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Abstract. We introduce and analyze a new cardinal characteristic of
the continuum, the splitting number of the reals, denoted s(R). This
number is connected to Efimov’s problem, which asks whether every
infinite compact Hausdorff space must contain either a non-trivial con-
vergent sequence, or else a copy of βN.

1. Introduction

This paper is about a new cardinal characteristic of the continuum, the
splitting number of the reals, denoted s(R).

Definition 1.1. If U and A are infinite sets, we say that U splits A provided
that both A∩U and A \U are infinite. The cardinal number s(R) is defined
as the smallest cardinality of a collection U of open subsets of R such that
every infinite A ⊆ R is split by some U ∈ U .
In this definition, R is assumed to have its usual topology. The number
s(R) is a topological variant of the splitting number s, and is a cardinal
characteristic of the continuum in the sense of [2].

Most of this paper is devoted to understanding the place of s(R) among the
classical cardinal characteristics of the continuum. Our main achievement
along these lines is to determine completely the place of s(R) in Cichoń’s
diagram. More precisely, for every cardinal κ appearing in Cichoń’s diagram,
we prove either that κ is a (consistently strict) lower bound for s(R), or that
κ is a (consistently strict) upper bound for s(R), or else that each of κ < s(R)
and s(R) < κ is consistent.

ℵ1 add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N ) c

upper
bounds

incomparable
cardinals

lower
bounds

To explain our motivation for investigating the cardinal number s(R), we
begin with a longstanding open problem of set-theoretic topology:
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Efimov’s problem [13, 19]: Does every infinite compact Hausdorff space
contain either a non-trivial convergent sequence, or else a copy of βN?

An Efimov space is defined to be an infinite compact Hausdorff space con-
taining neither a non-trivial convergent sequence nor a copy of βN, should
such a space exist.

Since the 1970’s, it has been known that a negative solution to Efimov’s
problem is consistent with ZFC. In other words, it is consistent that Efimov
spaces exist. This result is due to Fedorčuk, who published three separate
papers giving three separate constructions of Efimov spaces, each time using
a different set-theoretic axiom to facilitate his construction [14, 15, 16]. It is
unknown whether a positive solution to Efimov’s problem is also consistent,
and in this sense the problem remains open.

The cardinal s(R) is related to the question of how “small” an Efimov space
can be, where we measure the smallness of a space by its weight. Recall that
the weight of a topological space is the smallest size of a basis for that space.
From now on, a space will always mean an infinite Hausdorff topological
space. A space is called non-sequential if it is not discrete and yet contains
no non-trivial convergent sequences.

Definition 1.2. The cardinal number z is defined to be the smallest weight
of a compact non-sequential space.

The notation z is from the Polish zbieżność meaning convergence, and was
suggested by Damian Sobota in [27]. Let us record a few observations:

◦ Booth proved in [5] that every compact space of weight <s is sequen-
tially compact, and thus contains non-trivial convergent sequences.
Hence s ≤ z.
◦ Koppelberg proved in [24] that every compact space with weight
<cov(M) contains a non-trivial convergent sequence. (Her proof
is phrased in terms of Boolean algebras; see [17, Section 2] for a
topological translation.) Hence cov(M) ≤ z.
◦ The space βN, the Stone-Čech compactification of the countable dis-
crete space N, contains no non-trivial converging sequences, and it
follows that z ≤ c = weight(βN).
◦ If z < c, then there is an Efimov space. This is because any space
containing a copy of βN must have weight ≥c. If there is an Efimov
space, then z = min {weight(X) : X is an Efimov space}.

Thus the number z could be considered a cardinal characteristic of the
continuum, one closely tied to Efimov’s problem. Unfortunately, z seems
difficult to analyze directly. In this paper, we analyze it indirectly by exam-
ining the cardinal s(R) instead. The cardinals s(R) and z are related by the
following theorem, whose proof is found in Section 2 below.

Theorem 2.9. Suppose κ is a cardinal such that s(R) ≤ κ = cof(κℵ0 ,⊆).
Then z ≤ κ.
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Recall that cof(κℵ0 ,⊆) denotes the smallest possible size of a collection C
of countable subsets of κ such that every countable subset of κ is contained
in some member of C. If κ has uncountable cofinality, and if the Covering
Lemma holds with respect to some inner model K satisfying the GCH, then
κ = cof(κℵ0 ,⊆); see [21, Section 4] for a proof. Conversely, if cf(κ) > ω
then the inequality κ < cof(κℵ0 ,⊆) implies the Covering Lemma fails over
any such inner model, an assertion of significant large cardinal strength.
(It implies at least that there is an inner model containing a measurable
cardinal by results in [7]; on the other hand, Gitik obtained in [18] a model
in which cof(ℵℵ0ω+1,⊆) > ℵω+1 using a measurable cardinal κ of Mitchell
order o(κ) = κ++.)

Furthermore, the inequality κ < cof(κℵ0 ,⊆) implies κ ≥ ℵω. (Again, a
proof can be found in [21, Section 4].) Thus if s(R) < ℵω, then we may take
κ = s(R) in the above theorem.

Corollary. If s(R) < ℵω then z ≤ s(R).

The present paper is organized as follows. In Section 2 we prove some basic
facts about s(R) and prove the theorem concerning s(R) and z discussed
above. After this, we prove several theorems comparing s(R) with other
cardinal characteristics of the continuum. Specifically, in Sections 3 and 4
we prove the following bounds on s(R) in terms of more familiar cardinals:

• s ≤ s(R)

• b ≤ s(R)

• cov(M) ≤ s(R)

• s(R) ≤ max{b,non(N )}

(For the definitions of these other cardinal characteristics of the continuum,
we refer the reader to [2] or [8].) We show that each of these four bounds
is consistently strict. In Section 5, we also show via forcing the relative
consistency of two more inequalities:

• b = s(R) < non(N ) • d = cof(M) < s(R)

These six results, together with established facts about the cardinals in Ci-
choń’s diagram, suffice to pinpoint the location of s(R) in Cichoń’s diagram
as described above. This is discussed further in Section 5. We have also
included a short Section 6 reviewing the status of Efimov’s problem, and
stating some open questions related to s(R) and z.

2. More on s(R) and z

We begin this section by showing that the value of s(R) remains unchanged
when R is replaced by any other uncountable Polish space in Definition 1.1,
or when the definition is altered by requiring only certain kinds of infinite
sets to be split by every U ∈ U .
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Definition 2.1. If X is a topological space, then the number s(X) is defined
as the smallest cardinality of a collection U of open subsets of X such that
every infinite A ⊆ X is split by some U ∈ U .

Lemma 2.2. If Y ⊆ X, then s(Y ) ≤ s(X).

Proof. If U is a family of open subsets of X such that every infinite A ⊆ X is
split by some U ∈ U , then every infinite A ⊆ Y is split by some U ∈ U . �

Lemma 2.3. Suppose X is an uncountable, zero-dimensional, Borel subspace
of a Polish space. Then s(X) = s(2ω).

Proof. If X is as in the statement of the lemma, then X contains a copy
of the Cantor space [23, Theorem 6.2] and X embeds topologically into the
Cantor space [23, Theorem 7.3]. By the previous lemma, this implies that
s(2ω) ≤ s(X) ≤ s(2ω), so s(X) = s(2ω). �

Lemma 2.4. s(2ω) is uncountable.

Proof. It follows immediately from the definitions that if N has the discrete
topology, then s(N) is equal to the splitting number s (which is uncountable).
As s ≤ s(2ω) by Lemma 2.2, s(R) is uncountable. �

Theorem 2.5. If X,Y are uncountable Polish spaces, then s(X) = s(Y ).

Proof. Let H denote the Hilbert cube [0, 1]ℵ0 . To prove the theorem, it
suffices to show that s(H) ≤ s(2ω). This is because, if X is any uncountable
Polish space, then X contains a copy of the Cantor space [23, Theorem 6.2]
and X embeds into the Hilbert cube [23, Theorem 4.14]. By Lemma 2.2, it
follows that s(2ω) ≤ s(X) ≤ s(H), so if s(H) ≤ s(2ω) then s(H) = s(2ω) =
s(X) for every uncountable Polish space X.

To see that s(H) ≤ s(2ω), we use a slight variation of a result of Hausdorff
[20], which states that the Baire space ωω can be written as an increasing
union

⋃
α<ω1

Xα, where each Xα is a Gδ subspace of ωω.
This result is a relatively straightforward consequence of the existence of

Hausdorff gaps. Recall that a Hausdorff gap is a sequence 〈(fα, gα) : α < ω1〉
of pairs of functions ω → ω such that

• fα <∗ fβ <∗ gβ <∗ gα for every α < β < ω1 (where, as usual, f <∗ g
means that f(n) < g(n) for all but finitely many n ∈ ω).
• there is no h : ω → ω such that fα <∗ h <∗ gα for all α < ω1.

Taking Xα = {f ∈ ωω : fα <
∗ f <∗ gα} for each α < ω1, one may check that

each Xα is Gδ and that ωω =
⋃
α<ω1

Xα.
Recall that ωω is homeomorphic to [0, 1] \Q, so we may write [0, 1] \Q =⋃
α<ω1

Xα, and by setting Yn = Xn ∪{the nth rational number in [0, 1]} and
Yα = Xα for α ≥ ω, we get [0, 1] =

⋃
α<ω1

Yα, where each Yα is a zero-
dimensional, Gδ subspace of [0, 1]. Furthermore, each Yα is uncountable
(because each Xα is, as one may easily check). Taking Zα = Y ω

α for every
α < ω1, we arrive at the desired modification of Hausdorff’s result: the
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Hilbert cube H is an increasing union
⋃
α<ω1

Zα of uncountable, Borel, zero-
dimensional subspaces.

For each α < ω1, let Uα be a family of at most s(2ω) open subsets of H
such that every infinite A ⊆ Zα is split by some U ∈ Uα. (Some such Uα
exists by Lemma 2.3.) Let U =

⋃
α<ω1

Uα.
Suppose A ⊆ H is infinite. Then there is some α < ω1 such that A ∩ Zα

is infinite. Thus there is some U ∈ Uα such that both (A ∩ Zα) ∩ U and
(A∩Zα)\U are infinite. But then both A∩U and A\U are infinite as well,
so U splits A.

This shows that s(H) ≤ |U| =
∣∣⋃

α<ω1
Uα
∣∣ ≤ ℵ1 ·s(2ω). Lemma 2.4 implies

that ℵ1 · s(2ω) = s(2ω), so s(H) ≤ s(2ω), as desired. �

Theorem 2.6. Let X be a Polish space. Let [X]ω denote the set of all
countably infinite subsets of X, and let [X]con denote the set of all non-
trivial convergent sequences in X, considered as sets rather than sequences.
If we define

• sω(X) to be the smallest cardinality of a collection U of open subsets
of X such that every A ∈ [X]ω is split by some U ∈ U , and
• scon(X) to be the smallest cardinality of a collection U of open subsets
of X such that every A ∈ [X]con is split by some U ∈ U

then sω(X) = scon(X) = s(X) = s(R).

Proof. Clearly [X]con ⊆ [X]ω and every A ∈ [X]ω is infinite. It follows that
scon(X) ≤ sω(X) ≤ s(X).

