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Abstract. The main result of this paper is that, under PFA, for
every regular space X with F (X) = ω we have |X| ≤ w(X)ω; in
particular, w(X) ≤ c implies |X| ≤ c. This complements numerous
prior results that yield consistent examples of even compact Haus-
dor� spaces X with F (X) = ω such that w(X) = c and |X| = 2c.

We also show that regularity cannot be weakened to Hausdor�
in this result because we can �nd in ZFC a Hausdor� space X
with F (X) = ω such that w(X) = c and |X| = 2c. In fact, this
space X has the strongly anti-Urysohn (SAU) property that any
two in�nite closed sets in X intersect, which is much stronger than
F (X) = ω. Moreover, any non-empty open set in X also has size
2c, and thus answers one of the main problems of [8] by providing
in ZFC a SAU space with no isolated points.

1. Introduction

Following the terminology introduced in [5], we call a subset S ⊂ X
free in X if it admits a well-ordering, or equivalently an indexing by
ordinals, that turns it into a free sequence in X. In other words, free
sets in X are just the ranges of free sequences in X. Also, we shall use
F(X) to denote the collection of all free subsets in X. Clearly, then

F (X) = sup{|S| : S ∈ F(X)},

and we call F (X) the free set number of X.
All our other terminology and notation concerning cardinal functions

is standard, as e.g. it is in [4]. Our treatment of PFA follows section
V.7 of [9].
The main result of this paper is that, under PFA, for every regular

spaceX with F (X) = ω we have |X| ≤ w(X)ω; in particular, w(X) ≤ c
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implies |X| ≤ c. (By regular we mean regular and Hausdor�.) We will
also show that regular cannot be weakened to Hausdor� in this result.
To put our result in perspective, we note that free sets are obviously

discrete, hence we have F (X) ≤ s(X) for any topological space X.

By the classical result of Hajnal and Juhász [3], we have |X| ≤ 22s(X)

for any Hausdor� space X, and there are many consistent examples
showing that this inequality is sharp for s(X) = ω. For instance,
Fedorchuk's celebrated hereditary separable compact space X from [2],
constructed from ♦, satis�es w(X) = c = ω1 and |X| = 2c. In [7]
consistent examples of hereditary separable 0-dimensional spaces X
are forced, with both c and 2c as large as you wish, independently of
each other, such that w(X) = c and |X| = 2c.
On the other hand, Todorcevic proved in [10, Theorem 11] that PFA

implies |X| ≤ c for any Hausdor� space X with s(X) = ω. While this
fails if we only have F (X) = ω, even if in addition w(X) = c holds, we
do get |X| ≤ c from PFA for regular X with F (X) = ω and w(X) ≤ c.

2. A ZFC result

There seems to be basically only one ZFC method of constructing
free sequences (sets) that is the main lemma 2.1 of [5]. We repeat it
here because we shall use it several times.

Lemma 2.1. Assume that X is a space, A ⊂ X, κ is an in�nite
cardinal, and W ⊂ τ(X), moreover

(a) W is closed under unions of subfamilies of size < κ,
(b) A \W 6= ∅ for each W ∈ W,
(c) for each S ⊂ A with S ∈ F(X) and |S| < κ there is W ∈ W with

S ⊂ W .

Then there is a subset of A of size κ that is free in X.

Our next result is an easy consequence of Lemma 2.1. We recall that
a Gκ-set is one obtainable as the intersection of at most κ open sets.

Lemma 2.2. Assume that X is any space, z ∈ X, and κ is an in�nite
cardinal, moreover for every open U with z ∈ U there is a closed Gκ-set
H such that z ∈ H ⊂ U . (Clearly, this holds true if X is regular.) If,
in addition, Y ⊂ X \ {z} is such that

(i) H ∩ Y 6= ∅ for every Gκ-set H with z ∈ H,
(ii) z /∈ S for every S ∈ F(X) ∩ [Y ]≤κ,

then F(X) ∩ [Y ]κ
+ 6= ∅, i.e. there is a subset of Y of size κ+ that is

free in X.
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Proof. We may apply Lemma 2.1 with Y instead of A, κ+ instead of
κ, and with W consisting of all open Fκ-sets U such that z /∈ U . �

Before presenting the main result of this section, we need to introduce
the following piece of notation.

De�nition 2.3. For any (in�nite) cardinal κ,

h(κ) = sup{|X| : X is regular with F (X) = ω and d(X) ≤ κ}.
Note that we trivially have 2κ ≤ h(κ) ≤ 22κ .

