
LAVER FORCING AND CONVERGING SEQUENCES

ALAN DOW

Abstract. We establish that Laver forcing need not add a converging se-

quence to the Stone space of a Boolean algebra. This shows that it is consis-

tent that there is an Efimov space with weight less than the bounding number
.

1. Introduction

The fundamental question that is addressed in this paper is whether Laver forc-
ing necessarily adds a converging sequence. This question arose in joint work with
W. Brian [1] in which three cardinal invariants connected to the existence of con-
verging sequences in compact spaces were investigated. These cardinals are the
splitting number, s, the open splitting number s(R), and the cardinal z. The split-
ting number is well-known in set-theory and is usually defined in terms of splitting
families of infinite subsets of ω which can instead be stated as the minimum cardinal
κ such that there is a compact space of weight κ that has an infinite sequence with
no converging subsequence. D. Sobota [10] defined z to be the minimum weight
of an infinite compact space that contained no infinite converging sequences. The
cardinal s(R), defined in [1], is the minimum cardinality of a family of open subsets
of R satisfying that for every infinite converging sequence of R some member of the
family meets it in a non-compact subset. In trying to understand the relationship
between these cardinals in forcing extensions, the issue of whether a forcing intro-
duces a converging sequence in some compact space with no converging sequences
naturally emerged as a fundamental consideration. The simplest way to interpret
the statement about adding a converging sequence (at least for proper posets) is
to ask if the space of ultrafilters of the Boolean algebra of ground model subsets of
N has a converging sequence in the extension. For a Boolean algebra B we will let
st(B) denote the usual (Stone) space of ultrafilters on B, and for a compact space
K we let CO(K) denote the Boolean algebra of clopen (closed and open) subsets
of K.

We answer one of the questions left open in [1] by showing the consistency of
s = z < s(R). It is already known that the Laver model is a model of s = ℵ1 < b
([2, 8]) and it was shown in [1] that b ≤ s(R) ≤ c holds in this model.

The question of whether a forcing will add a converging sequence has already
been examined for Cohen forcing and random real forcing. S. Koppelberg [5] showed
that Cohen forcing does add a converging sequence to the space of ultrafilters
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for every ground model Boolean algebra. This result has found many interesting
applications. On the other hand, it was shown in [3] that this was not the case
for the Random real forcing. This result arose in the study of the Efimov problem
[4]. Indeed many readers will be more interested in the application to the Efimov
problem of the results in this paper. More precisely, we prove the consistency of the
existence of an Efimov space of weight less than b. An Efimov space is an infinite
compact space that contains no infinite converging sequences and no copies of βN
(the Stone-C̆ech compactification of the integers N). A compact space of weight less
than c does not contain a copy of βN and so our compact space of weight ℵ1 < b
that contains no converging sequences is an Efimov space.

A third result grew out of the methodology and contributed to the proof of
the main result. A generic ultrafilter G for a poset P is also an ultrafilter for
the canonical complete Boolean algebra associated with P . In the context of this
research it is natural to ask if that generic point in the space of ultrafilters is the
limit of a converging sequence. Indeed for many standard posets P for adding a
real, it is. We show an even stronger negative result holds for Laver forcing. The
generic ultrafilter is not a limit point of any countable set of ultrafilters, i.e. G is a
weak P-point in the space of ultrafilters on the complete Boolean algebra generated
by Laver forcing. Weak P-points of N∗ = βN \ N were introduced by Kunen [6].

In the first section of the paper we establish the above mentioned weak P-point
result and show how it naturally arose in the investigation and lead to the main
result. In the third section of the paper we show that adding a single Laver real
will not add a converging sequence. In the final section we present our main result
that the same is true, over a ground model of CH, for the ω2-length countable
support iteration of Laver posets. While the final section can be written so as
to be independent of the single stage iteration, the author feels the proof for the
single stage may be more natural and possibly adaptable to other posets or other
problems. For example D. Sobota and L. Zdomskyy communicated interest in
generalizing these results to related questions about measure algebras.

The author thanks L. Zdomskyy for his feedback on an early draft of this article
that lead to major improvements.

2. Weak P-points of the Laver poset

Let L denote the Laver poset, defined below, and we will use g to denote the
generic filter on L. We let ro(L) denotes the usual regular open algebra for the
poset L (see [7, II 3.3]). More generally, for any separative poset P we let BP
denote a complete Boolean algebra that has P as a dense subset (constructed from
ro(P ) as in [7, II 3.3]).

Proposition 1. If G is a V -generic filter for a separative poset P , then G generates
an ultrafilter on BP ∩ V .

It is natural to ask if a generic filter for P is a limit of a converging sequence
in st(BP ∩ V ) and to note the connection to the question of whether converging
sequences are introduced to st(P(N) ∩ V ). In fact this is how we first started
investigating the question for P = L.

We record a couple of folklore observations.