As in the proof of Lemma 2.2, if U is any family that splits every A ∈
[X]con, then U also splits every A ∈ [Y ]con for any subspace Y of X. As 2ω

embeds in X [23, Theorem 6.2], it follows that scon(2ω) ≤ scon(X). Thus

scon(2ω) ≤ scon(X) ≤ sω(X) ≤ s(X) = s(2ω)

(where the final equality follows from the previous theorem). Thus, to finish
the proof of the theorem, it suffices to show that s(2ω) ≤ scon(2ω).

Suppose U is a collection of open subsets of 2ω with |U| ≤ scon(2ω) such
that every A ∈ [2ω]con is split by some U ∈ U . If B is any infinite subset of
2ω, then (because 2ω is a compact metrizable space) there is some A ⊆ B
with A ∈ [2ω]con, and hence some U ∈ U that splits A. But then U splits
B as well. Thus every infinite subset of 2ω is split by some U ∈ U , and it
follows that s(2ω) ≤ scon(2ω) as desired. �

We now move on to the proof of the theorem mentioned in the introduction
connecting s(R) with z. The proof bears some resemblance to Fedorčuk’s
construction of an Efimov space in [16], which uses the hypotheses 2ℵ0 = 2ℵ1

and s = ℵ1. It bears an even stronger resemblance to van Douwen and
Fleissner’s refinement of Fedorčuk’s construction in [9, Section 2.5], where
they construct an Efimov space of weight ℵ1 from the hypotheses 2ℵ0 = 2ℵ1

and s(R) = ℵ1 (although, of course, the latter hypothesis is not phrased in
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this way). In some sense, the proof presented here simply optimizes their
strategy, and isolates the critical cardinal invariant for the construction.

We also point out that a similar theorem was obtained by Damian Sobota
in [28, Section 8]. He showed that if there is a cardinal κ such that cof(N ) ≤
κ = cof(κℵ0 ,⊆) < c, then there is an Efimov space of weight κ. Equivalently:
if cof(N ) ≤ κ = cof(κℵ0 ,⊆) < c then z ≤ κ. As s(R) ≤ max{b,non(N )} ≤
cof(N ) (with both inequalities being consistently strict), Theorem 2.9 can
be viewed as a tightening of Sobota’s result.

Lemma 2.7. s ≤ s(R).

Proof. The proof of Lemma 2.4 shows that s ≤ s(2ω), and s(2ω) = s(R)
by Theorem 2.5. (Alternatively, one may note that the proof of Lemma 2.4
applies to s(R) just as well as s(2ω).) �

A subset U of a topological space is called regular open if U = int(U).
The regular open subsets of a topological space X form a complete Boolean
algebra, called the regular open algebra of X and denoted ro(X). If X is
a Stone space (i.e., compact, Hausdorff, and zero-dimensional) then ro(X)
is the Boolean completion of clop(X), the Boolean algebra consisting of all
clopen subsets of X.

In the following two proofs, we will be looking at ro(2ω), its subalgebras,
and their Stone spaces. If A ⊆ ro(2ω), then 〈〈A〉〉 denotes the subalgebra
of ro(2ω) generated by A. For any subalgebra B of ro(2ω), we denote its
Stone space by st(B). Recall that st(B) consists of all ultrafilters on B. Thus
whenever A is a subalgebra of B: if x is a point of st(B) then x ∩ A is a
point of st(A) and, conversely, if x ∈ st(A) then there is some y ∈ st(B) with
y ∩ st(A) = x.

Lemma 2.8. Suppose B is a countable Boolean algebra such that

clop(2ω) ⊆ B ⊆ ro(2ω).

There is a subset U ⊆ ro(2ω) with |U| = s(R) having the following property:
(∗) Let 〈xn : n ∈ N〉 be a sequence of points in st(B), and for each n let

yn be a point of st(〈〈B∪U〉〉) such that yn∩B = xn. Then the sequence
〈yn : n ∈ N〉 does not converge in st(〈〈B ∪ U〉〉).

Proof. Let B be a countable Boolean algebra with clop(2ω) ⊆ B ⊆ ro(2ω).
B is atomless because B ⊇ clop(2ω) and clop(2ω) is atomless and dense in
ro(2ω). As B is a countable, atomless Boolean algebra, it is isomorphic to
clop(2ω), and st(B) is homeomorphic to 2ω. Hence there is a family U0 of
open subsets of st(B) with |U0| = s(R) such that every member of [st(B)]con

is split by some U ∈ U0.
Observe that no X ∈ [st(B)]con is split by a clopen set. (If x is the limit

point of X, then X ∩ C is either finite or co-finite, depending on whether
x /∈ C or x ∈ C respectively.) Thus, by removing any clopen sets from U0 if
necessary, we may (and do) assume that no U ∈ U0 is clopen.
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For each b ∈ B let [b] = {x ∈ st(B) : b ∈ x}, and recall that the sets of this
form constitute the canonical basis of clopen sets for st(B). For each U ∈ U0,
let us fix a sequence

〈
bUn : n ∈ N

〉
of nonempty, pairwise disjoint members of

B such that U =
⋃
n∈N[bnU ]. This is possible because B is countable and

because U is open, but not clopen, in st(B).
Let F be a family of infinite subsets of N such that |F| = s and every

infinite subset of N is split by some A ∈ F . For each A ∈ F and U ∈ U0,
define R(U,A) = int

(⋃
n∈A b

n
U

)
. Each bnU is an open subset of 2ω; in this

definition, the interior and the closure are taken in 2ω, not in st(B). Let

U = {R(U,A) : U ∈ U0 and A ∈ F} .

We claim that this U is as required.
One may easily check that int

(
int(V )

)
= int(V ) for any open set V

(in any space). Hence each R(U,A) is a regular open subset of 2ω. Also,
|U| = |U0| · |F| = s(R) · s = s(R) (where the final equality holds because
s ≤ s(R) by Lemma 2.7). It remains to check property (∗).

Let 〈xn : n ∈ N〉 be a sequence of points in st(B), and for each n let yn be
a point of st(〈〈B ∪ U〉〉) such that yn ∩ B = xn. Let X = {xn : n ∈ N} and
Y = {yn : n ∈ N}, and fix some U ∈ U0 that splits X. Note that the limit
point of X is not in U (as then U would not split X). Let

B = {m ∈ N : X ∩ [bmU ] 6= ∅} .

Any particular [bmU ] contains only finitely many points of X, because it is
closed and X converges to a point outside [bmU ]. This implies B is infinite.
Thus there is some A ∈ F such that A splits B. R(U,A) ∈ U , and we claim
that [R(U,A)] splits Y in st(〈〈B ∪ U〉〉).

To see this, first notice that if m ∈ A then bmU ⊆ R(U,A), and if m /∈ A
then bmU ∩A = ∅. (This follows easily from the definition of R(U,A) and the
fact that the bmU are open and pairwise disjoint.)

BecauseA splitsB, there are infinitely manym ∈ A such that [bmU ]∩X 6= ∅,
and [bmU ] ⊆ [R(U,A)] in st(〈〈B∪U〉〉) for all such m. Also, if xn ∈ [bmU ] in st(B)
then yn ∈ [bmU ] ⊆ [R(U,A)] in st(〈〈B ∪ U〉〉). It follows that Y ∩ [R(U,A)] ⊇
X ∩

⋃
m∈A[bmU ] is infinite. Similarly, there are infinitely many m /∈ A such

that [bmU ] ∩ X 6= ∅, and [bmU ] ∩ [U ] = ∅ in st(〈〈B ∪ U〉〉) for all such m. As
before, if xn ∈ [bmU ] in st(B) then yn ∈ [bmU ] ⊆ [R(U,A)] in st(〈〈B ∪ U〉〉), and
it follows that Y \ [R(U,A)] ⊇ Y ∩

⋃
n/∈A[bnU ] is infinite.

Hence [R(U,A)] splits Y in st(〈〈B ∪ U〉〉). But no clopen set can split a
convergent sequence; thus, as [R(U,A)] is clopen in st(〈〈B ∪ U〉〉), Y does not
converge in st(〈〈B ∪ U〉〉). �

Theorem 2.9. Suppose κ is a cardinal such that s(R) ≤ κ = cof(κℵ0 ,⊆).
Then z ≤ κ.

Proof. To prove the theorem, we construct via recursion an increasing se-
quence 〈Aα : α ≤ ω1〉 of ≤ κ-sized subalgebras of ro(2ω). The construction
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will ensure that |Aω1 | ≤ κ and st(Aω1) is non-sequential. This suffices to
prove the theorem, because the weight of st(A) is |A|.

For the base step of the recursion, let A0 = clop(2ω), and note that A0 is
countable. If λ is a limit ordinal, then take Aλ = 〈〈

⋃
α<λAα〉〉, noting that if

|Aα| ≤ κ for every α < λ then |Aλ| ≤ κ also.
For the successor step, fix α < ω1 and suppose Aα has already been

constructed with |Aα| ≤ κ. Let {Cξ : ξ ∈ κ} be a collection of countable
subsets of Aα such that every countable subset of Aα is contained in some
Cξ. (Such a family exists because κ = cof(κℵ0 ,⊆).) For each ξ ∈ κ, let
Bξ = 〈〈clop(2ω) ∪ Cξ〉〉. Each Bξ is a subalgebra of ro(2ω) satisfying the
hypothesis of Lemma 2.8. Applying the lemma, fix for each ξ ∈ κ some
Uξ with |Uξ| ≤ s(R) such that Bξ and Uξ satisfy property (∗). Finally, set
Aα+1 = 〈〈Aα ∪

⋃
ξ∈κ Uξ〉〉 and note that |Aα+1| ≤ κ. This completes the

recursion.
Let A = Aω1 . We claim that st(A) is non-sequential. Aiming for a

contradiction, suppose [st(A)]con 6= ∅. Let 〈yn : n ∈ N〉 = Y ∈ [st(A)]con,
and let y ∈ st(A) be the limit point of Y . For each n ∈ N, there is some
Dn ∈ A such that Y ∩ [Dn] = {yn}. Let α < ω1 be big enough so that
{Cn : n ∈ N} ⊆ Aα.

At stage α + 1 of our recursion, there was some ξ ∈ κ such that Cξ ⊇
{Dn : n ∈ N}, and we found a set Uξ such that Bξ = 〈〈clop(2ω) ∪ Cξ〉〉 and
Uξ satisfy (∗). For each n ∈ N, let xn = yn ∩ Bξ, and note that the xn are
distinct because Bξ ⊇ {Dn : n ∈ N}. Because Y converges to y in st(Aα), we
must also have {xn : n ∈ N} converging to x = y ∩ Bξ. Similarly, for each
n ∈ N, let zn = yn ∩ 〈〈Bξ ∪ Uξ〉〉; because Y converges to y in st(A), we must
also have {xn : n ∈ N} converging to z = y ∩ 〈〈Bξ ∪ Uξ〉〉. As xn = Bξ ∩ zn for
each n, this contradicts (∗). �

3. Lower bounds for s(R)

In the previous section, we showed that s is a lower bound for s(R). In
this section we prove that cov(M) and b are also lower bounds for s(R).

Theorem 3.1. cov(M) ≤ s(R).