Theorem 2.4. For every regular space X with F (X) ≤ κ we have

|X| ≤
(
w(X) · h(κ)

)κ
.

Proof. Let us put µ = w(X) · h(κ) and then �x an open base B of X
with |B| = w(X) ≤ µ. Next we consider an elementary submodel M
of H(ϑ) for a large enough regular cardinal ϑ such that |M | = µκ, M
is κ-closed, and X,B ∈M . We shall show that X ⊂M .
Indeed, assume on the contrary that X ∩M = Y and z ∈ X \ Y .

Now, if H is any Gκ-set with z ∈ H then there is some C ∈ [B]≤κ such
that z ∈ C = ∩C ⊂ H. But B ⊂ M and the κ-closedness of M imply
C ∈M , and so C ∩M = C ∩ Y 6= ∅ by elementarity and z ∈ C, hence
H ∩ Y 6= ∅ as well.
Next, for every subset S ∈ [Y ]≤κ we have |S| ≤ h(κ) ≤ µ by de�-

nition, moreover S ∈ M and hence S ∈ M as well. But then we also
have S ⊂ Y . This means that both conditions of Lemma 2.2 are satis-
�ed, hence there is a subset of Y of size κ+ that is free in X. But this
contradicts F (X) ≤ κ, completing our proof. �

3. Some consequences of PFA

We start this section with a general theorem that gives conditions
which, under PFA, imply the existence of an uncountable free set.

Theorem 3.1. Assume PFA. Let X be a topological space, Y ⊂ X its
subspace, and A ⊂ [Y ]ω satisfying the following three conditions.

(1) For every countable A0 ⊂ A we have

Z(A0) =
⋂
{A : A ∈ A0} ∩ Y 6= ∅.

(2) For every y ∈ Y there are an open Uy with y ∈ Uy and Ay ∈ A
such that Uy ∩ Ay = ∅.

(3) Let H be the collection of all H ⊂ Y intersecting Z(A0) for all
A0 ∈ [A]≤ω. For every H ∈ H there is A ∈ A with A ⊂ H.

Then Y has an uncountable subset that is free in X. (All closures above
are taken in X.)
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Proof. We start by �xing a well-ordering ≺ of Y and then a large
enough regular cardinal κ such thatH(κ) contains all the objects above.
We shall say thatM is suitable if it is a countable elementary submodel
of H(κ) and contains

{
X, Y,≺,A, {〈Uy, Ay〉 : y ∈ Y },H

}
. We shall

denote by S the collection of all suitable M 's.
For every M ∈ S let y(M) be the ≺-minimal member of Z(M ∩A).

Note that if M,N ∈ S with M ∈ N then Z(M ∩ A) ⊃ Z(N ∩ A) and
y(M) ∈ N imply y(M) ≺ y(N).
Now we are ready to de�ne the partial order P = 〈P,<〉 that will be

used to prove our result. The elements of P will be all �nite ε-chains of
members of S. Clearly, for every p ∈ P , if p 6= ∅ then ∩p is the bottom
and ∪p is the top member of p.
To de�ne < , we �rst introduce the following notation. If N ∈ p ∈ P

then we let

W (p,N) =
⋂
{Uy(M) : M ∈ p and y(N) ∈ Uy(M)}.

Clearly, then y(N) ∈ W (p,N) ⊂ Uy(N) and N ∈M ∈ p implies y(M) /∈
Uy(N) by condition (2).
Now, by de�nition, p < q holds for for p, q ∈ P i� p ⊃ q and for

every M ∈ p \ q with M ∈ ∪q we have y(M) ∈ W (q,N), where N is
the minimal element of q such that M ∈ N .
We have to check that < is transitive. So, assume that r < p < q,

M ∈ r \ q with M ∈ ∪q, moreover N is the minimal element of q such
that M ∈ N . Now we distinguish two cases.
First, if N is also the minimal element of p such that M ∈ N then

we have y(M) ∈ W (p,N) ⊂ W (q,N), using that q ⊂ p. Otherwise,
the minimal K ∈ p containing M satis�es M ∈ K ∈ N , while N is
also the minimal element of q with K ∈ N . So, by de�nition, p < q
implies y(K) ∈ W (q,N) that clearly implies W (p,K) ⊂ W (q,N). But
by r < p we have y(M) ∈ W (p,K), hence y(M) ∈ W (q,N) as well.
To be able to apply PFA, we also have to show that P is proper. To do

that, we choose a large enough regular cardinal ϑ such that P ∈ H(ϑ).
Clearly, ϑ > 2κ will do. We intend to show that for every countable
elementary submodelM of H(ϑ) with P ∈M and for every condition
p0 ∈ P ∩M there is a condition q0 < p0 which is (M,P)-generic.
It is standard to check that N = M∩ H(κ) ∈ S, hence {N} ∈ P .