Proposition 2. Every Boolean algebra of cardinality at most c can be embedded as
a dense subalgebra of the clopen algebra for some closed subset of βN .
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Proof. We proceed topologically. Since st(B) is a compact 0-dimensional space of
weight at most c, there is a compact subset K of 2c such that CO(K) is isomorphic
to B. Fix any continuous function ϕ that maps βN onto 2c. By Zorn’s Lemma,
there is a closed subset F of βN such that ψ = ϕ �F is an irreducible map onto K.
This simply means that no proper closed subset of F will map onto K. It easily
follows then that the set {ψ−1(U) : U ∈ CO(K)} is a dense subset of CO(F ) that
is isomorphic to B. �

Proposition 3. Let P be a poset of cardinality at most c. If forcing with P adds a
converging sequence to st(BP ∩V ), then forcing with P adds a converging sequence
to st(P(N) ∩ V ).

Proof. Let {ẋn : n ∈ ω} be P -names of a sequence of distinct ultrafilters on B and

assume that p ∈ P forces that the sequence converges. Fix P -names, {U̇n : n ∈ ω},
for a sequence of elements of BP ∩ V satisfying that, for each n 6= m ∈ ω, p forces
U̇n ∈ ẋn and U̇n ∧ U̇m = 0. Let B1 be any subalgebra of BP of cardinality c
satisfying that P ⊂ B1 and p 
 U̇n ∈ B1 for each n ∈ ω. It should be clear that
p forces that the sequence {ẋn ∩ B1 : n ∈ ω} is a non-trivial converging sequence
in st(B1). By Proposition 2, we may choose a closed subset F of βN so that
CO(F ) contains a dense copy, B2, of B1. Furthermore, we may fix an isomorphic
embedding ι of CO(F ) into BP satisfying that ι(B2) = B1. It again follows that p
forces that {ẋn ∩ ι(CO(F )∩V ) : n ∈ ω} is a non-trivial converging sequence. Since
ι is an isomorphism, it follows that p forces that st(CO(F ) ∩ V ) has a converging
sequence. Since st(CO(F )∩V ) is a closed subset of st(P(N)∩V ) and this completes
the proof. �

For the remainder of the section, let B denote any Boolean subalgebra of ro(L)
that contains {[T ] : T ∈ L}. For each T ∈ L, let [T ] denote the associated element
in ro(L). Recall that if T ′ < T , then [T ′] ⊂ [T ] and T ′ forces that the clopen set
[T ′] is an element of the ultrafilter g. Our goal, for the remainder of this section, is
to prove:

Theorem 4. The point in st(B) generated by the L-generic ultrafilter g is a weak
P-point in the Stone space of B.

As usual, ω<ω denotes the set
⋃
n∈ω

nω which is a tree when ordered by usual
set-inclusion. Conditions T ∈ L are infinite downward closed subtrees of ω<ω with
the property that there is a stem, stem(T ), such that no predecessor is branching
and each stem(T ) ⊆ t ∈ T has infinitely many immediate successors. The ordering
< on L is given by T ′ < T providing T ′ ⊆ T .

As usual for T ∈ L and tT ⊆ t ∈ T (Laver uses tT to denote the stem or
root of T ), let Tt denote the subtree of T satisfying that tTt = t. We will let
L(T, t) = {j : t_j ∈ T} and Br(T ) = {t ∈ T : tT ⊆ t}.

We fix a canonical order-preserving enumeration {tω
<ω

` : ` ∈ ω} of ω<ω, and, for
T ∈ L, this transports to a canonical order-preserving enumeration {tT` : ` ∈ ω} of
{t ∈ T : tT ⊆ t}. Then, for T ∈ L, when we write T ′ <n T we mean that T ′ ∈ L
and that both T ′ < T and, for all ` ≤ n, tT

′

` = tT` .

Definition 5. For each T ∈ L and j ≤ n ∈ ω, let T (j, n) be the <0-extension of
TtTj with the property that, for all i ≤ n, tTi ∈ T (j, n) if and only if tTi ⊆ tTj .
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Proposition 6 (Laver). For each T ∈ L, n ∈ ω, and L-name τ :

(1) there is a T ′ <0 T such that T ′ 
 τ = n or T ′ 
 τ 6= n,
(2) {T (j, n) : j ≤ n} is an antichain that is pre-dense below T , in addition,

T =
⋃
{T (j, n) : j ≤ n}.

(3) If {Tn : n ∈ ω} ⊂ L is a sequence such that, for all n ∈ ω, Tn+1 <n Tn,
then Tω =

⋂
Tn ∈ L and satisfies that Tω <n Tn for all n ∈ ω.

A sequence as in Proposition 6 (3) is called a fusion sequence. The situation is
property (1) is referred to as the assertion that T ′ decides the statement τ = n. We
will use this phrase in more general situations where we say that a forcing condition
decides the truth value of a forcing statement. Similarly a condition p ∈ P forcing
a value on a P -name τ will mean that p 
 τ = v̌ for some element v of the ground
model. We will however not use the v̌ notation for v when the context makes it
clear.