Proof. For each x ∈ R, fix some Sx ∈ [R]con converging to x. It is not
difficult to see that if U is an open subset of R that splits Sx, then x ∈ ∂U .
Now suppose U is a family of open subsets of R having the property stated
in Definition 1.1. For each x ∈ R, the set Sx is split by some U ∈ U , so

R =
⋃
U∈U ∂U.

But ∂U is closed and nowhere dense for each open U ⊆ R, so this shows
cov(M) ≤ |U|. As this is true for every U having the property stated in
Definition 1.1, it follows that cov(M) ≤ s(R). �

In the Cohen model s < cov(M). It follows from this and Theorem 3.1
that s < s(R) in the Cohen model. Thus the bound proved in Lemma 2.7 is
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consistently strict. This also shows that the word “uncountable” cannot be
removed from the hypothesis of Theorem 2.5, because N is a Polish space
and s(N) = s is consistently less than s(R).

Likewise, cov(M) < s in the Mathias model, and it follows from this and
Lemma 2.7 that cov(M) < s(R) in the Mathias model. Thus the bound
proved in Theorem 3.1 is consistently strict.

Recall that the Cantor space has a basis consisting of sets of the form

[s] = {x ∈ 2ω : x�dom(s) = s}

where s ∈ 2<ω. Here, as usual, 2<ω denotes the set of all functions from
some finite ordinal n = {0, 1, . . . , n− 1} to 2 = {0, 1}.

Theorem 3.2. b ≤ s(R).

Proof. Suppose U is a collection of open subsets of the Cantor space 2ω such
that |U| < b. To prove the theorem, it suffices to show that there is some
infinite X ⊆ 2ω that is not split by any U ∈ U .

For each s ∈ 2<ω, let s_0∞ denote the member of 2ω defined by setting
(s_0∞)(n) = s(n) if n ∈ dom(s), and (s_0∞)(n) = 0 for all n ≥ dom(s).
Likewise, define s_0k = (s_0∞) � (dom(s) + k) for each k ∈ ω; i.e., s_0k is
the finite sequence obtained by appending k zeroes to s.

Observe that if s ∈ 2<ω, then the sets of the form [s_0k] form a neighbor-
hood basis for the point s_0∞ in 2ω. In particular, if s_0∞ ∈ U ⊆ 2ω and
U is open, then there must be some k ≥ 0 such that [s_0k] ⊆ U .

For each U ∈ U , define a function fU : ω → ω by setting

fU (n) = max
{

min
{
k : [s_0k] ⊆ U

}
: s ∈ 2n+1 and s_0∞ ∈ U

}
for each n ∈ ω. (This function is well-defined by the previous paragraph.)
Equivalently, fU (n) is the smallest k such that for any s ∈ 2n+1, if s_0∞ ∈ U
then [s_0k] ⊆ U .

As |U| < b, there is some f ∈ ωω such that fU <∗ f for every U ∈ U
(where, as usual, fU <∗ f means that fU (n) < f(n) for all but finitely many
n ∈ ω). Using recursion, define an infinite (strictly increasing) sequence
〈kn : n < ω〉 of natural numbers as follows. Let k0 = 0, and for n ≥ 0 let

kn+1 = kn + 1 + f(kn).

We now define an infinite subset of 2ω that (we claim) is not split by any
U ∈ U . Given n ∈ ω, define sn ∈ 2<ω as follows: dom(sn) = kn + 1 and

sn(i) =

{
1 if i = km for some m,
0 if not.

Informally, sn is a finite sequence of 0’s and 1’s, with exactly n + 1 terms
equal to 1, and where these 1’s appear sparsely, separated by increasingly
enormous strings of 0’s. More specifically, if the kth value of the sequence is
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1, then it is followed by a length-f(k) string of 0’s before the next 1 appears
in the sequence.

s0 = 1

s1 = 1

f(0)︷ ︸︸ ︷
0 0 . . . 0 0︸ ︷︷ ︸

k1

1

s2 =

k1︷ ︸︸ ︷
1 0 0 . . . 0 0 1

f(k1)︷ ︸︸ ︷
0 0 . . . . . . 0 0︸ ︷︷ ︸
k2

1

s3 =

k2︷ ︸︸ ︷
1 0 0 . . . 0 0 1 0 0 . . . . . . 0 0 1

f(k2)︷ ︸︸ ︷
0 0 . . . . . . . . . . . . 0 0︸ ︷︷ ︸

k3

1

...

sn = 1

f(0)︷ ︸︸ ︷
0 0 . . . 0 0 1

f(k1)︷ ︸︸ ︷
0 0 . . . . 0 0 1

f(k2)︷ ︸︸ ︷
0 0 . . . . . 0 0 1 0 0 . . . 0 0 1

f(kn)︷ ︸︸ ︷
0 0 . . . . . . 0 0 1

We claim that the set X = {sn_0∞ : n ∈ ω} is not split by any U ∈ U .
To see this, let us suppose that U ∈ U contains sn_0∞ for infinitely many

n ∈ ω. Recall that the sequence 〈kn : n ∈ ω〉 is strictly increasing (and in
particular, it contains infinitely many numbers); as fU <∗ f , this implies
that fU (kn) < f(kn) for all but finitely many n. Thus there is some n ∈ ω
such that sn_0∞ ∈ U and fU (kn) < f(kn).

Now dom(sn) = kn + 1, so by the definition of fU , sn_0∞ ∈ U implies
that [sn

_0fU (kn)] ⊆ U . As f(kn) > fU (kn), we also have [sn
_0f(kn)] ⊆

[xn
_0fU (n)]. Thus [sn

_0f(kn)] ⊆ U .
But for all m ≥ n, sn_0f(kn) is an initial segment of sm. This implies that

sm
_0∞ ∈ [sn

_0f(kn)] ⊆ U for all m ≥ n.
Thus if U ∈ U contains infinitely many points of X, then it contains

co-finitely many points of X. Hence X is not split by any U ∈ U . �

In the Cohen model, b < cov(M). It follows from this and Theorem 3.1
that b < s(R) in the Cohen model. Thus the bound proved in Theorem 3.2
is consistently strict.

Unlike s and cov(M), which are lower bounds for z as well as for s(R),
b is not a lower bound for z. This follows from a result of the second author
(to appear in a forthcoming paper) which shows that z = ℵ1 in the Laver
model; as b = ℵ2 in the Laver model, this shows the consistency of z < b. It
also shows that z < s(R) in the Laver model, which is interesting in light of
the corollary to Theorem 2.9 mentioned in the introduction.



SMALL CARDINALS AND SMALL EFIMOV SPACES 11

4. An upper bound for s(R)

In this section we prove our only nontrivial upper bound for s(R), namely
s(R) ≤ max{b,non(N )}. Recall that non(N ) denotes the smallest size of a
non-Lebesuge-measurable subset of 2ω. (The value of non(N ) remains the
same if instead of 2ω we were to use the Lebesgue measure on R or [0, 1],
or any other standard measure on a Polish space; see [23, Theorem 17.41]).
Recall also that if X ⊆ 2ω then the outer measure of X is

µ∗(X) = inf {µ(Y ) : Y ⊆ 2ω is measurable and X ⊆ Y }
(see [26, Chapter 3] or [23, Section 17.A]). In particular, if X ⊆ 2ω has
outer measure 1, then it has non-empty intersection with every measurable,
non-null subset of 2ω.

Lemma 4.1. non(N ) is the smallest cardinality of a subset of 2ω with outer
measure 1.

Proof. Let X ⊆ 2ω be a non-measurable set with |X| = non(N ), and let

Y = {y ∈ 2ω : there is some x ∈ X such that x =∗ y} .
where, as usual, x =∗ y means that x(n) = y(n) for all but finitely many
n ∈ ω. It is clear that |Y | = |X| · ℵ0 = |X|, and we claim that µ∗(Y ) = 1.
To see this, suppose B ⊆ 2ω \ Y is measurable and µ(B) > 0. Let

C = {c ∈ 2ω : there is some b ∈ B such that b =∗ c}
and note that because B ∩ Y = ∅, we must also have C ∩ Y = ∅. By
Kolmogorov’s 0-1 Law (also known as the 0-1 Law for Lebesgue measure;
see [23, Exercise 17.1]), because C is closed under the equivalence relation
=∗, either µ(C) = 0 or µ(C) = 1. The former is impossible because C ⊇ B
and µ(B) > 0, so µ(C) = 1. As Y ∩ C = ∅, this implies Y is null, a
contradiction. Thus if B ⊆ 2ω is measurable and Y ⊆ 2ω \B, then B is null.
It follows that µ∗(Y ) = 1. �

Theorem 4.2. s(R) ≤ max{b,non(N )}.

Proof. To prove the theorem, we will show that there is a family U of open
subsets of the Cantor space 2ω, with |U| = max{b,non(N )}, such that every
X ∈ [2ω]con is split by some U ∈ U .

Let us begin with a brief sketch of the proof, and in particular of how the
members of U are obtained. Given some function f : ω → ω, consider the
following randomized, ω-step algorithm for obtaining an open subset of 2ω.
On step 0, randomly select 1

4 of the nodes from level f(0) of the tree 2<ω

(such that every node is equally likely to be selected); on step 1, randomly
select 1

8 of the nodes from level f(1) that do not extend an already-chosen
node; on step 2, randomly select 1

16 of the nodes from level f(2) that do
not extend an already-chosen node; etc. Once a set S ⊆ 2<ω is selected
in this way, define U =

⋃
s∈S [s]. This U is a “random” open subset of 2ω

with measure 1
4 + 1

8 + · · · = 1
2 . We shall prove that if f : ω → ω grows fast
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enough, then a set U chosen in this way will split a given X ∈ [2ω]con with
probability 1

2 . Roughly, we need only b functions to make sure that one of
them always grows “fast enough”, and only non(N ) sequences of selections
to ensure that one of them is always “random enough” for this idea to work.
By fixing these b functions and non(N ) sequences of selections beforehand,
we obtain the desired family U of open sets.

To begin, we describe a way of associating to every increasing function
f : ω → ω a Polish space Xf and a probability measure µf on Xf . Roughly,
the idea behind the definition of Xf and µf is that a point of Xf selected
randomly with respect to µf corresponds to a “random” selection of nodes
in 2<ω as described in the previous paragraph.

Given n ∈ ω, let 2[n] denote the set of functions {0, 1, . . . , n−1} → {0, 1}.
(This set is often denoted 2n, but we adopt a different notation here to
distinguish between sets of sequences 2[n] and natural numbers of the form
2n, both of which appear frequently in the following argument.) Fix an
increasing function f : ω → ω with f(0) ≥ 2, and for each n ∈ ω define

Df
n =

{
A ⊆ 2[f(n)] : |A| = 1

2n+2

∣∣2[f(n)]∣∣ = 2f(n)−n−2
}
.

In other words, each A ∈ Df
n represents a possible outcome of the nth stage

of the randomized selection process described above. The requirement that
f be increasing with f(0) ≥ 2 simply ensures that |A| = 2f(n)−n−2 is always
an integer.

Let us consider each Df
n as a (finite) topological space, having the discrete

topology. The space Xf is defined as a subspace of
∏
n∈ωD

f
n (which is given

the usual product topology) as follows:

Xf =
{
z ∈

∏
n∈ωD

f
n : if m < n then no member of z(n)

extends any member of z(m)
}
.

