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Abstract. In the paper, we investigate (scattered) compact spaces with a

P -base for some poset P . More specifically, we prove that any compact space
with an ωω-base is metrizable and any scattered compact space with an ωω-

base is countable under the assumption ω1 < b. These give positive solutions

to Problems 8.6.9 and 8.7.7 in [1]. Using forcing, we also prove that in a model
of ω1 < b, there is a non-first-countable compact space with a P -base for some

poset P with calibre ω1.

1. Introduction

Let P be a partially ordered set. A topological space X is defined to have a
neighborhood P -base at x ∈ X if there exists a neighborhood base (Up[x])p∈P at x
such that Up[x] ⊂ Up′ [x] for all p ≥ p′ in P . We say that a topological space has
a P -base if it has a neighborhood P -base at each x ∈ X. All topological spaces in
this paper are regular.

We will use Tukey order to compare the cofinal complexity of posets. The Tukey
order [19] was originally introduced, early in the 20th century, as a tool to under-
stand convergence in general topological spaces, however it was quickly seen to have
broad applicability in comparing partial orders. Given two directed sets P and Q,
we say Q is a Tukey quotient of P , denoted by P ≥T Q, if there is a map φ : P → Q
carrying cofinal subsets of P to cofinal subsets of Q. In our context, where P and
Q are both Dedekind complete (every bounded subset has the least upper bound),
we have P ≥T Q if and only if there is a map φ : P → Q which is order-preserving
and such that φ(P ) is cofinal in Q. If P and Q are mutually Tukey quotients, we
say that P and Q are Tukey equivalent, denoted by P =T Q. It is straightforward
to see that a topological space X has a P -base if and only if Tx(X) ≤T P for each
x ∈ X, here, Tx(X) = {U : U is an open neighborhood of x}.

Topological spaces and function spaces with an ωω-base were systematically stud-
ied in [1]. Lots of work also have been done with the ωω-base in topological groups
(see [2], [8], [15], and [18]). In this paper we investigate the Tukey reduction of a P -
base in some (scattered) compact spaces with P satisfying some Calibre conditions.
This paper is organized in the following way.

In Section 3, we show that if P has Calibre ω1, then any compact space with
a P -base is countable tight. Furthermore, we prove that if a compact space with
countable tightness has a K(M)-base for some separable metric space M , then
it is first-countable. As a corollary, any compact space with an ωω-base is first-
countable under the assumption ω1 < b. This gives a positive answer to Problem
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8.7.7 in [1]. In Section 4, we address Problem 8.6.9 in [1] positively by showing that
any scattered compact space with an ωω-base is countable under the assumption
ω1 < b. It is natural to ask whether under the assumption ω1 < b any compact
with a P -base is first-countable if P satisfies some Calibre properties, for example,
Calibre ω1. In Section 5, we prove that in a model of Martin’s Axiom in which
ω1 < b, there is a non-first-countable compact space with a P -base for some poset
P with calibre ω1.

2. Preliminaries

For any separable metric space M , K(M) is the collection of compact subsets of
M ordered by set-inclusion. Fremlin observed that if a separable metric space M is
locally compact, then K(M) =T ω. Its unique successor under Tukey order is the
class of Polish but not locally compact spaces. For M in this class, K(M) =T ωω

where ωω is ordered by f ≤ g if f(n) ≤ g(n) for each n ∈ ω. In [9], Gartside and
Mamataleshvili constructed a 2c-sized antichain in K(M) = {K(M) : M ∈ M}
where M is the set of separable metric spaces.

Let P be a directed poset, i.e. for any points p, p′ ∈ P , there exists a point q ∈ P
such that p ≤ q and p′ ≤ q. A subset C of P is cofinal in P if for any p ∈ P , there
exists a q ∈ C such that p ≤ q. Then cof(P ) = min{|C| : C is cofinal in P}. We
also define add(P ) = min{|Q| : Q is unbounded in P}. For any f, g ∈ ωω, we say
that f ≤∗ g if the set {n ∈ ω : f(n) > g(n)} is finite. Then b = add(ωω,≤∗) and
d = cof(ωω,≤∗). See [5] for more information about small cardinals.

Let κ ≥ µ ≥ λ be cardinals. We say that a poset P has calibre (κ, µ, λ) if for
every κ-sized subset S of P there is a µ-sized subset S0 such that every λ-sized
subset of S0 has an upper bound in P . We write calibre (κ, µ, µ) as calibre (κ, µ)
and calibre (κ, κ, κ) as calibre κ. It is known that K(M) has Calibre (ω1, ω) for any
separable metric space M , hence so does ωω. Under the assumption ω1 = b, ω1 is
a Tukey quotient of ωω. Furthermore, under the assumption ω1 < b, the poset ωω

has Calibre (ω1, ω1, ω1), i.e. Calibre ω1. We will use this fact in several places of
this paper.

It is clear that if P ≤T Q and Q ≤T R then P ≤T R for any posets P,Q, and
R. So we get the following proposition.

Proposition 2.1. Let P and Q be posets such that P ≤T Q. Then if a space X
has a neighborhood P -base at x ∈ X, then X also has a neighborhood Q-base at x.
Hence, any space with a P -base also has a Q-base.

Proposition 2.2. If X has a P -base, then any subspace of X also has a P -base.

Proposition 2.3. Let P be a poset with ω1 ≤T P and P =T ω × P . Then the
space ω1 + 1 has a P -base.

Proof. For each α < ω1, the space ω1 + 1 has a countable local base at α. Hence
Tα(ω1 + 1) ≤T P due to the fact that P =T ω × P .

Let φ be a map from P to ω1 which carries confinal subsets of P to confinal
subsets of ω1. Then we define a map ψ from P to Tω1(ω1+1) by ψ(p) = (φ(p), ω1] for
each p ∈ P . Clearly ψ carries confinal subsets of P to confinal subset of Tω1

(ω1+1).
Hence the space ω1+1 has a neighborhood P -base at ω1. This finishes the proof. �
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As a result of b ≤T ωω, the space ω1 + 1 has an ωω-base under the assumption
ω1 = b. Gartside and Mamatelashvili in [10] proved that ωω × ω1 ≤T K(Q) ≤T
ωω × [ω1]<ω, here Q is the space of rationals. Hence, we have the following result.

