for any U such that xq(M1) ∈ U and U ∈ Uq(M2) for some
M2 ∈ Mq with M1 ⊂M2.

We can rephrase the complicated last condition with the help of the following
definitions: for q ∈ P and M ∈ Mq, let

U(q,M) = Bxq(M)
∩
∪

{Uq(M1) :M ⊂M1 ∈ Mq}.

Then let W (q,M) =
∩
U(q,M) if U(q,M) ̸= ∅ and W (q,M) = X otherwise. An

alternative way to state the last condition is that

(7’) if M ∈ Mp \Mq and if M1 is the ∈-minimal element of Mq containing M ,
then xp(M) ∈W (q,M1).

We can notice that it then follows thatW (p,M) ⊂W (q,M1). This is a key property
to have to ensure that PX,B,F,κ is transitive.

We do not include a proof that PX,B,F,κ is proper because we will give a proof
of a stronger statement, Theorem 4.8 below. However, we do prove the following.

4.4. Proposition If G ⊂ PX,B,F,κ is a generic filter, then:

(1) MG =
∪
{Mp : p ∈ G} is an uncountable ∈-chain,

(2) CG = {M ∩ ω1 :M ∈ MG} is a cub subset of ω1, and
(3) for each M ∈ MG such that M ∩ ω1 = δ is a limit point of CG, F ∩M =∪

{F ∩M ′ :M ′ ∈ MG ∩M}.

Proof. Let us use P to denote PX,B,F,κ. We omit the easy proof that MG and CG
are uncountable. For each countable M ≺ H(κ) such that F ∈ M , let {F (M,n) :
n ∈ ω} be an enumeration of F ∩M .

Claim 1: For each δ ∈ ω1 and n ∈ ω, the following set is dense in P:

Dδ,n = {p ∈ P : (∃M ∈ Mp) such that either
(δ ⊂M and (∀q ≤ p) (

∪
(M ∩Mq) =

∪
(M ∩Mp))) or

(M ∩ ω1 = δ and (∃M1 ∈ Mp ∩M) (F (M,n) ∈ Fp(M1)))}.
Informally speaking, the first condition asserts that δ is not a limit of CG; the
second condition asserts that δ ∈ CG and that the element F (M,n) of M will
appear in every M ′ ∈ MG with M1 ∈M ′ ∈M .

Proof of Claim 1: Let p1 ∈ P be arbitrary. It is easy to extend p1 so as to ensure
that δ ∈

∪
Mp1 . Let δ∗ be the minimum of the set {M ∩ ω1 : (∃p∗ < p1) M ∈

Mp∗ and δ ≤M ∩ ω1}. Choose p2 ≤ p1 such that δ∗ ∈ {M ∩ ω1 :M ∈ Mp2}.
Suppose first that δ∗ = δ and let M ∈ Mp2 be such that δ∗ = M ∩ ω1. If

p2 /∈ Dδ,n then the first clause in the definition must fail. Therefore we may choose
some q ≤ p2 such that M ∩Mq ̸= ∅ and M1 =

∪
(M ∩Mq), the maximum element

of M ∩Mq, is not in Mp2 . Simply define q∗ where the only change from q is that
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F (M,n) is in Fq∗(M1). Since M1 is the maximum element of Mq ∩M and since
F (M,n) is evidently in M , it follows that q∗ ∈ P and through routine checking
that q∗ is also below p2. Therefore q

∗ is in Dδ,n.
Now we assume that δ < δ∗ and again that p2 is not in Dδ,n. Let M be the

element of Mp2 with M ∩ ω1 = δ∗ > δ and note that (by the failure of the first
clause) there is a q ≤ p2 such that

∪
(M ∩Mq) ̸=

∪
(M ∩Mp2). Choose such a q

and again letM1 be the maximum element ofM ∩Mq. Fix any strictly descending
sequence {Fα : α ∈ ω1} ⊂ F that is an element of M1. Note that Fδ ∈ M since
{Fα : α ∈ ω1} ∈ M . We now define an extension p of p2 that is in Dδ,n. Set Mp

equal to Mp2 ∪ {M1} and p2 ⊂ p. To define p we just have to choose the value for
p(M1). We let p(M1) = ⟨xq(M1),Uq(M1), {Fδ}⟩. Since we already have that q is an
extension of p2, it is routine to check that p is also an extension of p2. We check
that p satisfies the first condition of Dδ,n. If q < p and M1 ∈M ′ ∈ Mq ∩M , then
p(M1) ∈M ′, implying that δ ∈M ′, and this contradicts the definition of δ∗.