We claim thatXf is a Polish space. To see this, first observe that
∏
n∈ωD

f
n

is a Polish space; in fact, it is homeomorphic to the Cantor space, because
it is a countably infinite product of discrete spaces each having more than
one point. The space

∏
n∈ωD

f
n has a basis consisting of sets of the form

[[ζ]] =
{
z ∈

∏
n∈ωD

f
n : z �n = ζ

}
where ζ is a function such that dom(ζ) ∈ ω and ζ(i) ∈ Df

i for all i ∈ dom(ζ).
Next, observe that for every pair of natural numbers m < n,

Um,n =
{
z ∈

∏
n∈ωD

f
n : no member of z(n)

extends any member of z(m)
}

is open in
∏
n∈ωD

f
n. (It is a union of some subset of the finitely many basic

open sets [[ζ]] having dom(ζ) = n + 1.) Thus Xf =
⋂
m<n<ω Um,n is a Gδ
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subspace of a Polish space, and therefore is itself Polish, by Alexandroff’s
theorem [23, Theorem 3.11].

We call a function σ admissible if ζ is a function on some ordinal n such
that ζ(i) ∈ Df

i for all i < n, and if i < j < n then ζ(j) does not contain an
extension of any member of ζ(i). In other words, ζ is admissible if ζ = z �n
for some z ∈ Xf and n ∈ ω.

Claim 1. If ζ, ξ are admissible and dom(ζ) = dom(ξ) = n, then ζ and ξ
have the same number of admissible extensions with domain n+ 1.

Proof of claim. Given an admissible function ζ and some k ≥ dom(ζ), we
say that s ∈ 2[f(k)] is ζ-available if s does not extend any member of ζ(i) for
any i < dom(ζ).

We prove, by induction on n (for all k simultaneously), that
(∗) if dom(ζ) = n ≤ k, then the number of ζ-available vertices in 2[f(k)]

is exactly
(
1
2 + 1

2n+1

)
2f(k).

The base case n = 0 is trivially true, because if dom(ζ) = 0 then every
vertex in 2[f(k)] is ζ-available, and this is exactly 2f(k) =

(
1
2 + 1

20+1

)
2f(k)

vertices. Suppose the claim is true for some m. Let ζ be an admissible
function with domain m+ 1, and suppose k ≥ m+ 1. Note that each of the

1
2m+2 2f(m) vertices in ζ(m) has exactly 2f(k)−f(m) extensions in 2[f(k)], and
that two different vertices from ζ(m) have no common extensions in 2[f(k)].
The ζ-available members of 2[f(k)] are exactly the (ζ �m)-available vertices
minus the extensions of members of ζ(m). Thus there are exactly(

1

2
+

1

2m+1

)
2f(k) − 2f(k)−f(m)|ζ(m)|

=

(
1

2
+

1

2m+1

)
2f(k) − 2f(k)−f(m) 1

2m+2
2f(m)

=

(
1

2
+

1

2m+1

)
2f(k) − 1

2m+2
2f(k)

=

(
1

2
+

1

2m+2

)
2f(k)

ζ-available vertices in 2[f(k)]. By induction, (∗) holds for all n ≤ k < ω.
Let us now show that (∗) implies the claim. Let ζ be an admissible function

with domain n. If M =
(
1
2 + 1

2n+1

)
2f(n) (the number of ζ-available vertices

in 2[f(n+1)]) and if N = 1
2n+2 2f(n) (the number of vertices in any member

of Df
n) then ζ has exactly

(
M
N

)
admissible extensions ζ ′ with domain n+ 1,

because ζ ′(n) can be any N -sized subset of the M ζ-available vertices in
2[f(n+1)]. This number depends only on n, so this proves the claim. �

If ζ is an admissible function, then define

µf ([[ζ]]) =
1

|{ξ : ξ is admissible and dom(ξ) = dom(ζ)}|
.
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Using the previous claim, one can show that this function is finitely additive:
i.e., if [[ζ1]], . . . , [[ζn]] are disjoint sets with

⋃
i≤n[[ζi]] = [[ζ]], then µf ([[ζ]]) =∑

i≤n µf ([[ζi]]). Thus the equation above defines a measure µf on the semi-
ring of all sets of the form [[ζ]], where ζ is an admissible function. As this
semi-ring of sets is a basis forXf , Carathéodory’s Extension Theorem asserts
that µf extends uniquely to a σ-additive measure on all Borel subsets of Xf .

Note that the empty function ∅ is admissible, and is the only admissible
function with domain 0. It follows that that µf (Xf ) = µf ([[∅]]) = 1

1 = 1.
Thus µf is a probability measure on Xf .

For any well-formed formulas of first-order logic ϕ(z), and ψ(z), define

P (ϕ(z)) = µf ({z ∈ Xf : ϕ(z)}),

P (ϕ(z) | ψ(z)) =
P (ϕ(z) ∧ ψ(z))

P (ψ(z))

assuming that all these sets are measurable and, in the second equation,
that P (ψ(z)) 6= 0. In other words, if z is chosen from Xf randomly with
respect to the probability measure µf , then P (ϕ(z)) is the probability that
z satisfies ϕ(z), and P (ϕ(z) | ψ(z)) is the probability that z satisfies ϕ(z),
given that it satisfies ψ(z).

Given f ∈ B and z ∈ Xf , define U
f
z,n =

⋃
{[s] ⊆ 2ω : s ∈ z(n)} for each

n ∈ ω, and define

Ufz =
⋃
n∈ω U

f
z,n =

⋃
{[s] ⊆ 2ω : s ∈ z(n) for some n} .

(In other words, if z is a “random” point of Xf , then U z is the result of the
randomized selection process described at the beginning of the proof.) In
keeping with our intended intuition for Xf , let us say that a point z ∈ Xf

selects a point x ∈ 2ω if x ∈ Ufz . We say that z selects x before stage n if
x ∈

⋃
i<n U

f
z,i; we say that z selects x at stage n if x ∈ Ufz,n, and we say that

z selects x after stage n if x ∈
⋃
i>n U

f
z,i.

Given two distinct points x, y ∈ 2ω, let

dif(x, y) = min {n ∈ ω : x(n) 6= y(n)} .

Claim 2.
(1) For any x ∈ 2ω, P (z selects x) = 1

2 .

(2) Let k ∈ ω and let x, y ∈ 2ω with dif(x, y) ≥ f(k). Then

P (z selects x | z does not select y) <
1

2k
.

(3) Let k ∈ ω, let x1, . . . , xn ∈ 2ω, and suppose that dif(xi, xj) < f(k)
for all 1 ≤ i, j ≤ n. Then

P
(∧

1≤i≤n z does not select xi
)
< e−n/2

k+2
.
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Proof of claim. Let k ∈ ω and let Ad(k) denote the set of admissible func-
tions with domain k. To begin the proof, we show that if n < k and
s ∈ 2[f(n)], then

(†) |{ζ ∈ Ad(k) : s ∈ ζ(n)}| = 1
2n+2 |Ad(k)| .

To see this, let t ∈ 2[f(n)] with t 6= s. Let dif(s, t) = min {i : s(i) 6= t(i)},
and let π be the permutation of 2<ω defined by setting π(r)(i) = r(i) for all
i 6= dif(s, t), and otherwise for dif(s, t) = d we take

π(r)(d) =


t(d) if r(d) = s(d),

s(d) if r(d) = t(d),

r(d) otherwise

(Roughly, π is the permutation of 2<ω obtained by swapping the two cones
s↑ = {r ∈ 2<ω : s ≤ r} and t↑ = {r ∈ 2<ω : s ≤ r} in the natural way.)

Given a function ζ with domain k, define a function πζ by putting

r ∈ πζ(i) ⇔ π(r) ∈ ζ(i)

for all i < k. By the definition of dif(s, t) and π, it is not hard to see that
if m < n < k, then some member of ζ(n) extends some member of ζ(m) if
and only if some member of πζ(n) extends some member of πζ(m). Thus a
function ζ with domain k is admissible if and only if πζ is also admissible. In
other words, the mapping ζ 7→ πζ is a bijection from {ζ ∈ Ad(k) : s ∈ ζ(n)}
to {ζ ∈ Ad(k) : t ∈ ζ(n)}, showing that

|{ζ ∈ Ad(k) : s ∈ ζ(n)}| = |{ζ ∈ Ad(k) : t ∈ ζ(n)}| .

As t was arbitrary, this shows that |{ζ ∈ Ad(k) : s ∈ ζ(n)}| depends only
on n, and not on s. In particular, we have

2f(n) |{ζ ∈ Ad(k) : s ∈ ζ(n)}| =
∑

ζ∈Ad(k) |ζ(n)|

for any s ∈ 2f(n). As exactly 1
2n+2 2f(n) members of 2[f(n)] appear in each set

of the form ζ(n), ζ ∈ Ad(k), we also have∑
ζ∈Ad(k) |ζ(n)| = 1

2n+2 2f(n) |Ad(k)|

Hence 2f(n) |{ζ ∈ Ad(k) : s ∈ ζ(n)}| = 1
2n+2 2f(n) |Ad(k)| for any s ∈ 2[f(n)],

and dividing both sides by 2f(n) gives (†).
Next, we claim that for any x ∈ 2ω and k ∈ ω,

(‡) P (z selects x at stage k) =
1

2k+2
.

Let x ∈ 2ω and k ∈ ω, and observe that if k > n then

{z ∈ Xf : z selects x at stage k}
=
⋃
{[[ζ]] : ζ ∈ Ad(k + 1) and x�f(k) ∈ ζ(k)}
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and this is a disjoint union. Because µf ([[ζ]]) = 1
|Ad(k+1)| for all ζ ∈ Ad(k+1),

P (z selects x at stage k) = µf ({z ∈ Xf : z selects x at stage k})
= 1
|Ad(k+1)| |{ζ ∈ Ad(k + 1): x�f(k) ∈ ζ(k)}| .

Combining this with (†) gives (‡).
Using (‡), let us now prove (1) and (2). For (1), note that

{z ∈ Xf : z selects x} =
⋃
k∈ω {z ∈ Xf : z selects x at stage k}

and that this is a disjoint union, so

P (z selects x) =
∑

k∈ω P (z selects x at stage k)

=
∑

k∈ω
1

2k+2 = 1
2 .

For (2), note that if x, y ∈ 2ω and f(k) ≥ dif(x, y), then

P (z selects x and does not select y)

< P (z selects x, but not before stage k)

=
∑

n≥k P (z selects x at stage n)

=
∑

n≥k
1

2n+2 =
1

2k+1
.

Combining this with (1), we have

P (z selects x | z does not select y)

=
P (z selects x and does not select y)

P (z does not select y)

=
P (z selects x and does not select y)

1− P (z selects y)
<

1
2k+1

1− 1
2

=
1

2k
.