More generally, for any p0 ∈ P ∩ M we have p0 ∈ N , hence q0 =
p0∪{N} ∈ P and q0 < p0. We claim that this q0 is (M,P)-generic, i.e.
for every dense set D in P, if D ∈ M then D ∩M is predense below
q0. Now, this is trivially implied by the following key lemma.
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Lemma 3.2. For every dense set D in P with D ∈M, if N ∈ p ∈ D,
where N =M∩H(κ), then there is r ∈ D ∩M such that r ∪ p < p.

Proof. To start with, we �x the dense D ∈ M and p ∈ D with N ∈ p.
Then we write p− = p ∩ M and p \ M = {N = N0 εN1 ε... εNk}.
It will be convenient to put Pk = {p ∈ P : |p| = k + 1}. Clearly,
p− ∈ P ∩ M and p \ M ∈ Pk. Also, each q ∈ Pk is of the form
q = {Mq,0 εMq,1 ε... εMq,k}.
The r ∈ D∩M that we need will be of the form r = p− ∪ q for some

q ∈ Pk ∩M with p− ∈Mq,0. Then, to have r ∪ p < p, what we need is
that y(Mq,i) ∈ W (p,N) for all i ≤ k. To handle this, we shall write

sq = 〈y(Mq,i) : i ≤ k〉

for any q ∈ Pk.
Since p−, D, Pk ∈M, so is

E0 = {q ∈ Pk : p− ∈ ∩q = Mq,0 and p
− ∪ q ∈ D},

as well as L0 = {sq : q ∈ E0}. We also have L0 ∈ H(κ), hence
L0 ∈ N = M ∩ H(κ). We clearly have p ∈ E0, hence sp ∈ L0.
Finally, let T0 be tree consisting of all initial segments of members of
L0, formally

T0 = {t � i : t ∈ L0 and i ≤ k + 1}.
Thus L0 is the top level of T0; our trees grow upwards.
Next we are going to recursively prune T0 in k steps to obtain the

trees T0 ⊃ T1 ⊃ ... ⊃ Tk in such a way that sp ∈ Ti ∈ M and hence
Ti ∈ N for all i ≤ k. Of course, we already know these for i = 0.
To prepare this recursive pruning, we introduce some new notation.

First, we are going to denote by Â the family of all those subsets of
Y that include some member of A. Note that condition (3) of our

theorem simply says that H ⊂ Â. Once we have the tree Ti and t ∈ Ti
we are going to write

[t]i = {s ∈ Ti : t ⊂ s or s ⊂ t},

moreover suci(t) will denote the set of immediate successors of t in Ti.
We shall also need the following simple claim.

Claim 3.2.1. For every suitableM ∈ S and H ⊂ Y , if y(M) ∈ H ∈M
then H ∈ H.

Indeed, if we had H /∈ H then, by elementarity, there would be
some A0 ∈ [A]≤ω ∩M with H ∩ Z(A0) = ∅. But then we would have
y(M) ∈ Z(M ∩ A) ⊂ Z(A0), a contradiction.
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Now, to get T1 from T0, we �rst de�ne

L1 =
{
t ∈ T0 : |t| = k and suc0(t) ∈ Â

}
,

and then put T1 = ∪{[t]0 : t ∈ L1}. It is clear that then T0 ∈ N implies
L1, T1 ∈ N . To see that sp ∈ T1, we have to show that tp = sp � k ∈ L1.
But this follows from y(Mp,k) ∈ suc0(tp) ∈ Mp,k and the above Claim

because suc0(tp) ∈ H ⊂ Â.
The general recursive step from Ti to Ti+1 (for i < k) is very similar.