Corollary 2.4. The space ω1 + 1 has a K(Q)-base.

A generalization of Gδ-diagonals is P -diagonals for some poset P . A collection
C of subsets of a space X is P -directed if C can be represented as {Cp : p ∈ P}
such that Cp ⊆ Cp′ whenever p ≤ p′. We say X has a P -diagonal if X2 \∆ has a
P -directed compact cover, where ∆ = {(x, x) : x ∈ X}. The second author showed
that any compact space with a K(Q)-diagonal is metrizable in [7] and Sánchez
proved that the same result holds for any compact space with a K(M)-diagonal for
some separable metric space M in [17]. Here, we include two results about spaces
with (or without) P -diagonal giving that P satisfies some Calibre properties.

Proposition 2.5. Let P be a poset with Calibre (ω1, ω). The space ω1 + 1 doesn’t
have a P -diagonal.

Proof. Suppose that ω1 + 1 has a P -diagonal, i.e., a P -ordered compact covering
{Kp : p ∈ P} of (ω1 + 1)2 \∆ Choose αγ and βγ in ω1 for γ ∈ ω1 such that

α0 < β0 < α1 < β1 < . . . < αγ < βγ < . . . .

Let pγ in P be such that (αγ , βγ) ∈ Kpγ for each γ ∈ ω1. By Calibre (ω1, ω),
there are p in P and γn ∈ ω1, n ∈ ω such that γ0 < γ1 < . . . and Kpγn

⊂ Kp for
each n ∈ ω. Then (δ, δ) ∈ Kp, where δ = sup{αγn : n ∈ ω}. This contradiction
finishes the proof. �

Proposition 2.6. Let P be a poset with Calibre ω1. Any compact space with a
P -diagonal has countable tightness.

Proof. Let {Kp : p ∈ P} be a P -ordered compact covering of X2 \ ∆. Suppose
that X has uncountable tightness. Then, X has a free sequence of length ω1, hence
a convergence free sequence of length ω1 by [12]. Let {xα : α < ω1} be such a
sequence and x∗ the limit point.

Choose αγ and βγ in ω1 for γ ∈ ω1 such that α0 < β0 < α1 < β1 < . . . <
αγ < βγ < . . . . For each γ ∈ ω1, fix pγ ∈ P such that (xαγ , xβγ ) ∈ Kpγ . Since P
has Calibre ω1, there is an uncountable subset γτ of ω1 with τ < ω1 such that pγτ
is bounded above by p∗ ∈ P . Hence, Kpγτ

⊆ Kp∗ for each τ < ω1, furthermore,
(xαγτ , xβγτ ) ∈ Kp∗ . Since {xα : α < ω1} is a convergent sequence with limit point
x∗, the subsequences xαγτ and xβγτ both converge to x∗, hence, (x∗, x∗) ∈ Kp∗

which contradicts with the fact that Kp∗ ⊂ X \∆. This contradiction finishes the
proof. �

3. Compact Spaces

In this section, we study compact spaces possessing a P -base with P satisfying
some Calibre property. Mainly, we investigate the problem whether each compact
Hausdorff space with an ωω-base first countable under the assumption ω1 < b. We
start with some ZFC result about tightness of the spaces with a P -base.

Theorem 3.1. Let κ be an uncountable regular cardinal and P be a poset with
Calibre κ. If X is a compact Hausdorff space with a P -base, then t(X) < κ.



4 A. DOW AND Z. FENG

Proof. Assume, for contradiction, that t(X) ≥ κ. Then, X has a free sequence of
length κ. Hence, by [12], X has a convergent sequence of length κ. Let {xα : α < κ}
be such a sequence and x∗ be the limit point. Let S = {xα : α < κ}∪ {x∗}. Notice
that for any unbounded subset {αγ : γ < κ}, x∗ is the limit point of {xαγ : γ < κ}.
Fix a neighborhood base {Bp : p ∈ P} at x∗. It is straightforward to see that S \Bp
has size < κ for each p ∈ P .

For each α < κ, choose pα ∈ P such that xα /∈ Bpα . Let P ′ = {pα : α ∈ κ}.
If the cardinality of P ′ is < κ, there exists a pα ∈ P ′ such that S \ Bpα has size
κ which is a contradiction. Hence, P ′ have cardinality κ. Since P has Calibre κ,
there is a κ-sized subset P ′′ of P ′ which is bounded above. List P ′′ as {pαγ : γ < κ}
and pick p∗ to be the upper bound of P ′′. Then, S \Bp∗ = {xαγ : γ < κ} which is
a contradiction. This finishes the proof. �

Corollary 3.2. Let P be a poset with Calibre ω1. Each compact Hausdorff space
with a P -base is countable tight.

A poset P has Calibre (ω1, ω) if it has Calibre ω1. It is showed in [16] that
for a separable metric space M the poset K(M) has Calibre ω1 if it has Cali-
bre (ω1, ω1, ω). Hence it is natural to ask whether a compact space has countable
tightness if it has a P -base with P having Calibre (ω1, ω). The following example
shows that the answer is negative. So the result above is ‘optimal’ in terms of
the Calibre complexity of posets having the form K(M) with M being a separable
metric space.

Example 3.3. There is a poset P with Calibre (ω1, ω) and a compact space X with
a P -base, but t(X) > ω.

Proof. Let P be K(Q) which clearly has Calibre (ω1, ω). From Proposition 2.4, the
space ω1 + 1 has a P -base, but its tightness is uncountable. �

Again, since ωω has Calibre ω1 under the assumption ω1 < b, we obtain the
following result about spaces with an ωω-base.

Corollary 3.4. Assume that ω1 < b. Each compact Hausdorff space with an ωω-
base is countable tight.