To prove (3), first observe that

P
(∧

1≤i≤n z does not select xi
)

≤ P
( ∧

1≤i≤n z does not select xi at or before stage k
)

≤
P
(∧

1≤i≤n z does not select xi at or before stage k
)

P
(∧

1≤i≤n z does not select xi before stage k
)

= P
(∧

1≤i≤n z does not select xi at stage k
∣∣∣∧

1≤i≤n z does not select xi before stage k
)

For convenience, let α(z) denote the statement “z does not select any of the
xi at stage k” and let β(z) denote the statement “z does not select any of
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the xi before stage k.” According to the inequalities above, to prove (3) it
suffices to show that

P (α(z) | β(z)) < e−n/2
k+2

.

For each i ≤ n, let si = xi � (f(k) + 1) and note that si 6= sj whenever
i 6= j, because (by assumption) dif(xi, xj) < f(k) whenever i 6= j.

Given an admissible function ζ and some ` ≥ dom(ζ), let us say (as in
the proof of Claim 1) that s ∈ 2[f(`)] is ζ-available if s does not extend any
member of ζ(i) for any i < dom(ζ). We showed in the proof of Claim 1 that

(∗) if dom(ζ) = k ≤ `, then the number of ζ-available vertices in 2[f(`)]

is exactly
(
1
2 + 1

2k+1

)
2f(`).

If ζ is admissible and dom(ζ) = k, then define

Extk+1(ζ) =
{
ζ ′ : ζ ′ is admissible, dom(ζ ′) = k + 1, and ζ ′ �k = ζ

}
,

Extαk+1(ζ) =
{
ζ ′ ∈ Extk+1(ζ) : for every i ≤ n, si /∈ ζ ′(k)

}
.

If ζ ′ ∈ Extk+1(ζ), then (by definition) ζ ′(k) can be any 1
2k+2 2f(k)-sized

subset of the
(
1
2 + 1

2k+1

)
2f(k) ζ-available vertices in 2[f(k)]. In other words,

setting M =
(
1
2 + 1

2k+1

)
2f(k) and N = 1

2k+2 2f(k) we have

|Extk+1(ζ)| =
(
M

N

)
and

∣∣Extαk+1(ζ)
∣∣ =

(
M − n
N

)
.

We now proceed to find an upper bound for the ratio∣∣Extαk+1(ζ)
∣∣

|Extk+1(ζ)|
=

(
M−n
N

)(
M
N

) .

Observe that(
M−n
N

)(
M
N

) =

(M−n)(M−n−1)···(M−N−n+1))
(N)(N−1)···(2)(1)

M(M−1)···(M−N+1)
N(N−1)...(2)(1)

=
(M − n)(M − n− 1) · · · (M −N − n+ 1)

M(M − 1) · · · (M −N + 1)

≤
(
M − n
M

)N
=
(

1− n

M

)N
.

Next, recall that if 0 < x < 1 then ln(1 − x) < −x. (One can see this, for
example, by using Taylor series: if 0 < x < 1 then we have ln(1 − x) =
−
∑∞

m=1
xm

m < −x.) Therefore

ln

((
M−n
N

)(
M
N

) ) ≤ ln
(

1− n

M

)N
= N ln

(
1− n

M

)
<
−nN
M
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and it follows that ln

(
|Extαk+1(ζ)|
|Extk+1(ζ)|

)
<
−nN
M

or, equivalently,

∣∣Extαk+1(ζ)
∣∣

|Extk+1(ζ)|
< e

−nN
M .

Now observe that

N

M
=

1
2k+2 2f(k)(

1
2 + 1

2k+1

)
2f(k)

>
1

2k+2

and putting this together with the previous inequality gives∣∣Extαk+1(ζ)
∣∣

|Extk+1(ζ)|
< e−n/2

k+2
.

To finish the proof, let

B = {ζ : ζ is admissible, dom(ζ) = k, and
xi �j /∈ ζ(j) for any j < k and 1 ≤ i ≤ n} .

Observe that β(z) holds if and only if z �k ∈ B; that is,

{z ∈ Xf : β(z)} =
⋃
{[[ζ]] : ζ ∈ B} ,

and this is a disjoint union. It follows that

P (β(z)) = µf ({z : β(z)}) =
∑

ζ∈B µf ([[ζ]]).

Similarly, observe that α(z) ∧ β(z) holds if and only if z � k ∈ B and
z �(k + 1) ∈ Extαk+1; that is,

{z ∈ Xf : α(z) ∧ β(z)} =
⋃{

[[ζ ′]] : ζ ′ ∈ Extαk+1(ζ) for some ζ ∈ B
}
,

and this is also a disjoint union. It follows that

P (α(z) ∧ β(z)) = µf ({z : α(z) ∧ β(z)}) =
∑

ζ∈B
∑

ζ′∈Extαk+1(ζ)
µf ([[ζ ′]]).

Finally, note that because of the way we have defined µf , if ζ ∈ B then
µf ([[ζ ′]]) =

µf ([[ζ]])
|Extk+1(ζ)| for all ζ

′ ∈ Extk+1(ζ), which implies

∑
ζ′∈Extαk+1

µf ([[ζ ′]]) = µf ([[ζ]])
|Extαk+1(ζ)|
|Extk+1(ζ)|
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for any ζ ∈ B. Hence

P (α(z) | β(z)) =
P (α(z) ∧ β(z))

P (β(z))

=

∑
ζ∈B

∑
ζ′∈Extαk+1(ζ)

µf ([[ζ ′]])∑
ζ∈B µf ([[ζ]])

=

∑
ζ∈B µf ([[ζ]])

|Extαk+1(ζ)|
|Extk+1(ζ)|∑

ζ∈B µf ([[ζ]])

<

∑
ζ∈B µf ([[ζ]])e−n/2

k+2∑
ζ∈B µf ([[ζ]])

= e−n/2
k+2

as claimed. �

Recall that two measure spaces (X,µ) and (Y, ν) are isomorphic if there
is a bijection φ : X → Y such that, for every Z ⊆ X, φ(Z) is ν-measurable
if and only if Z is µ-measurable, and if this is the case then µ(Z) = ν(φ(Z)).
By [23, Theorem 17.41], the measure µf defined on Xf above is isomorphic
to the Lebesgue measure on 2ω. From this and Lemma 4.1, it follows that
there is a subset Zf ⊆ Xf with |Zf | = non(N ) such that Zf has outer µf -
measure 1. (If φ : 2ω → Xf is an isomorphism of the Lebesgue measure with
µf , then we may simply take Zf = φ(Z), where Z ⊆ 2ω has outer measure
1 and |Z| = non(N ).)

Let B be an unbounded family of functions ω → ω with |B| = b. Without
loss of generality, we may assume that every f ∈ B is an increasing function
with f(0) ≥ 2 (so thatXf and µf are well-defined, and have all the properties
discussed above). For each f ∈ B, fix some Zf ⊆ Xf such that such that Zf
has outer measure 1 with respect to µf and |Zf | = non(N ).

Let U =
{
Ufz : f ∈ B and z ∈ Zf

}
, and observe that

|U| =
∑

f∈B |Zf | = |B| · non(N ) = max{b,non(N )}.

Thus, to finish the proof of the theorem, it suffices to show that every X ∈
[2ω]con is split by some U ∈ U .

Let X ∈ [2ω]con, and let p denote the (unique) limit point of X in 2ω.
Replacing X with X \{p} if necessary, we may (and do) assume that p /∈ X.

For each i ∈ ω, let Ni denote the least natural number with the property
that e−Ni/2i+2

< 1
2i
.

Given F ⊆ 2ω, we say that the points of F are distinguished by ` ∈ ω if
dif(x, y) < ` for all x, y ∈ F . Notice that if the points of F are distinguished
by `, then they are distinguished by any `′ > ` also.

Define a function gX : ω → ω as follows:
• for each k ∈ ω, define gX(k) to be the least natural number such that
at least N0 +N1 + · · ·+Nk points of X are distinguished by gX(k).

Fix f ∈ B such that f(k) > gX(k) for infinitely many values of k.
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Claim 3. P
(
X \ Ufz is infinite

∣∣∣ z does not select p
)

= 1.

Proof of claim. Let n ∈ ω, and let ε > 0. Fix some k large enough that
n
2k
< ε, and let x1, x2, . . . , xn be points of X such that dif(xi, p) ≥ f(k) for

all 1 ≤ i ≤ n. (Recall that because p is a limit point of X, there are x ∈ X
such that dif(x, p) is arbitrarily large.) Observe that

P
(∨

1≤i≤n z selects xi
∣∣∣ z does not select p

)
≤
∑

1≤i≤n P
(
z selects xi

∣∣∣ z does not select p
)

<
n

2k
< ε.

(The first inequality follows from the definition of P ( . . . ) and the finite
additivity of µf , the second follows from part (2) of Claim 2, and the third
follows from our choice of k.) It follows that

P
(∧

1≤i≤n z does not select xi
∣∣∣ z does not select p

)
> 1− ε

which implies in particular that

P
(
X \ Ufz contains at least n points

∣∣∣ z does not select p
)
> 1− ε.

This is true for any ε > 0, so

P
(
X \ Ufz contains at least n points

∣∣∣ z does not select p
)

= 1.

This is true for every n ∈ ω, so

P
(
X \ Ufz is infinite

∣∣∣ z does not select p
)

= 1

as claimed. �

Notice that the proof of Claim 3 did not require us to use any particular
properties of the function f ; in fact, Claim 3 is true for any f : ω → ω for
which Xf is defined. This is not the case for the next claim, which is only
true for sufficiently fast-growing f .

Claim 4. P
(
X ∩ Ufz is infinite

)
= 1.

Proof of claim. By our choice of f , there are infinitely many values of k such
that at least N0+N1+ · · ·+Nk points of X are distinguished by f(k), where
theNi are defined as above, so that eachNi is big enough that e−Ni/2i+2

< 1
2i
.

Let k0, k1, k2, . . . be an infinite, increasing sequence of such values of k.
By recursion, define an infinite sequence X0, X1, X2, . . . of finite subsets

of X as follows: for each ` ∈ ω, choose X` so that
• |X`| = Nk` ,
• all the points of X` are distinguished by f(k`), and
• if j < ` then Xj ∩X` = ∅.
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It is clear from our choice of the k` that such a set X` always exists.
Let ε > 0, and fix ` ∈ ω large enough that

∑
j≥`

1

2kj
< ε. For each j ≥ `,

part (3) of Claim 2 states that

P
(
Xj ∩ Ufz = ∅

)
= P

(∧
x∈Xj z does not select x

)
< e

−Nkj /2
kj+2

<
1

2kj
.

It follows that

P
(
Xj ∩ Ufz = ∅ for some j ≥ `

)
≤
∑
j≥`

P
(
Xj ∩ Ufz = ∅

)
<
∑
j≥`

1

2kj
< ε.

Taking complements, we have

P
(
Xj ∩ Ufz 6= ∅ for all j ≥ `

)
> 1− ε.

Because the Xj are disjoint subsets of X, this implies

P
(
X ∩ Ufz is infinite

)
> 1− ε

and as ε was arbitrary, this proves the claim. �

From Claims 3 and 4, it follows that

P
(
Ufz splits X

∣∣∣ z does not select p
)

= 1.

Observe that if some z ∈ Xf selects p, then Ufz 3 p, which implies (because
Ufz is open and p is the unique limit point of X) that Ufz contains all but
finitely many points of X. Thus

P
(
Ufz splits X

∣∣∣ z selects p
)

= 0.