Given Ti ∈ N , we �rst de�ne

Li+1 =
{
t ∈ Ti : |t| = k + 1− i and suci(t) ∈ Â

}
,

and then put Ti+1 = ∪{[t]i : t ∈ Li+1} ⊂ Ti. By induction, then
Ti ∈ N implies Li+1, Ti+1 ∈ N , moreover if tp = sp � k − i then
y(Mp,k−i) ∈ suci(tp) ∈ Mp,k−i and the Claim imply tp ∈ Li+1, and
hence sp ∈ Ti+1.
So, after having completed all the k steps, we arrive at the tree Tk

which clearly has the following property: For every t ∈ Tk if |t| ≤ k

then suck(t) ∈ Â.
Now we are going to show that Tk has a member s = 〈yi : i ≤ k〉 ∈ N

such that yi ∈ W (p,N) for all i ≤ k. First, to �nd y0, we use ∅ ∈ N∩Tk
and suck(∅) ∈ N ∩ Â to obtain A0 ∈ N ∩ A such that A0 ⊂ suck(∅).
We then have y(N) ∈ A0, hence W (p,N) ∩ A0 6= ∅. But, as A0 is
countable, we also have A0 ⊂ N , hence any y0 ∈ W (p,N) ∩ A0 is
in N ∩ suck(∅). We may go on like this by induction. Given sj =
〈yi : i < j〉 ∈ N ∩ Tk such that yi ∈ W (p,N) for all i < j for some

0 < j ≤ k, we use suck(sj) ∈ N ∩ Â to obtain Aj ∈ N ∩ A such that
Aj ⊂ N ∩ suck(sj). Then y(N) ∈ Aj, and hence W (p,N) ∩ Aj 6= ∅
yields us yj ∈ N ∩W (p,N) ∩ suck(sj).
We have Tk ⊂ T0, so s ∈ T0∩M, and this means that by elementarity

there is some q ∈ Pk ∩M such that s = sq and r = p− ∪ q ∈ D ∩M.
But the choice of s = sq then allows us to conclude that r ∪ p < p,
completing the proof of the Lemma. �

Now we turn to the much easier task of �nding ω1 dense sets in P
such that a �lter in P meeting all of them gives us an uncountable
subset of Y that is free in X. First we show that for every countable
ordinal α the set D(α) = {p ∈ P : α ∈ ∪p} is dense in P. Indeed, for
any p ∈ P clearly there is M ∈ S such that {p, α} ⊂ M . But then
p > q = p ∪ {M} ∈ D(α).
So, assume that G ⊂ P is a �lter in P such that G ∩ D(α) 6= ∅

for all α ∈ ω1. Clearly, then ∪G ⊂ S is an uncountable ε-chain that
is well-ordered by ε in type ω1. Since {M,N} ⊂ S with M ∈ N



SPACES OF COUNTABLE FREE SET NUMBER AND PFA 7

implies y(M) ≺ y(N), it follows that S = {y(M) : M ∈ ∪G} is also
well-ordered by ≺ in type ω1.
Since G is a �lter in P, if {M,N} ⊂ G with M ∈ N then we have

{M,N} < {N}, hence y(M) ∈ Uy(N) by the de�nition of < . On the

other hand, if N ∈ M then y(M) ∈ Ay(N). Thus Uy(N) ∩ Ay(N) = ∅
implies that

{y(M) : M ∈ ∪G ∩N} ∩ {y(M) : M ∈ ∪G and N ∈M} = ∅

for every N ∈ ∪G. So, the set S+ of all successor members of S under
≺ is free in X. �

We are now ready to present our promised main result.

Theorem 3.3. Under PFA we have |X| ≤ w(X)ω for every regular
space X with F (X) = ω.

Proof. We are going to prove the contrapositive of the statement: If X
is regular with |X| > w(X)ω then F (X) > ω. Let us �x an open base
B of X with |B| = w(X) and then consider an elementary submodelM
of H(ϑ) for a large enough regular cardinal ϑ such that |M | = w(X)ω,
M is ω-closed, and X,B ∈ M . Let Y = M ∩ X and pick z ∈ X \ Y .
Since B ∈M andM is ω-closed, we clearly have z ∈ Y δ

, i.e. G∩Y 6= ∅
for any Gδ-set G with z ∈ G.
Now we distinguish two cases. First, if there is H ⊂ Y such that

z ∈ Hδ
but z /∈ S for all S ∈ [H]ω then H has an uncountable subset

free in X by Lemma 2.2, hence we are done. (This part does not use
PFA.)
So, we may assume that, putting A = {A ∈ [Y ]ω : z ∈ A}, every

H ⊂ Y with z ∈ Hδ
includes a member of A. In particular, we have

A 6= ∅.
Now, if A0 is any countable subfamily of A then by the ω-closure of

M and by elementarity we have Z(A0) =
⋂
{A : A ∈ A0} ∩ Y 6= ∅. So,

condition (1) of Theorem 3.1 is satis�ed.
Fix A ∈ A and for every y ∈ Y pick open Uy with y ∈ Uy and Vy

with z ∈ Vy such that Uy ∩ Vy = ∅. Then for Ay = A ∩ Vy ∈ A we
have Uy ∩ Ay = ∅. This means that condition (2) of Theorem 3.1 is
also satis�ed.
Finally, assume that H ∈ H, i.e. H ∩ Z(A0) 6= ∅ for all countable