It is folklore that any GO-space with countable tightness is first countable.
Hence, applying Corollary 3.4 to compact GO-spaces, we obtain the following re-
sults.

Corollary 3.5. Let P be a poset with Calibre ω1. Each compact GO-space has a
P -base if and only if it is first countable.

The following example shows that the result above doesn’t hold for general GO-
spaces.

Example 3.6. There is a poset P with Calibre ω1 such that there exists a GO-space
with a P -base and uncountable tightness.

Proof. Consider the set ω2 + 1 in the ordinal order. Let T be the topology on
ω2 + 1 such that every point except ω2 is isolated and a base at ω2 is {(α, ω2] : α <
ω2}. So the space (ω2 + 1, T ) is a non-first-countable GO-space and clearly has a
neighborhood ω2-base at ω2. It is straightforward to verify that the poset ω2 has
Calibre ω1 since every ω1-sized subset is bounded above. �
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The result below was proved in [1] through a different approach. We obtain it
here as a result of ωω having Calibre ω1 under the assumption ω1 < b.

Corollary 3.7. Assume that ω1 < b. Each compact GO-space has an ωω-base if
and only if it is first countable.

It is natural to ask as in [1] (Problem 8.7.7) whether the same result holds for
any compact space. Next, we’ll give a positive answer to this problem by showing
that any compact space with a P -base is first countable if P = K(M) for some
separable metric space M has Calibre ω1.

First, we show that any compact space with countable tightness is first countable
if it has a P -base and P = K(M) for some separable metric space. We use the ideas
and techniques from [4].

Theorem 3.8. Let P = K(M) for some separable metric space M . If X is a
compact space with countable tightness and has a P -base, then X is first-countable.

Proof. Fix x ∈ X and an open P -base {Up[x] : p ∈ P} at x. For each p ∈ P , let
Kp = X \ Up[x]. Then, {Kp : p ∈ P} is a P -directed compact cover of X \ {x}.

For any separable metric space M , the space P = K(M) with the Hausdorff
metric dH is also separable, hence second countable. Also if {pn : n ∈ ω} is a
sequence converging to p in P , then p∗ = p ∪ (

⋃
{pn : n ∈ ω}) is compact, hence it

is an element in P with pn ⊂ p∗ and p ⊂ p∗.
Fix a countable base {Bn : n ∈ ω} of P . For each n ∈ ω, define L(Bn) =

⋃
{Kp :

p ∈ Bn}. And for each p ∈ P , define C(p) =
⋂
{L(Bn) : p ∈ Bn}. For each p ∈ P ,

we pick a decreasing local base {Bpni : i ∈ ω} ⊆ {Bn : n ∈ ω} at p such that for each

i ∈ ω there is a positive number εi satisfying that Bpni ⊃ DdH (p, εi) ⊃ Bpni+1 where
DdH (p, εi) is the open ball centered at p with radius εi. Define C ′(p) =

⋂
{L(Bpni) :

i ∈ ω}. It is straightforward to verify that C ′(p) = C(p).

First, we claim that x is not in the closure of C(p) for all p ∈ P . Fix p ∈ P . By
the countable tightness of X, it suffices to show that if x is not in the closure of any
countable subset of C(p). Let {yi : i ∈ ω} be a countable subset of C(p). For each
i ∈ ω, choose qi ∈ Bpni with yi ∈ Kqi . Clearly {qi : i ∈ ω} is a sequence converging
to p, hence p∗ = p ∪ (

⋃
{qi : i ∈ ω}) is an element in P with {yi : i ∈ ω} ⊂ Kp∗

which implies that x is not in the closure of {yi : i ∈ ω}.

Then, we claim that for each p ∈ P , there is an i ∈ ω such that x is not in the
closure of L(Bpni). Fix p ∈ P . Choose any open set U such that C(p) ⊂ U and

x /∈ U . It suffices to prove that there is an i so that L(Bpni) ⊂ U . Suppose not.
Choose yi ∈ L(Bpni) \ U for each i ∈ ω. Then for each i ∈ ω, choose qi ∈ Bpni
so that yi ∈ Kqi . Define p∗i = p ∪ (

⋃
{qj : j ≥ i}). Hence {yj : j ≥ i} ⊂ Kp∗i

.

By the property of the Hausdorff metric dH , it is straightforward to verify that
dH(p∗i+1, p) ≤ εi, hence p∗i+1 ∈ Bpni which implies that Kp∗i+1

⊂ L(Bpni) for each

i ∈ ω. Therefore,
⋂
{Kp∗i

: i ∈ ω} ⊆ C(p). Then, all the limit points of {yi : i ∈ ω}
are in C(p) which contradicts with C(p) ⊂ U and the choices of {yi : i ∈ ω}.

Finally, we prove that the family L = {L(Bn) : x /∈ L(Bn)} is a cover of X \{x},
furthermore, {B : B = X \ S for some S ∈ L} is a local base at x. For each p ∈ P ,

there is an i ∈ ω such that that x is not in the closure of L(Bpni). Hence L(Bpni) ∈ L.
Since Kp ⊂ L(Bpni), this completes the proof. �
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Theorem 3.9. Let P = K(M) for some separable metric space M such that P has
Calibre ω1. Any compact space X with a P -base is first-countable.

Proof. By Corollary 3.4, X has countable tightness since P has Calibre ω1. Then
by Theorem 3.8, X is first-countable. �

Then using the fact that ωω has Calibre ω1 under the assumption ω1 < b, we
get a positive answer to Problem 8.7.7 in [1].

Corollary 3.10. Assume ω1 < b. A compact space has an ωω-base if and only if
it is first countable.

4. Scattered Compact Spaces

We recall that a topological space X is scattered if each non-empty subspace of
X has an isolated point. The complexity of a scattered space can be determined
by the scattered height.