From part (1) of Claim 2, we also know that P (z does not select p) =
1− P (z selects p) = 1

2 . Therefore

P
(
Ufz splits X

)
= P

(
z does not select p

)
P
(
Ufz splits X

∣∣∣ z does not select p
)

=
1

2

or, in other words,
{
z : Ufz splits X

}
has µf -measure 1

2 in Xf . Because Zf

has outer µf -measure 1, it follows that Zf ∩
{
z : Ufz splits X

}
6= ∅. If z is

any point of this intersection, then Ufz is a member of U that splits X. Thus
every member of [2ω]con is split by some U ∈ U . �

Theorem 4.2 implies that s(R) = ℵ1 in the random real model, or a little
more generally, in any model obtained by adding random reals to a model of
CH. This implies that such models contain Efimov spaces of weight ℵ1. It is
worth mentioning that this was known already for the random real model: it
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was proved by the second author and David Fremlin, using different methods,
that st

(
(P(N)/fin)V

)
is an Efimov space in the random real model [11].

5. Cichoń’s diagram

In the introduction, we claimed that for every cardinal κ appearing in
Cichoń’s diagram, either κ is a (consistently strict) lower bound for s(R), or
κ is a (consistently strict) upper bound for s(R), or else each of κ < s(R)
and s(R) < κ is consistent. Let us review our progress on this so far:

• cov(M) and b are consistently strict lower bounds for s(R): That
they are lower bounds for s(R) was proved in Theorems 3.1 and 3.2.
They are consistently strict because b < cov(M) ≤ s(R) in the
Cohen model, and cov(M) < b ≤ s(R) in the Laver model.
• ℵ1, add(N ), and add(M) are consistently strictly lower bounds for
s(R): This follows from the previous bullet point, because each of
these cardinals is bounded above by both cov(M) and b.
• c and cof(N ) are consistently strict upper bounds for s(R): We
showed in Theorem 4.2 that s(R) ≤ max{b,non(N )}. Both b and
non(N ) are bounded above by cof(N ) and c, so it follows that
s(R) ≤ cof(N ), c. These bounds are consistently strict because in
the Miller model, ℵ1 = max{b,non(N )} < cof(N ) = c = ℵ2.
• cov(N ) and non(M) are incomparable with s(R), in the sense that
both s(R) < cov(N ),non(M) and s(R) > cov(N ),non(M) are
consistent. To see the first pair of inequalities, note that

ℵ1 = b = non(N ) < cov(N ) = non(M) = c

in the random model; as s(R) ≤ max{b,non(N )} by Theorem 4.2,
it follows that s(R) < cov(N ),non(M) in the random model. To
see the second pair of inequalities, note that

ℵ1 = cov(N ) = non(M) < cov(M) = c

in the Cohen model; as cov(M) ≤ s(R) by Theorem 3.1, we have
cov(N ),non(M) < s(R) in the Cohen model.

This takes care of 9 of the 12 cardinals in Cichoń’s diagram: we have
5 consistently strict lower bounds, 2 consistently strict upper bounds, and
2 cardinals that are provably incomparable with s(R). The remaining 3
cardinals, cof(M), non(N ), and d, are also incomparable with s(R). Here
is what we know so far concerning these 3 cardinals:

• s(R) < cof(M) is consistent: Recall that b = non(N ) < cof(M) in
the random model. As s(R) ≤ max{b,non(N )} by Theorem 4.2, it
follows that s(R) < cof(M) in the random model.
• s(R) < d is consistent: Recall that b = non(N ) < d in the Miller
model. As s(R) ≤ max{b,non(N )} by Theorem 4.2, it follows that
s(R) < d in the Miller model.
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• non(N ) < s(R) is consistent: Recall that non(N ) < b in the Laver
model. As b ≤ s(R) by Theorem 3.2, it follows that non(N ) < s(R)
in the Laver model.

It remains to prove the consistency of s(R) < non(N ) and the consistency
of d, cof(M) < s(R).

Theorem 5.1. It is consistent with ZFC that s(R) < non(N ).

The proof strategy is to begin with a model ofMA+¬CH, and then to force
with a σ-centered partial order that will make s(R) = ℵ1 while preserving
the value of non(N ).

Lemma 5.2. There is a σ-centered notion of forcing P that adds a countable
collection U of open subsets of the Cantor space 2ω such that if X ∈ [2ω]con

belongs to the ground model, then there is some U ∈ U that splits X.

Proof. For this lemma we use (a slight variation of) a notion of forcing P
introduced by Arnie Miller in [25]. Conditions in P are finite sequences of
the form 〈(Ci, Fi) : i < m〉, where each Ci is a clopen subset of 2ω and each
Fi is a finite subset of 2ω \ Ci. A condition 〈(C ′i, F ′i ) : i < n〉 extends the
condition 〈(Ci, Fi) : i < m〉 if m ≤ n and for each i < m, F ′i ⊇ Fi and
C ′i ⊇ Ci. (In Miller’s terminology, this poset is called P(2ω).) Intuitively,
this forcing builds countably many open sets Ui, i < ω, and a condition
〈(Ci, Fi) : i < n〉 constitutes a promise that Ci ⊆ Ui and that Fi ∩Ui = ∅ for
each i < n.

Suppose G is a V -generic filter for P, and in V [G] define

Ui =
⋃
{C : there is a condition p ∈ G such that p(i) = (C,F )}

for each i < ω. We claim that U = {Ui : i < ω} satisfies the conclusion of
the theorem.

Let X ∈ [2ω]con, X ∈ V , and let x be the unique accumulation point of
X. There is some p ∈ G such that for some i ∈ dom(p), p(i) = (Cpi , F

p
i ) and

x ∈ F pi (because the set of all such p is clearly dense in P). We claim Ui
splits X. To see this, define for each natural number n two subsets of P:

Dn = {q ≤ p : Cqi contains ≥n members of X, where q(i) = (Cqi , F
q
i )} ,

En = {q ≤ p : F qi contains ≥n members of X, where q(i) = (Cqi , F
q
i )} .

Dn is dense below p, because for any p′ ≤ p, if p′(i) = (Cp
′

i , F
p′

i ) then we may
form q by extending Cp

′

i to include ≥n members of the infinite set X \ F p
′

i .
Likewise En is dense below p, because for any p′ ≤ p, if p′(i) = (Cp

′

i , F
p′

i )

then (because the limit point x of X is not contained in the closed set Cp
′

i )
there are infinitely many points in X \Cp

′

i , and we may extend F p
′

i to include
≥n of them. Thus G meets every Dn, from which it follows that Ui contains
infinitely many points of X, and G meets every En, from which it follows
that 2ω \ Ui contains infinitely many points of X. Thus Ui splits X. �
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Lemma 5.3. There is a σ-centered notion of forcing P that does not change
the value of c and that forces s(R) = ℵ1.

Proof. Let P be the length-ω1, finite support iteration of the notion of forcing
described in Lemma 5.2. Let U =

⋃
α<ω1

Uα, where Uα denotes the countable
set of open subsets of 2ω added at stage α of the iteration. Note that |U| =
ℵ1. If X ∈ [2ω]con in the final model, then because X is countable, there is
some α < ω1 such that X appears at stage α of the iteration, and then X is
split by some U ∈ Uα+1. Thus in the final model, every X ∈ [2ω]con is split
by some U ∈ U , and this shows that s(R) = ℵ1. �

Lemma 5.4. Suppose V |= MA and that P is a σ-centered notion of forcing
in V . Then P does not lower the value of non(N ).

Proof. This fact has been observed before (e.g., it forms part of the proof
Corollary 39 in [3]), but we do not have an exact reference and the proof is
short, so we record it here.

Consider, in the extension, any infinite set A of reals with cardinality less
than cV = non(N )V ; our goal is to prove that A has measure zero.

A σ-centered forcing never adds random reals [1, Theorem 6.5.31], so no
a ∈ A is random over the ground model. Thus, for each a ∈ A there is a
measure-zero Borel set Na in the ground model such that the canonical ex-
tension Ña with the same Borel code contains a. Because P has the countable
chain condition, there is, in the ground model, a collection C of at most |A|
Borel sets, each of measure zero, such that all of the Na’s are in C. Because
the ground model satisfies MA and because |C| < c, the ground model has a
measure-zero Borel set N that includes all the sets from C and, in particular,
all the Na’s.

For each a ∈ A, the fact that Na ⊆ N is preserved when we pass to the
canonical extensions with the same Borel codes in the final model; that is,
Ña ⊆ Ñ in V P. In particular, A ⊆ Ñ . But Ñ has measure zero, because it
is the canonical extension of the null set N . Hence A has measure zero. �

Proof of Theorem 5.1. Beginning with a model of MA + ¬CH, force with
the partial order P described in Lemma 5.3. By Lemmas 5.3 and 5.4, the
resulting model will have s(R) = ℵ1 and non(N ) = c > ℵ1. �

The cardinal characteristic sep was defined by Kurambelis and Węglorz
in [22]. We do not record the definition of sep here (see [6] instead), but will
say simply that sep is closely related to s(R), being a variant of s defined in
terms of open subsets of 2ω, and that it is not difficult to show s(R) ≤ sep.
We note that in general s(R) 6= sep because non(M) ≤ sep by [6, Theorem
1.1], whereas s(R) < non(M) in the random model by Theorem 4.2.

In [6, Section 2], Brendle proved the consistency of d = non(M) < sep.
The model he uses is obtained by beginning with MA + ¬CH and then per-
forming a length-ω1, finite support iteration of a σ-centered notion of forcing
D, defined below, that adds a dominating real. Our proof of Theorem 5.5
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below uses a related model, that mixes an ω1-length iteration of D with
an ω2-length iteration of Cohen reals in a matrix forcing construction. The
proof is self-contained insofar as we do not assume the reader is familiar with
[6, Section 2].

Theorem 5.5. It is consistent with ZFC that d = cof(M) < s(R).

Proof. We begin the proof by defining a variant of the Hechler forcing, which
we call D; it is equivalent to the notion of forcing used by Brendle in [6,
Section 2]. Conditions in D are pairs of the form 〈s, φ〉, where

• s ∈ ω<ω, and
• φ is a function ω<ω → ω.

The ordering on D is given by declaring 〈t, ψ〉 ≤ 〈s, φ〉 if and only if
• t ⊇ s,
• ψ(r) ≥ φ(r) for all r ∈ ω<ω, and
• t(j) ≥ φ(t�j) for all j ∈ dom(t) \ dom(s).

If p = 〈s, φ〉 ∈ D, we write stem(p) = s.
Note that D is σ-centered, because any conditions 〈s, φ1〉, . . . , 〈s, φn〉 in

D with the same stem have a common extension with that stem, namely
〈s,max{φ1, . . . , φn}〉. Also note that forcing with D adds a dominating real:
if G is V -generic for D, then

⋃
{stem(p) : p ∈ G} is a function ω → ω that

is ≥∗ every member of (ωω)V .
Ultimately, the theorem will be proved by combining D with Cohen forcing

in a matrix iteration. To begin the proof, though, let us just consider posets
of the form 2<ω ∗ Dα, where

• 2<ω denotes, as above, the tree of all finite 0-1 sequences, partially
ordered by extension, which is equivalent to the notion of forcing
Fn(ω, 2) for adding one Cohen real.
• Dα denotes the length-α, finite support iteration of D, where α ≤ ω1.