Claim 2: If G ⊂ P is a filter that meets Dδ,0 for all δ ∈ ω1, then C = {M ∩ ω1 :
(∃p ∈ G) M ∈ Mp} is a closed and unbounded subset of ω1.

Proof of Claim 2: For δ ∈ ω1, the fact that G meets Dδ,0 implies that C \δ is not
empty. To show that C is closed we assume δ /∈ C and show that it is not a limit
point of C by showing that C ∩ δ has a maximum element. Choose p ∈ G ∩Dδ,0

and let M ∈ Mp be as in the definition of Dδ,0. Since δ is not in C, δ ∈ M . If
Mp∩M is empty, let β = 0, otherwise let M̄ be the maximum element of Mp∩M ,
and let β = M̄ ∩ ω1. It now follows that for all q ≤ p in G and M ′ ∈ Mq ∩M ,
then M ′ ∩ ω1 is less than or equal to β. It thus follows that C is disjoint from the
interval (β, δ).

Claim 3: If G is a filter that meets Dδ,n for all δ ∈ ω1 and n ∈ ω, then condition
(3) will hold.

Let M ∈ MG such that δ =M ∩ ω1 is a limit. We will prove that each element
F (M,n) ∈ F ∩M is in some M ′ ∈ MG ∩M . We may choose p ∈ G ∩Dδ,n such
that M ∈ Mp.

First, we argue that the first clause in Dδ,n does not hold. Since δ is a limit of
CG, M ∩MG is infinite. But M ∩Mp is finite so there must exist q ∈ G such that
M ∩Mq ̸⊂M ∩Mp. Any common extension of p and q contradicts the first clause.

Thus, the second clause holds. Let M1 ∈ Mp ∩M such that F (M,n) ∈ Fp(M1).
Since δ is a limit of CG, there existsM

′ ∈ MG be such thatM1∩ω1 < M ′∩ω1 < δ.
Let q ∈ P with q ≤ p and M ′ ∈ Mq. Then M1 ∈ M ′ are elements of Mq, by the
last condition in the definition of q ∈ P it follows that q(M1) ∈ M ′. This implies
that Fp(M1) = Fq(M1) ∈M ′ so F (M,n) ∈M ′. □

Now, assume that G ⊂ P is a filter. This implicitly defines a function

f : CG → {xp(M) : p ∈ G, M ∈ Mp}

where M ∩ ω1 ∈ CG is sent to xp(M). Moreover, if G is generic, then CG is
homeomorphic to ω1 by (b) in Proposition 4.4.

4.5. Lemma If G ⊂ PX,B,F,κ is a generic filter, then X contains a copy of ω1 with
the subspace topology inherited from B.
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Proof. Given x ∈ X and U ∈ Bx, the set

Ex,U = {p ∈ PX,B,F,κ : ∃M ∈ Mp (x = xp(M)) ⇒ ∃M ′ ∈ Mp \M (U ∈ Up(M ′))}

is easily seen to be dense in PX,B,F,κ.
Now we prove that f is continuous, let δ ∈ CG and xδ = f(δ). It is enough to

prove that every time U ∈ B with xδ ∈ U there exists β < δ such that {xα : β <
α ≤ δ} ⊂ U .

This is clearly true when δ is not a limit, so assume in the following that δ is
a limit. Let p ∈ G ∩ Ex,U be such that there is M ∈ Mp with xδ = xp(M). We
may assume that M∩M ̸= ∅ and let M1 =

∪
(M∩M). Define β = M1 ∩ ω1. If

β < α < δ, there is q ∈ G and M2 ∈ Mq with M2 ∩ ω1 = α. We may assume that
q ≤ p. Since p ∈ Ex,U , U ∈ Up(M ′) for some M ′ ∈ Mp \M . By the last condition
in the definition of q ≤ p, it follows that xq(M2) ∈ U .

This shows that f : CG → X is continuous. Recall that CG is homeomorphic to
ω1. Even if f is not a homeomorphism, we claim that some restriction of f is an
embedding of ω1 to X. Indeed, consider the Čech-Stone extension βf : βCG → βX.
The only case in which βf is not an embedding is if it is not injective and this can
only happen if there is α ∈ CG such that βf(ω1) = f(α). Such an α is unique
because f is injective. So βf ↾ (CG \ (α+ 1)) = f ↾ (CG \ (α+ 1)) is an embedding.
Since CG \ (α+1) is homeomorphic to ω1, the statement of the lemma follows. □

Now we formulate a strong generalization that encompasses PFA results such
those for first countable spaces ([8]), or spaces of countable tightness ([6]), or even
spaces with character at most ω1([1]).