For any subspace A of a space X, let A′ be the set of all non-isolated points of A.
It is straightforward to see that A′ is a closed subset of A. Let X(0) = X and define
X(α) =

⋂
β<α(X(β))′ for each α > 0. Then a space X is scattered if X(α) = ∅

for some ordinal α. If X is scattered, there exists a unique ordinal h(x) such that
x ∈ X(h(x)) \ X(h(x)+1) for each x ∈ X. The ordinal h(X) = sup{h(x) : x ∈ X}
is called the scattered height of X and is denoted by h(X). It is known that any
compact scattered space is zero-dimensional. Also, it is straightforward to show
that for any compact scattered space X, X(h(x)) is a non-empty finite subset.

Theorem 4.1. Let P be a poset with Calibre ω1 and X a scattered compact space
with a P -base. Then X is countable.

Proof. If h(X) = 0, then X is countable because it is compact.
Assume h(X) = α and any compact scattered space with a P -base is countable

if it has a scattered height < α. Since X is compact, X(α) is a nonempty finite
subset of X. List X(α) = {x1, . . . , xn}. For each i ∈ {1, . . . , n}, take a closed and
open neighborhood Ui of xi with Ui ∩X(α) = {xi}. Then X \

⋃
{Ui : i = 1, . . . , n}

is a scattered compact space with scattered height < α, hence it is countable by the
assumption. So it is sufficient to show that Ui is countable for each i = 1, . . . , n.

Fix i ∈ {1, . . . , n}. Consider the subspace Y = Ui ∩ X. By proposition 2.2, Y
has a neighborhood P -base {Bp : p ∈ P} at {xi}. For each p ∈ P , Y \ Bp is a
compact subspace with scattered height < α, hence is countable by the inductive
assumption.

Assume that Y is uncountable. Take an uncountable subset {yα : α < ω1} of
Y \ {xi}. For each α < ω1, we choose pα ∈ P such that yα /∈ Bpα .

If {pα : α < ω1} is countable, there is a p∗ ∈ {pα : α < ω1} such that there
is an uncountable subset D of {yα : α < ω1} such that D ⊂ Y \ Bp∗ which is a
contradiction.

If {pα : α < ω1} is uncountable, then it has an uncountable subset P ′ which is
bounded above using the Calibre ω1 property of P . List P ′ = {pαγ : γ < ω1}. Let
p∗ be an upper bound of P ′. Then we have that yαγ /∈ Bp∗ for each γ < ω1. This
also contradicts with the fact that Y \Bp∗ is countable. This finishes the proof. �

Using the same approach we obtain the following example.
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Example 4.2. The one point Lindelöfication of uncountably many points doesn’t
have a P -base if P has Calibre ω1, hence, under the assumption ω1 < b, it doesn’t
have an ωω-base.

The example above uses the fact that under the assumption ω1 < b, the poset
ωω has Calibre ω1. Furthermore, using Theorem 4.1, we obtain the following result
which answers Problem 8.6.9 in [1] positively. This also gives a partial positive
answer to Problem 8.6.8 in the same paper.

Corollary 4.3. Assume ω1 < b. Any scattered compact space with an ωω-base is
countable, hence metrizable.

It was proved in [1] that any compact spaced with an ωω-base and finite scattered
height is countable, hence metrizable. Next, we show that the same result holds for
any compact space with a P -base and finite scattered height if P has Calibre (ω1, ω).

Theorem 4.4. Let P be a poset with Calibre (ω1, ω) and X a compact Hausdorff
space with a P -base and finite scattered height. Then X is countable, hence metriz-
able.

Proof. Fix a natural number n > 0. Assume that any compact Hausdorff space
with scattered height < n is countable. Let X be a compact Hausdorff space with
scattered height n. We’ll show that X is countable. As discussed in the proof
of Theorem 4.1, we could assume that X(n) is a singleton, denoted by x, without
loss of generality. Suppose, for contradiction, that X is uncountable. Define m
to be the greatest natural number such that X(m) is uncountable and X(m+1) is
countable. Then there are two cases: 1. m = n− 1; 2. m < n− 1. We will obtain
contradictions in both cases.

First assume that m = n− 1. Then we fix a neighborhood P -base {Bp : p ∈ P}
at x. For each p ∈ P , X(m) \Bp is finite as X is compact and Bp is open. Pick an

uncountable subset {xα : α < ω1} of X(m) with xα 6= x for all α < ω1. For each
α < ω1, there is a pα ∈ P such that xα /∈ Bpα . If {pα : α < ω1} is countable, then

there exists p∗ ∈ {pα : α < ω1} such that X(m) \ Bp∗ is uncountable which is a
contradiction. If {pα : α < ω1} is uncountable, we can find a countable bounded
subset {pαn : n ∈ ω} of {pα : α < ω1} using the Calibre (ω1, ω) property of P . Let
the upper bound of {pαn : n ∈ ω} be p∗. Then, xαn /∈ Bp∗ for each n ∈ ω. This is
a contradiction.

Now we assume that m < n− 1. Then X(m+1) \ {x} is countable which can be
listed as {x` : ` ∈ ω}. For each `, pick a closed and open neighborhood U` of x`.
Then for each ` < ω, U` is a compact subspace with scattered height < n, hence is
countable. Therefore, X(m) \

⋃
{U` : ` ∈ ω} is uncountable. Pick an uncountable

subset S = {xα : α < ω1} of X(m) \ ({x} ∪ (
⋃
{U` : ` ∈ ω})). Fix a neighborhood

P base {Bp : p ∈ P} at x. For each p ∈ P , S \ Bp is finite. Similarly as in the
proof of case 1, we could obtain a contradiction using the Calibre (ω1, ω) property
of P . �

The result above doesn’t hold for compact space with uncountable scattered
height since the space ω1 + 1 has a K(Q)-base. However, we don’t know the answer
to the following problem.