For each α ≤ ω1, let Pα = 2<ω ∗ Dα. If s ∈ 2<ω and p is a 2<ω-name such
that s  p ∈ Dα, then we write s ∗ p for the condition 〈s, p〉 ∈ Pα. If g ∈ 2<ω

is 2<ω-generic over V with g ⊇ s, then valg(p) denotes the Dα-name obtained
from p in V [g].

As usual, a name ṁ of a natural number is a nice P-name (for some notion
of forcing P) if it has the form ṁ = {(a, ka) : a ∈ A}, where A is a maximal
antichain in P and each ka is a natural number.

For any s ∈ 2<ω and j ∈ ω, define s†j so that dom(s†j) = dom(s) and

s†n(i) =

{
s(i) if i 6= j,

1− s(n) if i = j.

Similarly, if s ∈ 2ω then s†j denotes the function with domain ω given by
the above equation. Notice that if g ∈ 2ω is 2<ω-generic over V , then so is
g†j for all j ∈ ω.

Let us say that a condition s ∗ p ∈ Pα is tidy if
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• there is some finite F ⊆ α such that s  supp(p) = F (i.e., s decides
the support of p),
• for every β ∈ F , if p(β) = 〈ṫ, φ̇〉 then there is some t ∈ ω<ω such
that s ∗ (p�β)  ṫ = ť (i.e., s decides the stems of the p(β)), and
• 12<ω  p ∈ Dα (which is stronger than the requirement s  p ∈ Dα,
which is necessary to have s ∗ p ∈ Pα at all).

Notice that every condition in Pα has a tidy extension. (This is proved by
induction on α as follows. The base case is trivial. If α is a limit ordinal, then
given s∗p ∈ Pα first extend to a condition s′∗p′ such that s′ decides supp(p′),
then note that (because Dα uses finite supports) if s′ decides supp(p′) then
s′ ∗ p′ ∈ Pβ for some β < α and therefore has a tidy extension by the
induction hypothesis. For the successor case, fix s ∗ p ∈ Pα+1. First extend
s ∗ (p � α) to some s′ ∗ p̂ ∈ Pα that decides stem(p(α)), then (using the
induction hypothesis) extend s′ ∗ p̂ ∈ Pα to a tidy condition s′′ ∗ q̂. Then
s′′ ∗ (q̂_p(α)) is a tidy extension of s ∗ p.)

For each j ∈ ω, the function s 7→ s†j is an automorphism of the forcing
notion 2<ω. The function s ∗ p 7→ s†j ∗ p is not an automorphism of Pα,
even if we insist that 12<ω  p ∈ Dα in order to guarantee that s†j ∗ p ∈ Pα.
The following claim states that, nonetheless, this function is “almost” an
automorphism of Pα. This claim is the main tool used for proving s(R) = ℵ1
in our forcing extension below.

Claim 1. Let α ≤ ω1, and let s ∗ p ∈ Pα be a tidy condition. Then there is
some s ∗ q ≤ s ∗ p (where q depends only on s and p) such that

valg†j (q) ≤ valg(p)

for all 2<ω-generic g extending s and for all j ∈ ω.

When the conclusion of this claim holds, we say that s ∗ q symmetrically
extends s ∗ p.

Proof of claim. The proof is by induction on α. We will prove an ostensibly
stronger claim in order to have a sufficiently strong induction hypothesis:

Revised Claim. Let α ≤ ω1, and let s ∗ p ∈ Pα be tidy. Then there is
some s ∗ q ≤ s ∗ p (where q depends only on s and p) such that for any nice
Pα-name ṁ for a natural number, there is a nice Pα-name Ṁ for a natural
number such that for any 2<ω-generic g extending s and any j ∈ ω,

(1) valg†j (q) ≤ valg(p), and
(2) s ∗ p  valg†j (Ṁ) ≥ valg(ṁ).

When (2) holds, we say that Ṁ symmetrically dominates ṁ at s ∗ q.
For the base case α = 0, we have P0 = 2<ω. In this case (1) is trivially

true and we must show only the second claim. Let ṁ = {(a`, k`) : ` ∈ ω} be
a nice 2<ω-name for a natural number. For now, we work only in the ground
model and construct Ṁ as follows.
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To begin, we claim that for each r ∈ 2<ω and j ∈ ω, there is some t ∈ 2<ω

such that t ⊇ r and t†j ⊇ a` for some ` ∈ ω. This is because
{
a†j` : ` ∈ ω

}
is a maximal antichain in 2<ω; in particular, given r ∈ 2<ω there is always
some t ∈ 2<ω such that t ⊇ r and t ⊇ a†j` for some ` ∈ ω. As a†j` ⊆ t if and
only if a` ⊆ t†j , this t is as required.

Next, we claim that for any r ∈ 2<ω, there is some t ⊇ r and M ∈ ω such
that

(∗) t†j  ṁ ≤M for all j ∈ ω.
To see this, fix r ∈ 2<ω. Choose t0 ∈ 2<ω such that t0 ⊇ r and s0 ⊇ a`0 for
some `0 ∈ ω. (Note that some such t0 and `0 exist, because {a` : ` ∈ ω} is
a maximal antichain in 2<ω.) Let N = dom(t0). Using recursion, choose an
ascending sequence t0 ⊆ t1 ⊆ . . . ⊆ tN of members of 2<ω such that for each
j < N there is some `j+1 ∈ ω with tj+1 ⊇ a†j`j+1

. (Note that some such tj+1

and `j+1 always exist, by the previous paragraph.) Let t = tN and let

M = max
{
k`j : j ≤ N

}
.

To see that t and M are as required, let j ∈ ω. If j < N , then

t†j ⊇ t†jj+1 ⊇ a`j+1
 ṁ = k`j+1

≤M.

If on the other hand j ≥ N , then

t†j ⊇ t†j0 = t0 ⊇ a`0  ṁ = k`0 ≤M.

(The equality t†j0 = t0 follows from the fact that j ≥ N ≥ dom(t0).) Either
way, (∗) holds.

By the previous paragraph, there is a maximal antichain {ti : i ∈ ω} of
members of 2<ω, along with integers Mi, i ∈ ω, such that each pair ti,Mi

satisfies (∗). Let
Ṁ = {(ti,Mi) : i ∈ ω} .

It is clear that Ṁ is a nice name. To see that Ṁ symmetrically dominates
ṁ at s, suppose g ⊇ s is a 2<ω-generic real and fix j ∈ ω. Because {ti : i ∈ ω}
is a maximal antichain in the ground model, there is some i ∈ ω such that
ti ⊆ g†j or, equivalently, t†ji ⊆ g. But t†ji  ṁ ≤ Mi and ti  Ṁ = Mi.
This implies valg†j (Ṁ) = Mi ≥ valg(ṁ). As j ∈ ω was arbitrary, (2) holds.
(Notice that we have actually proved something a little stronger than (2):
that Ṁ symmetrically dominates ṁ at ∅.)

Now fix α < ω1 and suppose the (revised) claim is true for all β < α; let
us prove it is also true for α.

For (1), if α is a limit ordinal then there is nothing to prove: because Dα
is a finite support iteration, s ∗ p ∈ Dα implies s ∗ p ∈ Dβ already for some
β < α, and if s ∗ q ∈ Pβ is such that valg†j (q) ≤Dβ valg(p) (which must hold
for some q by the inductive hypothesis) then valg†j (q) ≤Dα valg(p) also.

Suppose α = β+1 is a successor ordinal, and let us prove that (1) holds for
α. Fix s∗p ∈ Pα. Then s∗ (p�β)  p(β) ∈ D, and in particular, we may find
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some σ ∈ ω<ω and a Pβ-name φ̇ such that s∗ (p�β)  p(β) = 〈σ, φ̇〉. By the
inductive hypothesis, there is some q̂ such that s  q̂ ∈ Dβ , s∗ q̂ ≤ s∗ (p�β),
and both (1) and (2) hold for q̂ and p.

For each t ∈ ω<ω, let ṁt be a nice Pβ-name for a natural number such
that s∗ q̂  φ̇(t) = ṁt. Using the inductive hypothesis (2): for each t ∈ ω<ω,
let Ṁt be a nice Pβ-name for a natural number symmetrically dominating
ṁt at s ∗ (p � β). Let ψ̇ be a Pβ-name for the function t 7→ Ṁt. Then
define q ∈ Pβ+1 by setting q � β = q̂ and q(β) = 〈š, ψ̇〉. It is clear that
this really does define a condition in Pα (because s ∗ (q � β) ∈ Pβ and
s ∗ (q � β)  q(β) ∈ D). Furthermore, s ∗ q symmetrically extends s ∗ p,
because if j ∈ ω then valg†j (q � β) = valg†j (q̂) ≤Pβ valg(p � β) by our choice
of q̂, and s ∗ (q �β) = s ∗ q̂  q(β) = 〈š, ψ̇〉 ≤ 〈š, φ̇〉 = p(β).

Let α ≤ ω1 and suppose that (1) and (2) hold for every β < α. By the
argument above, this implies that (1) holds for α. To finish our inductive
argument, we must show that (2) holds for α as well. Let s ∗ p ∈ Pα and
let ṁ =

{
(a0` ∗ a1` , k`) : ` ∈ ω

}
be a nice Pα-name for a natural number. (We

may index our antichain by ω because Pα has the ccc.)
For each ` ∈ ω, if s∗p ≤ a0` ∗a1` then (because (1) holds for α) there is some

s ∗ q ≤ s ∗ p such that s ∗ q symmetrically extends s ∗ p. It follows that, for
each ` ∈ ω, there is a maximal antichain A` of conditions below a0` ∗a1` , each
of which symmetrically extends a0` ∗ a1` . Define ṁ′ = {(a, k`) : a ∈ A`}. It is
clear that 1Pα  ṁ = ṁ′. But ṁ′ has the property that if (b0 ∗ b1, k`) ∈ ṁ′
(where b0 ∗ b1 ∈ A`), then for any 2<ω-generic g extending b0 and any j ∈ ω,
valg†j (b

1) ≤ valg(a
1
` ). In particular, if valg(a)  ṁ = k, then this means

that there is some s ∈ 2<ω, s ⊆ g such that s ∗ a  ṁ = k; this implies
that for any Pα-generic g ∗ G, if s ∗ a ∈ g ∗ G then b0 ∗ b1 ∈ g ∗ G for some
b0 ∗ b1 ∈ A`, where ` is such that k` = k; but then by the previous sentence,
valg†j (b

1) ≤ valg(a
1
` )  ṁ = ṁ′ = k` for any j ∈ ω. Thus ṁ′ has the

property that

if valg(a)  ṁ′ = k, then valg†j (a)  ṁ′ = k for all j ∈ ω.

By replacing ṁ with ṁ′ if necessary, we assume in what follows that ṁ has
this property.