4.6. Definition Let X be a countably compact space. A function φ will be
called suitable if the domain of φ is the set of all closed subsets of X, and for all
B ∈ dom(φ), φ(B) = B.

4.7. Definition If X is countably compact, φ is a suitable function on X, and F is
a maximal free filter of closed subsets of X, then the poset PφX,B,F,κ is the subposet

of PX,B,F,κ consisting of all those p ∈ PX,B,F,κ satisfying that xp(M) ∈ φ(Tr(F ,M))
for all M ∈ Mp.

For example, if X is ω-bounded and of countable tightness, then (under PFA) φ
may be all those points of relative countable character ([6]).

4.8. Theorem If φ is suitable, then PφX,B,F,κ is proper.

Proof. Let P = PX,B,F,κ and let P ∈ H(θ) for a regular cardinal θ. Also let M be
a countable elementary submodel of H(θ) such that P ∈M . Then to prove that P
is proper, it suffices to prove that for any p ∈ P with M ∩H(κ) ∈ Mp, then p is
an (M,P)-generic condition. Equivalently, if D ∈ M is any dense open subset of
P, we must show there is an r ∈ D ∩M that is compatible with p.

By extending p we may assume that p ∈ D. Let Mp \M be enumerated in
increasing order as {Mp

0 , · · · ,M
p
ℓ−1}. Note that Mp

0 = M ∩ H(κ). An important
property of P is that p̄ = p ↾ (Mp ∩M) is itself an element of P and is in M .

Say that q ∈ P end-extends p̄ if q ≤ p̄ and Mp̄ is an initial segment of Mq. Now
let Dℓ be the set of q ∈ D that end-extend p̄ and satisfy that |Mq \Mp̄| = ℓ. It
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follows that Dℓ ∈M . For q ∈ Dℓ, let Mq \Mp̄ be enumerated as {Mq
i : i < ℓ} and

let {xqi : i < ℓ} enumerate {xq(Mq
i )

: i < ℓ}. We leave the reader to verify that if

r ∈ Dℓ ∩M is such that {xri : i < ℓ} is a subset of W (p,Mp
0 ), then r is compatible

with p. So, it becomes our task to show there is such an r ∈ Dℓ ∩M .
In order for this proof to work, we have to argue in Mp

0 rather than in M . To
this end, we work with the set

Tℓ = {x⃗q = ⟨xqi : i < ℓ⟩ : q ∈ Dℓ}.

It is immediate that Tℓ ∈ M ∩ H(κ) = Mp
0 . For any x⃗q ∈ Tℓ and 0 < j < ℓ, let

x⃗q ↾ j denote ⟨xqi : i < j⟩ and x⃗q ↾ 0 is the empty sequence.
Of course Tℓ ⊂ Xℓ, we will recursively define a sequence Tj ⊂ Xj for j < ℓ. For

any j < ℓ and tuple x⃗ ∈ Tj , we let

H(x⃗, Tj+1) = {y ∈ X : x⃗⌢y ∈ Tj+1}.

Then, by recursion,

Tj = {x⃗ ∈ Xj : H(x⃗, Tj+1) ∈ F+}.

This recursion is definable in Mp
0 , hence for any j < ℓ and x⃗ ∈ Mp

j , H(x⃗, Tj+1) is

an element of Mp
j . It recursively follows from Lemma 4.2 that x⃗p ↾ j ∈ Tj for each

j < ℓ. This means that the empty sequence is an element of T0 ∩Mp
0 , implying

that H(∅, T1) ∈ F+ ∩Mp
0 .