Question 4.5. Assume that ω1 = b. Let P be a poset with Calibre (ω1, ω) and X
be any compact Hausdorff space with a P -base and countable scattered height. Is X
countable?
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5. Calibre ω1 and non-first-countable compact space

We prove that there is a model of Martin’s Axiom in which there is a compact
space that has a P -base for a poset P with Calibre ω1. This space will be the space
constructed by Juhasz, Koszmider, and Soukup in the paper [11]. This article [11]
shows there is a forcing notion that forces the existence of a first-countable initially
ω1-compact locally compact space of cardinality ω2 whose one-point compactifica-
tion has countable tightness. We must prove that there is a poset P as above. We
must also show that extra properties of the space ensure that we can perform a
further forcing to obtain a model of Martin’s Axiom and that the desired prop-
erties of a space naturally generated from the original space possesses these same
properties in the final model. The reader may be interested to note that in this
way we produce a model of Martin’s Axiom and c = ω2 in which there is a com-
pact space of countable tightness that is not sequential. This is interesting because
Balogh proved in [3] that the forcing axiom, PFA, implies that compact spaces
of countable tightess are sequential. It was first shown in [6] that the celebrated
Moore-Mrowka problem was independent of Martin’s Axiom plu c = ω2. The meth-
ods in [6] are indeed based on the paper [11] using the notion of T-algebras first
formulated in [13]. The example in [11] is itself a space generated by a T-algebra
but is not explicitly formulated as such because of its simpler structure.

To do all this, at minimum cost, we must explicitly reference a number of state-
ments and proofs from [11]. The construction is modeled on the following natural
property of locally compact scattered topology, τ , with base set an ordinal µ in
which initial segments are open. The well-ordering on the underlying set arises
canonically from the fact that such spaces are right-separated and scattered. There
are functions H with domain µ and a function i : [µ]2 → [µ]<ℵ0 satisfying that for
all α < β < µ:

(1) α ∈ H(α) ⊂ α+ 1 and H(α) is a compact open set (i.e. H(α) ∈ τ),
(2) i(α, β) is a finite subset of α,
(3) if α /∈ H(β), then H(α) ∩H(β) ⊂

⋃
{H(ξ) : ξ ∈ i(α, β)}

(4) if α ∈ H(β), then H(α) \H(β) ⊂
⋃
{H(ξ) : ξ ∈ i(α, β)}.

Conversely if H and i are functions as in (1)-(4) where (1) is replaced by simply

(1’) α ∈ H(α) ⊂ α+ 1 (i.e. no mention of topology)

then using the family {H(α) : α ∈ µ} as a clopen subbase generates a locally
compact scattered topology on µ in which H, i satisfy property (1)-(4).

Statements (3) and (4) are combined into a single statement in [11] by adopting
the notation

H(α) ∗H(β) =

{
H(α) ∩H(β) α /∈ H(β)

H(α) \H(β) α ∈ H(β)
.

As noted in [11] a locally compact scattered space can not have the properties listed
above, hence the construction must be generalized. Also it is shown above (and in
[1] for P = ωω) that a compact scattered space with a P -base that has Calibre ω1

will be first countable.

The generalization from [11] will use almost the same terminology and ideas to
generate a topology on the base set ω2 × C where C = 2N is the usual Cantor set
and, for each α < ω2, {α} × C will be homeomorphic to C. For n ∈ N = ω \ {0}
and ε ∈ 2, the notation [n, ε] will denote the clopen subset {f ∈ 2N : f(n) = ε} in
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C. However a critically important aspect of the construction to watch for is that
every point of the space will have a local base of neighborhoods that splits only one
of the sets in {{α}×C : α ∈ ω2}. The function H will identify the copies that such
a subbasic clopen set meets (and contains all except the top one). More precisely,
H(α, 0) × C be a subbasic clopen set, and for n > 0, the set H(α, n) ⊂ H(α, 0)
will be used to construct the subbasic clopen set that intersects {α} × C as the
set {α} × [n, 1]. Naturally, H(α, 0) \H(α, n) will generate the subbasic clopen set
corresponding to {α}×[n, 0]. The function i is similarly generalized to be a function
from [ω2]2 × ω into [ω2]<ℵ0 . Here is the definition of a suitable pair of functions
from [11, Definition 2.4].

Definition 5.1. A pair H : ω2 × ω → P(ω2) and i : [ω2]2 × ω → [ω2]<ℵ0 is
ω2-suitable if the following conditions hold for all α < β < ω2 and n ∈ N:

(1) α ∈ H(α, n) ⊂ H(α, 0) ⊂ α+ 1,
(2) i(α, β, n) ∈ [α]<ℵ0 ,
(3) H(α, 0) ∗H(β, n) ⊂

⋃
{H(ξ, 0) : ξ ∈ i(α, β, n)}.

Also, given an ω2-suitable pair H, i, define the following sets for α ∈ ω2, F ∈
[ω2]<ℵ0 and n ∈ N:

(4) U(α) = U(α,C) = H(α, 0)× C,
(5) U(α, [n, 1]) = ({α} × [n, 1]) ∪ ((H(α, n) \ {α})× C),
(6) U(α, [n, 0]) = U(α,C) \ U(α, [n, 1]),
(7) U [F ] =

⋃
{U(ξ) : ξ ∈ F}.

Next we rephrase [11, Lemma 2.5]:

Proposition 5.2. If H, i is an ω2-suitable pair then the subbase

{U(α,C) : α ∈ ω2} ∪ {U(α, [n, ε]) : α ∈ ω2, n ∈ N, ε ∈ 2}
generates a locally compact Hausdorff topology τH on ω2 ×C satisfying that for all
α ∈ ω2, n ∈ N, and r ∈ C,

(1) U(α,C), U(α, [n, 1]) are compact,
(2) the collection of finite intersections of members of the family

{U(α, [n, r(n)]) \ U [F ] : n ∈ N, F ∈ [α]<ℵ0}
is a local base at (α, r)

Next, the authors of [11] have to work very hard to produce an ω2-suitable pair
so that τH is first-countable and initially ω1-compact. The first step is to work in
a model in which there is a special function f : [ω2]2 7→ [ω2]≤ℵ0 called a strong
∆-function. Since we will not need any properties of this function we omit the
definition, but henceforth assume that f is such a function. We record additional
minor modifications of results from [11, 4.1,4.2].