A0 ⊂ A. We claim that then z ∈ Hδ
. By the regularity of X, it su�ces

for this to show that z ∈ G implies G ∩ H 6= ∅ for any Gδ-set of the
form G = ∩n<ωUn, where Un+1 ⊂ Un for all n < ω. But for any �xed
A ∈ A then A0 = {A ∩ Un : n < ω} ⊂ A, moreover Z(A0) ⊂ G, hence
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G ∩H 6= ∅. But by our assumption then H includes a member of A,
hence condition (3) of Theorem 3.1 is also satis�ed. Consequently, we
get an uncountable subset of Y that is free in X by Theorem 3.1, in
this case as well. �

Since w(X) ≤ 2d(X) for any regular space X and PFA implies c =
2ω1 = ω2 , we have h(ω) = h(ω1) = ω2 under PFA, as an immediate
corollary of Theorem 3.3. These lead to the following results, whose
easy proofs are left to the reader.

Corollary 3.4. Assume PFA and let X be a regular space.

(i) If F (X) = ω and t(X) ≤ ω1 then d(X) ≤ c implies |X| ≤ c.
(ii) If F (X) = t(X) = ω then |X| ≤ d(X)ω.

Since F (X) = t(X) for compact X, part (ii) implies |X| ≤ d(X)ω

for countably tight compact X. This, of course was known as a conse-
quence of Balogh's classical result that countably tight compacta are
sequential under PFA, see [1].
We close this section by raising two related questions that we could

not answer.

Problem 3.5. Does PFA imply |X| ≤ d(X)ω for each regular space X
with F (X) = ω? Or, at least, does PFA imply |X| ≤ c if d(X) ≤ c

Problem 3.6. Can Theorem 3.3 be extended from regular to Urysohn
spaces?

4. The Hausdorff case

In this section we are going to present a ZFC example of a Hausdor�
space X such that F (X) = ω, w(X) ≤ c, and |X| = 2c. So, this
will show that regularity cannot be weakened to Hausdor� in our main
result 3.3. The example is non-trivial, however, fortunately for us, we
only need to perform a minor modi�cation of the example from [8]
where the hard work was done.
Now, the example from [8] is a separable strongly anti-Urysohn (SAU)

space X of cardinality 2c. The SAU property means that any two in-
�nite closed sets in X intersect. This then trivially implies F (X) = ω
because then every free sequence in X has order type less than ω + ω.
(Actually, a SAU space must also have at least two non-isolated points
but as this X is separable, it has only countably many isolated points.)
The reason why the space X from [8] needs to be modi�ed for our

purposes is that its weight is 2c. So, the space we need will be Xr,
whose topology τr is the coarser topology on X generated by RO(X),
the family of all regular open sets in X. Then Xr is Hausdor� because
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U ∩V = ∅ for any open U, V in X implies IntU = IntV = ∅. Also, Xr

is SAU because X is, hence F (Xr) = ω. Finally, since X is separable,
we have |RO(X)| = c, consequently w(X) ≤ c.
The space X from [8] is right-separated, i.e. scattered and, al-

though many consistent examples of crowded SAU spaces had been
constructed, their existence in ZFC was not known. So, it was asked
explicitly in [8] if they exist. Now, Xr has the same isolated points as
X, so it is not crowded but using w(X) ≤ c we can actually get such
an example, thus giving an a�rmative answer to this problem from [8].

Theorem 4.1. Xr has a closed, hence also SAU, subspace Y such that
∆(Y ) = 2c, i.e. every non-empty open set in Y has cardinality 2c. In
particular, Y is crowded.

Proof. Let U be the family of all those open sets in Xr that have size
< 2c. Since hL(Xr) ≤ w(Xr) ≤ c, there is a subfamily V ⊂ U with
|V| ≤ c such that W = ∪U = ∪V . But we have cf(2c) > c, hence
|W | < 2c. Now, it is obvious that Y = Xr \W is as required. �

Thus only just one open problem is left concerning SAU spaces that
we cannot resist to repeat here: Is it provable in ZFC that every SAU
space has cardinality at most 2c? It was proved in [5] that 22c is an
upper bound.
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