By Lemma 4.2, Tr(F ,Mp
0 ) is contained in the closure of H(∅, T1)∩Mp

0 . Choose
any x0 ∈ W (p,Mp

0 ) ∩H(∅, T1) ∩Mp
0 . By recursion, suppose we have chosen x⃗j =

⟨x0, . . . , xj−1⟩ ∈ Tj ∩Mp
0 so that, for each i < j, xi ∈ W (p,Mp

0 ). At step j, there
is xj ∈ H(x⃗j , Tj+1) ∩W (p,Mp

0 ) ∩M
p
0 because H(x⃗j , Tj+1) ∈ F+. Once we have

chosen x⃗ℓ ∈ Tℓ∩Mp
0 , we choose, by elementarity, r ∈ Dℓ∩M such that x⃗ℓ = x⃗rℓ . □

4.9. Theorem Assume PFA. Let X be a completely regular, countably compact,
non-compact space with the property that every time Y ⊂ X is separable, C is
closed in X and C ⊂ Y then C has a dense set of points with character al most ω1

in C. Then X contains a copy of ω1.

Proof. Let F be any maximal free closed filter. Define the function φ as follows.
For any countableM ≺ H(κ) such that X,F ∈M , φ(Tr(F ,M)) is the set of points
of Tr(F ,M) that have relative character at most ω1. For any closed set B ⊂ X not
of this form, let φ(B) = B. It should be clear that φ ∈ H(κ). By the assumption
of the theorem, φ is a suitable function. Let B be the set of all non-empty open
subsets of X.

Let P = PφX,B,F,κ. We want to identify ω1-many dense subsets of P so that
any filter G meeting them is enough to ensure that CG is a cub and that f is
a homeomorphism. The proof in Proposition 4.4 shows that there is a family of
ω1-many dense sets that will guarantee that CG is a cub. As noted in the proof of
Lemma 4.5, we only need G to capture sufficiently many neighborhoods of each xδ
in order to ensure that f is continuous.

For each separable B in the domain of φ and each x ∈ φ(B), let {U(B, x, α) :
α ∈ ω1} ⊂ Ux be chosen so that {B ∩ U(B, x, α) : α ∈ ω1} is a local base for x in
B. For each α ∈ ω1, let

Eα = {p ∈ P : (∀M ∈ Mp ∃M ′ ∈ Mp \M) U(Tr(F ,M), xp(M), α) ∈ Up(M ′)}.
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It is easy to see that Eα is a dense subset of P.
Now we assume that G is a filter on P and that G ∩ Eα and G ∩Dδ,n are not

empty for all α, δ ∈ ω1 and n ∈ ω. As usual, let {xα : α ∈ CG} enumerate the
image of CG by the above mentioned generic function f .

As discussed in the proof of Lemma 4.5, it is enough to prove that f is continuous.
Let δ ∈ CG be a limit point of CG and let I be any cofinal sequence of CG ∩ δ. By
the definition of Dδ,n, it follows that {β ∈ I : xβ ∈ F (M,n)} is a cofinite subset of
I. Therefore the set of limit points of {xβ : β ∈ I} is a subset of B = Tr(F ,M). In
addition, for each α ∈ ω1, since G∩Eα∩Dδ,0 is not empty, {xβ : β ∈ I}\U(B, xδ, α)
is finite. It then follows that xδ is the unique accumulation point of {xβ : β ∈ I}. □

We also include the following which shows that in some cases, we can control
the point of convergence of the copy of ω1.

4.10. Corollary Assume PFA. Let K be a compact Hausdorff space, X ⊂ K be
with the hypothesis of Theorem 4.9 and assume that S ∈ [X]ω1 has all its complete
accumulation points in K \ X. Then there is a copy of ω1 contained in X that
converges to some complete accumulation point of S.

Proof. Let S = {xα : α < ω1} be an enumeration. For each β < ω1, let

Fβ = X ∩ {xα : β ≤ α < ω1}.
Let F be a maximal filter of closed sets that extends {Fα : α < ω1} and proceed
with the proof of Theorem 4.9.

For each α < ω1, it is easy to prove that the set

Dα = {p ∈ P : ∃M ∈ Mp (Fα ∈ Fp(M))}
is dense in P. So we may assume that G ∩Dα ̸= ∅ for all α < ω1.

If p ∈ G ∩ Dα and M ∈ Mp is such that Fα ∈ Fp(M), then it follows that for
any γ ∈ CG with M ∩ ω1 < γ, xγ ∈ Fα. Thus,∩

α<ω1

{xp(M) : ∃p ∈ G, ∃M ∈ Mp (α < M ∩ ω1)} ⊂
∩
α<ω1

Fα,

which implies the statement of this Corollary. □
Recall that according to Šapirovski’s result [9, 3.20, p.71], any compact space

of size < 2ω1 has a dense set of points of character ≤ ω1. A space is ω-bounded
if every countable subset has compact closure. Thus, the following result follows
from Theorem 4.9.