Proposition 5.3. There is a ccc poset Pf consisting of quadruples p = (ap, hp, ip, np)
that are finite approximations of an ω2-suitable pair where

(1) ap ∈ [ω2]<ℵ0 , np ∈ ω
(2) hp : [ap]

2 × np 7→ P(ap),
(3) ip : [ap]

2 × np 7→ [ap]
<ℵ0 ,

and, for each Pf -generic filter G, the relations

H =
⋃
{hp : p ∈ G} and i =

⋃
{ip : p ∈ G}
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are functions that form an ω2-suitable pair. In particular, if p ∈ G, α ∈ hp(β), and
ip(α, β, 0) = ∅, then (in V [G]) U(α,C) ⊂ U(β,C).

The space (ω2 × C, τH) is shown to have these additional properties [11, 4.2]:

Proposition 5.4. If G is Pf -generic and H, i are defined as in Proposition 5.3,
then the following hold in V [G]:

(1) XH = (ω2×C, τH) is locally compact 0-dimensional of cardinality c = 2ℵ1 =
ℵ2,

(2) XH is first-countable,
(3) for every A ∈ [XH ]ω1 , there is a λ < ω2 such that A ∩ U(λ,C) is uncount-

able,
(4) for every countable A ⊂ XH , either Y is compact or there is an α < ω2

such that (ω2 \ α)× C is contained in Y .

Consequently XH is a locally compact, 0-dimensional, normal, first-countable, ini-
tially ω1-compact but non-compact space.

Finally, we need the following strengthening of [11, Lemma 7.1] but which is
actually proven.

Proposition 5.5. If p = (ap, hp, ip, np) ∈ Pf and ap ⊂ λ ∈ ω2, then there is a
q < p in Pf such, that

(1) aq = ap ∪ {λ} and nq = np,
(2) ap ⊂ hq(λ, 0),
(3) iq(α, λ, j) = ∅ for all α ∈ ap and j < nq.

We note that for p, q as in Lemma 5.5, if q is in the generic filter G, then
U(α,C) is a subset of U(λ,C) for all α ∈ ap. One consequence of this is that the
family {U(α,C) : α ∈ ω2} is finitely upwards directed. Equivalently, the family of
complements of these sets in the one-point compactification ofXH is a neighborhood
base for the point at infinity.

Now we strengthen [11, Lemma 7.2] which will be used to prove that the one-
point compactification of XH has Calibre ω1. Some of our proofs will require forcing
arguments and we refer the reader to [14] for more details. However some remarks
may be sufficient to assist many readers. The forcing extension, V [GQ] by a Q-

generic filter GQ for a poset Q is equal to the valuation, valGQ(Ȧ) for the collection

of all Q-names Ȧ that are sets from V . The notation q  x ∈ Ȧ can be read as
the assertion that x ∈ valGQ(Ȧ) for any generic filter with q ∈ GQ. The forcing

theorem ([14, VII 3.6]) ensures, for example, that if Ȧ is a Q-name of a subset of

a ground model set B, then b is an element of valGQ(Ȧ) exactly when there is an

element q ∈ GQ such that q  b ∈ valGQ(Ȧ). Additionally, the set of q ∈ Q that

satisfy that q  x ∈ Ȧ is a set in the ground model, as is the set of x for which
there exists a q with q  x ∈ Ȧ. This justifies the first line of the next proof.

Lemma 5.6. In V [G], for each uncountable A ⊂ ω2, there is a λ < ω2 such that
U(α,C) ⊂ U(λ,C) for uncountably many α ∈ A.

Proof. Let Ȧ be a Pf -name for a subset of ω2. Fix any condition p ∈ G and assume

that p forces that Ȧ has cardinality ℵ1. We prove that there is a q < p and a λ ∈ aq
satisfying that if q ∈ G then there are uncountably many α ∈ valG(Ȧ) such that
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U(α,C) ⊂ U(λ,C). It is a standard fact of forcing that this would then establish
the Lemma (i.e. that there is then necessarily such a q ∈ G).

Let I denote the set of α ∈ ω2 satisfying that there is some pα < p (which we

choose) forcing that α ∈ Ȧ. Since p forces that Ȧ is a subset of I it follows that
I has cardinality at least ω1. Since Pf is ccc, it also follows that I has cardinality
equal to ω1 but it suffices for this argument to choose any λ ∈ ω2 such that I ∩ λ
is uncountable. For each α ∈ I, choose qα < pα so that aqα = ap ∪ {λ} and the
properties of the pair pα, qα are as stated in Proposition 5.5.

Just as in the proof of [11, Lemma 7.2], the fact that Pf is ccc ensures that there
is some q < p such that so long as q ∈ G, the set {α ∈ I∩λ : qα ∈ G} is uncountable.
As remarked after Proposition 5.5, it follows, in V [G], that U(α,C) ⊂ U(λ,C) for
all α ∈ {α ∈ I ∩ λ : qα ∈ G}. �

Theorem 5.7. If G is a Pf -generic filter, then in V [G], the one-point compactifi-
cation of the space XH has a P -base for a poset with Calibre ω1.

Proof. The poset P consists of the family {U(α,C) : α ∈ ω2} ordered by inclusion.
To complete the proof we have to note that ω <T P . For this it is enough to prove
that there is a countable subset of P that has no upper bound. It is relatively easy
to prove that XH is separable (indeed, that ω ×C is dense) but oddly enough this
is not stated in [11] and we can more easily simply note that XH is not σ-compact
because by Proposition 5.4 it is countably compact and non-compact. �

An important feature of the construction of XH from the ω2-suitable pair H, i is
that even in a forcing extension by a ccc poset Q (in fact by any poset that preserves
that ω1 and ω2 are cardinals), the new interpretation of the space obtained using
H, i (i.e. the base set ω2 × C may change because there can be new elements of
C) is still locally compact and 0-dimensional. This is similar to the fact that local
compactness of scattered spaces is preserved by any forcing (a result by Kunen).
The other properties of XH , such as first-countability and initial ω1-compactness,
as well as properties of its one-point extension are not immediate and will depend
on what subsets of ω2 have been added.