Now let us work only in the ground model and construct Ṁ as follows.
To begin, we claim that for each r ∗ r′ ∈ 2<ω ∗ Dα and j ∈ ω, there is

some t ∗ t′ ∈ Pα and some ` ∈ ω such that t ∗ t′ ≤ r ∗ r′ and t†j ∗ t′ ≤ a0` ∗ a1`
for all j ∈ ω. To see this, note that

{
a0` ∗ a1` : ` ∈ ω

}
is a maximal antichain,

so given r ∗ r′ we may extend to some q ∗ q′ ≤ r ∗ r′ with q ∗ q′ ≤ a0` ∗ a1`
for some ` ∈ ω; then because (1) holds at α, we may extend further to
some t ∗ t′ ≤ q ∗ q′ such that if g is any 2<ω-generic real with g ⊇ t ⊇ q
then valg†j (t

′) ≤ valg(q
′) ≤ valg(a

1
` ), for all j ∈ ω. But this means that

t†j ∗ t′ ≤ a0` ∗ a1` for all j ∈ ω, so that t ∗ t′ is as claimed.
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Setting M = k` (where ` is as in the previous paragraph), it follows that
for any r ∗ r′ ∈ Pα, there is some t ∗ t′ ⊇ r ∗ r′ and some M ∈ ω such that

(∗) t†j ∗ t′  ṁ ≤M for all j ∈ ω.
Thus there is a maximal antichain {ti ∗ t′i : i ∈ ω} of members of Pα, along
with integers Mi, i ∈ ω, such that each pair ti ∗ t′i,Mi satisfies (∗). Let

Ṁ =
{

(ti ∗ t′i,Mi) : i ∈ ω
}
.

It is clear that Ṁ is a nice name. To see that Ṁ symmetrically dominates
ṁ at s ∗ p, suppose g ⊇ s is a 2<ω-generic real. Because {ti : i ∈ ω} is a
maximal antichain for 2<ω (otherwise, {ti ∗ t′i : i ∈ ω} could not be a maximal
antichain for Pα), there is some i ∈ ω such that ti ⊆ g or, equivalently, t†ji ⊆
g†j for all j ∈ ω. But for all j ∈ ω, t†ji ∗ t′  ṁ ≤ Mi and ti ∗ t′  Ṁ = Mi.
This implies valg(Ṁ) ≥ valg†j (ṁ) for every j ∈ ω. �

Let P = Fn(ω2, 2)∗Dω1 . To prove the theorem, we will show that if c ≤ ℵ2
then 1P  ℵ1 = d = cof(M) < s(R) = c = ℵ2.

Claim 2. Suppose G is P-generic over V . Then V [G] |= d = cof(M) = ℵ1.

Proof of claim. It suffices to show that forcing with Dω1 produces a model
in which d = cof(M) = ℵ1 (because forcing with P = Fn(ω2, 2) ∗ Dω1 can
be viewed as first forcing with Fn(ω2, 2) and afterward forcing with Dω1).

Forcing with Dω1 makes d = ℵ1 because dominating reals are added at
every stage of the iteration. Forcing with Dω1 makes non(M) = ℵ1 because
our use of finite supports guarantees that Cohen reals are added at every
limit stage of cofinality ω. (In fact, Cohen reals are added at every stage
of the iteration, because forcing with D adds a Cohen real. Specifically, if
d : ω → ω is the dominating real added by D, then the function g : ω → 2
defined by setting g(n) = 0 if and only if d(n) is even is 2<ω-generic.) Thus
d = non(M) = ℵ1 after forcing with Dω1 . By a result of Fremlin (see
[1, Theorem 2.2.11]), cof(M) = max{d,non(M)}, and so it follows that
cof(M) = ℵ1 after forcing with Dω1 . �

To see that forcing with P makes s(R) = ℵ1, we factor P as a matrix
iteration. For each 1 ≤ α ≤ ω1 and λ ≤ ω2, set Pα,λ = Fn(λ × ω, 2) ∗ Dα.
The theory of matrix forcing introduced in [4] ensures that if µ < λ then
Pω1,µ is a complete subposet of Pω1,λ (and much more). Importantly, we
also have that any P-name for a real can be viewed as a Pα,λ-name for some
α < ω1 and λ < ω2, and consequently, any ℵ1-sized collection of P-names
for reals can be viewed a collection of Pω1,λ-names for some λ < ω2.

Claim 3. Suppose that V |= c ≤ ℵ2 and that G is P-generic over V . Then
V [G] |= s(R) = ℵ2.

Proof of claim. Let U be a collection of open subsets of 2ω in V [G], with
|U| ≤ ℵ1. To prove the claim, it suffices to show that there is someX ∈ [2ω]∞

not split by any U ∈ U .
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For each U ∈ U , let U̇ be a nice P-name for U . Using the fact that P has
the countable chain condition, there is some collection W of nice P-names
with W ∈ V such that

{
U̇ : U ∈ U

}
⊆ W and |W| = ℵ0 · |U| ≤ ℵ1. Fix

λ < ω2 such that if Ẇ ∈ W, then Ẇ is a Pλ,ω1-name.
Let G be P-generic over V and for each α ≤ ω1 and µ ≤ ω2, let Gα,µ

denote the restriction of G to Pα,µ. Let V1 = V [G1,λ]. The poset in V1
that is the G1,λ-valuation of Pω1,λ+1 can be viewed as 2<ω ∗ Dω1 (which we
called Pω1 above). Let g ∈ 2ω denote the real, 2<ω-generic over V1, such that
V [G1,λ+1] = V1[g]; let H denote the filter, Dω1-generic over V1[g], such that
V [Gω1,λ+1] = V [G1,λ+1][H] = V1[g][H].

Let ġ denote the standard V1-name for the 2<ω-generic real g such that
V [G1,λ+1] = V1[g], i.e., ġ names the real

⋃
G, where G ⊆ 2<ω is the generic

filter. In particular, s ∗ p  s ⊆ ġ for all s ∈ 2<ω. Let X =
{
g†j : j ∈ ω

}
∈

V [G]. We claim that no U ∈ U splits X. To prove this, we will work in V1
and show that every Ẇ ∈ W is forced not to split X in V [Gω1,λ+1]. Let Ẋ
be the natural V1-name for X, so that 12<ω  Ẋ =

{
(ġ)†j : j ∈ ω

}
.

Fix Ẇ ∈ W, and, aiming for a contradiction, let us suppose that s ∗ p ∈
g∗H and (in V1) s∗p  “Ẇ splits Ẋ” for some s∗p ∈ 2<ω ∗Dω1 . Because Ẇ
names an open set and X converges to g ∈ 2ω, we must have s ∗ p  ġ /∈ Ẇ .

By Claim 1, there is some s ∗ q ∈ 2<ω ∗ Dω1 that symmetrically extends
s ∗ p.

We know that g is a 2<ω-generic filter containing s, and it follows that g†j
is a 2<ω-generic filter extending s†j for every j ∈ ω. If j ≥ |s|, then g and
g†j are both generic filters extending each of s = s†j .

We also know that s ∗ q  ġ /∈ Ẇ (because s ∗ q ≤ s ∗ p), which implies
that valg(q)  g = valg(ġ) /∈ valg(Ẇ ) in V1[g], because g is a 2<ω-generic
filter extending s.

Similarly for each j ≥ |s|, s ∗ q  ġ /∈ Ẇ implies that valg†j (q)  g†j =

valg†j (ġ) /∈ valg†j (Ẇ ) = valg(Ẇ ) in V1[g†j ], because g is a 2<ω-generic filter
extending s. (The equality valg†j (Ẇ ) = valg(Ẇ ) follows from the fact that
Ẇ is a Pω1,λ-name, and therefore does not depend on g.)

But clearly V1[g] = V1[g
†j ], so we see that in V1[g], valg†j (q)  g†j /∈ Ẇ

for every j ≥ |s|. Thus s ∗ q  (ġ)†j /∈ Ẇ for every j ≥ |s|, and consequently
s ∗ q  “Ẇ does not split Ẋ”. This contradicts our choice of s ∗ p, and thus
shows that there is no condition in g∗H forcingW to split X. Consequently,
W does not split X in V1[g][H] = V [Gω1,λ+1] and W does not split X in
V [G].

This is true for any Ẇ ∈ W, so it follows that in V [G], no member of
U splits X. Because U was an arbitrary cardinality-ℵ1 collection of open
subsets of 2ω, V [G] |= s(R) > ℵ1. A standard argument shows that V [G] |=
c = ℵ2, so V [G] |= s(R) = ℵ2 as claimed. �
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The theorem follows from the previous two claims: beginning with a model
of c ≤ ℵ2, forcing with P produces a model in which d = cof(M) < s(R). �

6. Open questions, and the status of Efimov’s problem

As mentioned in the introduction (and proved again in this paper), it is
consistent that Efimov spaces exist. Therefore Efimov’s problem now takes
the form: Is it consistent that there are no Efimov spaces?

Our work here does not “move the needle” on this problem, in the sense
that this paper does not show Efimov spaces to exist in any models of ZFC
where they were not proved to exist already. The reason is that the second
author proved in [10] that if s = ℵ1 and 2s < 2c, then there is an Efimov
space. Recently, however, he has realized that the proof in [10] does not
require the full strength of this hypothesis: it is enough that s ≤ κ < c for
some cardinal κ such that κ = cf(κℵ0 ,⊆). In other words, [10] shows that
one may weaken the hypothesis of Theorem 2.9 by replacing “s(R) ≤ κ” with
“s ≤ κ,” but at the cost of weakening the conclusion by replacing “z ≤ κ”
with “there is an Efimov space."

The Efimov space constructed in [10] has weight c, so the construction
there gives us no information about z. Thus if one is only interested in the
existence of Efimov spaces, (s)he can safely ignore our paper. If one is also
interested in what properties they can have, such as having small weight,
then Theorem 2.9 has something to say.

While the Efimov spaces in [10] have weight c, they are “small” in another
interesting way: they have character s, which means that each point has a
local basis of size ≤s. While the weight of an Efimov space is always bounded
below by s, we know of no such bound on the character of an Efimov space.

Question 6.1. Is it consistent that an Efimov space has character <s?

With Shelah, the second author also proved that b = c implies the exis-
tence of an Efimov space [12]. Thus the status of Efimov’s problem can be
summed up as follows: if there is a model of ZFC without Efimov spaces,
then in that model either b < s = c, or else b < c ≥ s ≥ ℵω and there are
inner models containing large cardinals.

It would be interesting to determine whether the large cardinal assumption
in Theorem 2.9 can be dropped:

Question 6.2. Is it consistent (relative to large cardinals) that s(R) < z?

Another question relevant to the hypothesis of Theorem 2.9 is also an inter-
esting combinatorial question in its own right:

Question 6.3. Is it consistent that cof(s(R)) = ω?

We have proved three lower bounds for s(R), namely s, non(M), and b.
None of these three lower bounds can have countable cofinality. However, a
different argument is required to show this for each of these three cardinals,
and none of these three arguments readily generalizes to say anything about
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the cofinality of s(R). Note that it is easy to make s(R) singular: adding ℵω1

Cohen reals to a model of CH, we obtain a model with cov(M) = ℵω1 = c,
which implies s(R) = ℵω1 .

Lastly, let us point out that, while we have determined completely the
place of s(R) among the cardinals in Cichoń’s diagram, the same cannot be
said for z. A great deal toward this goal can be deduced from the theorems
above (although we leave such deductions to the reader), but a few questions
remain. In our view, the most interesting of these is:

Question 6.4. Is it consistent that non(N ) < z?
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