4.11. Corollary PFA implies that any ω-bounded non-compact space of cardi-
nality at most c, contains a copy of ω1.

4.12. Corollary PFA implies that any pseudoradial space non-sequential space
with radial character at most ℵ1 contains a copy of ω1.

Proof. If K is such a space, then K has uncountable tightness. This implies it
has a (converging) free ω1-sequence. So K has a subspace X that has a perfect
mapping onto ω1. With no loss of generality, X has density equal to ℵ1. Let X be
an element of an elementary submodelM of H(θ) (some suitably large θ) such that
Mω1 ⊂ M and |M | = 2ω1 = ω2. Since K is pseudoradial and has radial character
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ω1, it follows that X is ω-bounded and is contained in M . Now apply the previous
Corollary. □

Finally, we prove the result announced in the Introduction.

Proof of Theorem 1.6. Let p ∈ X and assume that there is a no countable sequence
converging to p. Since X is almost radial, there is a thin sequence S = {xα : α ∈ κ}
converging to p. As observed in [13, Lemma 5.6], we may assume that S is free.
Since X has radial character ω1 then κ = ω1. After this, apply the arguments in
Corollaries 4.10 and 4.12 to complete the proof. □

5. Some final comments and questions

Let us start this section by making an observation of the proof of Theorem 1.4.
In every step ω1 ≤ α < c we can inductively notice that for every p ∈ bT there is
some subset of {yβ : β < ω1}, below p that has p in its closure. From this, the
following follows easily.

5.1. Proposition For every α < ω1, let pα ∈ bT such that πρ(pα) = yα. Then
the set {pα+1 : α < ω1} is a free ω1-sequence dense in bT .

Notice also that we only used c = ω2 to show that the space is pseudoradial but
b = c is enough for the following.

5.2. Theorem Assume b = c. Then there exists a compact, sequentially compact
space X and a continuous function π : X → ω1+1 such that every time e : ω1+1 →
X is an embedding there exists α < ω1 such that (π ◦ e)[ω1 + 1] ⊂ α ∪ {ω1}.

Assume PFA. Then the counterexample X from Theorem 1.4 can be constructed
and Theorem 1.6 holds. This means that X cannot satisfy the hypothesis of Theo-
rem 1.6: X is either of radial character c = ω2 or X is not almost radial. However,
we don’t know which one of the two conditions. The only thing we know is that
because of Corollary 1.3, X has character ω2. So besides Question 1.5 we can also
ask the following.

5.3. Question Does it follow from MA + c = ω2 that there is a almost radial
compact Hausdorff space that is not strongly pseudoradial?

At first, when the authors of this paper attempted the proof of Theorem 1.4, we
intended to kill all copies of ω1. However, we were not able to give this construction.
As we can see from the proof, we were able to kill all copies of ω1 that converge to
the distinguished point ρ, but there might exist other copies of ω1 in other branches
of the tree T .

From these considerations, one may naturally ask whether it is consistent with
MA that there exists a compact, sequentially compact space of uncountable tight-
ness that contains no topological copies of ω1.

Consider Nyikos’ example of a first countable space X that maps onto ω1 but
has no copies of ω1. The construction of this example can be found in [8, 19.1].
Essentially, Nyikos example has underlying set ω1 × {0, 1} and it can be easily
checked that any subspace of the form (α + 1) × {0, 1}, α < ω1, is a compact
metric space open in X. Thus, the one-point compactification of X is sequentially
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compact, has uncountable tightness and has no copies of ω1 + 1. Nyikos’ example
can be constructed from a statement that is a consequence of♢ and that is preserved
under ccc forcings. We conclude the following.

5.4. Corollary It is consistent with MA and c of arbitrary large size that there
is a compact, sequentially compact space of uncountable tightness that contains no
topological copies of ω1 + 1.

Again, by considering the result by Juhász and Szentmiklóssy [10] that pseudo-
radiality follows from sequential compactness under c = ω2 we obtain the following.

5.5. Corollary It is consistent with MA + c = ω2 that there is a compact pseu-
doradial space of radial character ω1 that is not strongly pseudoradial.

Besides our Main Question 1.5, we may also ask the following.

5.6. Question Does it follow from MA+ c = ω2 that there exists a pseudoradial
space (of radial character ω1) that contains no topological copies of ω1?
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