An unexpected feature of the ω2-suitable pair is that, in fact, the first countability
of XH is preserved by any forcing.

Lemma 5.8. For each poset Q in V [G] and Q-generic filter GQ, the space XH is
first-countable in V [G][GQ].

Proof. Of course we will use the fact that, in V [G], XH is first-countable (as stated
in Proposition 5.4). Fix any α ∈ ω2 and recall from Proposition 5.2, that the
collection of all finite intersections of the family

{U(α, [n, r(n)]) \ U [F ] : n ∈ N, F ∈ [α]<ℵ0}
is a local base at (α, r) ∈ {α} × C (in any model). In V [G], for each r ∈ C, let
Z(α, r) =

⋂
n∈N U(α, [n, r(n)]) and let K(α, r) = {ξ < α : {ξ} × C ⊂ Z(α, r)}. Let

us recall that ξ ∈ K(α, r) if and only if Z(α, r)∩({ξ}×C) is not empty. Similarly, by
the definition of U(α, [n, r(n)]) given in Definition 5.1, K(α, r) =

⋂
{H(α, [n, r(n)]) :

n ∈ N}. Since, for all n ∈ N, {H(α, [n, 0]), H(α, [n, 1])} is a partition of H(α, 0),
it follows that {K(α, r) : r ∈ C} is also a partition of H(α, 0). Since XH is first-
countable (in V [G]), for each r ∈ C, there is a countable Fr ⊂ K(α, r) such that
K(α, r)× C ⊂

⋃
{U(ξ, 0) : ξ ∈ Fr}.
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Now we are ready to show that, in V [G][GQ], each point of {α}×C is a Gδ-point
in XH . For each r ∈ C, we again define the Gδ-set Z(α, r) and K(α, r) ⊂ H(α, 0) as
we did in V [G] but as calculated in the new model V [G][GQ]. It is immediate that
Z(α, r) ∩ ({α} × C) is equal to (α, r). Since there are no changes to the values of
H(α, [n, ε]) for (n, ε) ∈ N×2, the value of K(α, r) for each r ∈ C∩V [G] is unchanged
and the family {K(α, r) : r ∈ C} is a partition of H(α, 0). It clearly remains the
case that, for r ∈ C ∩ V [G], K(α, r) × C is a subset of

⋃
{U(ξ, 0) : ξ ∈ Fr}. This

implies that (α, r) is a Gδ-point for each r ∈ C ∩ V [G]. Now consider a point
s ∈ C that is not an element of V [G]. But now we have that K(α, s) is empty since
H(α, 0) is covered by the family {K(α, r) : r ∈ C ∩ V [G]}. This implies that Zs is
equal to the singleton set {(α, s)}. �

Next we prove that we can extend the model V [G] to obtain a model in which
Martin’s Axiom holds (and c = ω2). We do so using the following result from
[14, VI 7.1, VIII 6.3] (i.e. the standard method to construct a model of Martin’s
Axiom).

Proposition 5.9. In the model V [G], there is an increasing chain {Qξ : ξ ≤ ω2}
of partially ordered sets satisfying for each ξ < ω2

(1) Qξ is a ccc poset of cardinality at most ℵ1,
(2) each maximal antichain of Qξ is a maximal antichain of Qω2 ,
(3) if G2 is a Qω2-generic filter, then in the model V [G][G2]

(a) Martin’s Axiom holds and c = ω2

(b) for each A ⊂ ω2×C of cardinality less than ω2, there is a ξ < ω2 such
that A is in the model V [G][G2 ∩Qξ].

For the remainder of this section let {Qξ : ξ ≤ ω2} be the poset as in this
Proposition and let G2 be a Qω2

-generic filter. The model V [G][G2∩Qξ] is actually
equal to the valuation by G2 of all Qξ-names that are in V [G].

First we prove that the poset of P (consisting of the family {U(α,C) : α ∈ ω2}
ordered by inclusion) still has Calibre ω1 in the forcing extension of V [G] by Qω2 .
In fact, by Proposition 5.9, it suffices to prove that any ccc poset Q of cardinality
at most ℵ1 preserves that P has Calibre ω1.

Lemma 5.10. If GQ is Q-generic over V [G] for a ccc poset, then P has Calibre
ω1 in the model V [G][GQ].

Proof. Let Ȧ be a Q-name of a subset of ω2 and let q be any element of Q. Let I
be the set of α ∈ ω2 such that there exists some qα < q such that qα  α ∈ Ȧ. For
each α ∈ I choose such a qα < q. Fix any λ < ω2 so that Iλ = {α ∈ I : U(α,C) ⊂
U(λ,C)} is uncountable. Choose q̄ < q so that for all Q-generic GQ with q̄ ∈ GQ,

the set {α ∈ Iλ : qα ∈ GQ} is uncountable. Since α ∈ valGQ(Ȧ) for all α ∈ I with
qα ∈ GQ, this completes the proof that P retains the Calibre ω1 property. �

It follows from the results so far that, in the model V [G][G2], the one-point
compactification of XH has a P -base and that P has Calibre ω1. Also, {U(α, 0) :
α ∈ ω2} is an open cover of XH that has no countable subcover, so the one-point
compactification is not first-countable. This completes the proof of the desired
properties, but it is of independent interest to prove this next result because of the
connection to the Moore-Mrowka problem.
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Theorem 5.11. In the model V [G][G2] there is an ω2-suitable pair H, i and a poset
P of Calibre ω1 such that each of the following hold:

(1) Martin’s Axiom and c = ω2,
(2) the space XH is locally compact, 0-dimensional, first-countable, and not

compact,
(3) the one-point compactification of XH has a P -base
(4) the space XH is initially ω1-compact and normal,
(5) the one-point compactification of XH is compact, has countable tightness,

and is not sequential.

Proof. We have already established items (1), (2), and (3). Item (3) implies that the
one-point compactification of XH has countable tightness. Item (5) is an immediate
consequence of items (1)-(4). So it remains to prove item (4). This will require a
forcing proof over the model V [G]. Before we begin, let us notice that:

Fact 1. In V [G], if S is an unbounded subset of ω2, then the closure of S × C will
contain (ω2 \ α)× C for some α ∈ ω2.

This follows from the property in item (4) because of the facts that S×C does not
have compact closure and that the one-point compactification of XH has countable
tightness.

Recall, from Proposition 5.4, that, in V [G], the closure in XH of each countable
subset of XH is either compact or contains (ω2 \ α) × C for some α ∈ ω2. We
will prove that this statement remains true in V [G][G2]. Before doing so we note
that item (4) is a consequence of this claim. It is immediate from (4) that XH is
countably compact. The fact that then XH is initially ω1-compact follows from the
fact that a compact P -space has no converging ω1-sequences. The fact that XH is
normal is noted in [11, §8] and is similar to the proof that an Ostaszewski space is
normal. Indeed, it follows from item (4) that for any two disjoint closed subsets of
XH at least one of them is compact.

Let Ȧ be a Qω2 -name of a countable subset of XH . Assume there is a q ∈ G2

such that q forces that the closure of Ȧ is not compact. Note that q forces that for
all finite F ⊂ ω2, Ȧ \ U [F ] is not empty. Also, that the closure of Ȧ is forced to

miss {α}×C if and only if Ȧ is forced to miss U(α, 0)\U [F ] for some finite F ⊂ α.

By Proposition 5.9, there is a ξ < ω2 and aQξ-name Ḃ satisfying that valG2∩Qξ(Ḃ)

is equal to valG2
(Ȧ). By possibly choosing a larger value of ξ, we may assume that

q ∈ Qξ. We first note that it suffices to work with Ḃ and the poset Qξ.

Fact 2. For each λ ∈ ω2, k ∈ N, and t : {1, . . . , k} 7→ 2, and finite F ⊂ λ, the
following are equivalent:

(1) valG2
(Ȧ) misses

⋂
{U(λ, [n, t(n)]) : 1 ≤ n ≤ k} \ U [F ],

(2) valG2∩Qξ(Ḃ) misses
⋂
{U(λ, [n, t(n)]) : 1 ≤ n ≤ k} \ U [F ].

We must prove that the closure of valG2∩Qξ(Ḃ) contains {λ} ×C for a co-initial
set of λ ∈ ω2. This means that we are interested in the set of λ ∈ ω2 such that
{λ} × C is not contained in the closure of Ḃ. For any such λ, there must be a
q ≥ qλ ∈ Qξ, an integer kλ and a function tλ : {1, . . . , kλ} 7→ 2, and a finite Fλ ⊂ λ
such that qξ forces that Ḃ is disjoint from

⋂
{U(λ, [n, tλ(n)]) : 1 ≤ n ≤ kλ} \U [Fλ].

Let S denote the set of all λ such that such a sequence 〈qλ, kλ, tλ, Fλ〉 exists.
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If α /∈ S, then q forces that {α} × C is contained in the closure of Ḃ. Of

course this also means that q forces that the closure of Ḃ contains the closure of
(ω2 \ S) × C. In this case, Fact 1 implies that there is an α ∈ ω2 such that the

closure of (ω2 \ S)×C, and therefore of valG2∩Qξ(Ḃ) , will contain (ω2 \ α)×C as
required. Therefore we conclude that if S is unbounded, then ω2 \ S is bounded.

We assume that S is unbounded and obtain a contradiction. Since Qξ has
cardinality ℵ1, it follows from the pressing down lemma that there is a stationary
subset S1 of S, consisting of limits with cofinality ω1, and a tuple 〈q̄, k, t, F 〉 such
that, for all λ ∈ S1

(1) q̄ = qλ, k = kλ, t = tλ, and
(2) F = Fλ.

Let W be the union of the family {
⋂
{U(λ, [n, t(n)]) : 1 ≤ n ≤ k} \ U [F ] : λ ∈ S1}.

Since W is open and the property of item (4) holds in V [G], it follows that XH \W
is compact. Choose any finite F1 ⊂ ω2 so that XH ⊂ W ∪ U [F1]. It now follows

that q̄ forces that Ḃ is contained in U [F ∪ F1], which is a contradiction. �
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[12] István Juhász and Z. Szentmiklóssy, Convergent free sequences in compact spaces, Proc.

Amer. Math. Soc. 116 (1992), no. 4, 1153–1160, DOI 10.2307/2159502. MR1137223
[13] Piotr Koszmider, Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc.

351 (1999), no. 8, 3073–3117, DOI 10.1090/S0002-9947-99-02145-5. MR1467471

[14] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102,
North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence

proofs. MR597342
[15] A.G. Leiderman, V. Pestov, and A.H. Tomita, On topological groups admitting a base at the

identity indexed by ωω , Fund. Math. 238 (2017), 79–100.



COMPACT SPACES WITH A P-BASE 15

[16] Ana Mamatelashvili, Tukey order on sets of compact subsets of topological spaces, ProQuest

LLC, An Arbor, MI, 2014. Thesis (Ph.D.)–University of Pittsburgh.

[17] David Guerrero Sánchez, Spaces with an M-diagonal, Rev. R. Acad. Cienc. Exactas F́ıs. Nat.
Ser. A Mat. Racsam 114 (2020), no. 1, 16–24, DOI 10.1007/S13398-019-00745-x. MR4039696

[18] Rongxin Shen and Ziqin Feng, On ωω-bases and ωω-weak bases, Houston J. Math. 46 (2020),

no. 2, 507–518.
[19] John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies,

no. 2, Princeton University Press, Princeton, N. J., 1940. MR0002515

UNC Charlotte
Email address: adow@uncc.edu

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849

Email address: zzf0006@auburn.edu