Lemma 7. Let T ∈ L and n ∈ ω. If {T ′j : j ≤ n} ⊂ L satisfies that T ′j <0 T (j, n)
for each j ≤ n, then T ′ =

⋃
j≤n T

′
j is in L and satisfies that T ′ ≤n T .

Now we let {ẋn : n ∈ ω} be L-names of maximal ultrafilters on B and suppose
that T0 
 g /∈ {ẋn : n ∈ ω} for some T0 ∈ L. The following is proven using a
standard fusion argument applying Lemma 7 and Proposition 6 (3).

Lemma 8. There is a T <0 T0 satisfying that, for all j ≤ n ∈ ω, if TtTj has a

<0-extension T ′ satisfying that T ′ 
 [T ′] /∈ ẋn, then T (j, n) 
 [T (j, n)] /∈ ẋn.

Proof. We define a fusion sequence 〈Tn : n ∈ ω〉 by induction on n so that, for
each j ≤ n, if there is a T ′ <0 Tn+1(j, n) with T ′ 
 [T ′] /∈ ẋn, then Tn+1(j, n) 

[Tn+1(j, n)] /∈ ẋn. Suppose we have defined Tn. For each j ≤ n, we will choose
T ′j <0 Tn(j, n) and set Tn+1 =

⋃
j≤n T

′
j as in Proposition 6(3). Since, for j < n,

Tn(j, n) <0 Tn(j, n − 1)), it suffices to choose, if possible, T ′j <0 Tn(j, n) so that
T ′j 
 [T ′j ] /∈ ẋn. If there is no such T ′j , then let T ′j = Tn(j, n). To define T ′n, we
set T ′n,0 = Tn(n, n) and we recursively choose T ′n,`+1 <0 T

′
n,`, for ` ≤ n so that, if

possible, T ′n,`+1 
 [T ′n,`+1] /∈ ẋ`. Our definition of T ′n is then Tn,n+1. Now assume

that, for any j < n, there is a T ′ <0 Tn+1(j, n) satisfying that T ′ 
 [T ′] /∈ ẋn. Since
Tn+1(j, n) <0 Tn(j, n), we have that T ′ <0 Tn(j, n), and so we did ensure that
T ′j 
 [T ′j ] /∈ ẋn. Similarly, assume j ≤ n and that there is some T ′ <0 Tn+1(n, n)
such that T ′ 
 [T ′] /∈ ẋj . Then again, we have that T ′ <0 Tn,j and so we did ensure
that T ′n,j 
 [T ′n,j+1] /∈ ẋj . Since Tn+1(n, n) <0 T

′
n,j+1 and [Tn+1(n, n)] ⊂ [T ′n,j ], we

have that Tn+1(n, n) 
 [Tn+1(n, n)] /∈ ẋj .
Now we set T = Tω =

⋂
n∈ω Tn and assume that for some j ≤ n ∈ ω, there

is a T ′ <0 TtTj such that T ′ 
 [T ′] /∈ ẋn. Since TtTj <0 T (j, n) <0 Tn+1(j, n) we

have that T ′ <0 Tn+1(j, n) and so Tn+1(j, n) 
 [Tn+1(j, n)] /∈ ẋn. Again, since
[T (j, n)] ⊂ [Tn+1(j, n)], we have that T (j, n) 
 [T (j, n)] /∈ ẋn. �

This next Lemma is one of the basic ideas of the proof in this and later sections.
The idea is roughly that if T ′ <n T (j, n) then T ′(j, n) can not easily manipulate
truth value of [T ′(i, n)] ∈ ẋm because of self-reference, but for any j 6= i ≤ n, we
have many choices for the value of T ′(i, n) that are independent of the choice for
T ′(j, n) and for some of those combination of choices, T ′(j, n) can force the failure
of [T ′(i, n)] ∈ ẋm.
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Lemma 9. Let T ∈ L be chosen to be as in Lemma 8. Let T̃ ≤ T and n,m ∈ ω be
arbitrary and let j ≤ n. Then there is a T ′ <n T̃ such that, for all j 6= i ≤ n

T ′(j, n) 
 [T ′(i, n)] /∈ ẋm

Proof. For each i ≤ n, choose any sequence {T̃ (i, n, `) : ` ∈ n+2} from L such that

each is a <0-extension of T̃ (i, n) and the intersection of any two is finite. We may

choose a <n-extension T ′ of T̃ satisfying that T ′(i, n) = T̃ (i, n) and, by Proposition
6(1), for all i 6= j ≤ n and all ` ∈ n+ 2,

T ′(j, n) 
 [T̃ (i, n, `)] ∈ ẋm or T ′(j, n) 
 [T̃ (i, n, `)] /∈ ẋm .

In this Lemma, j is fixed. For each j 6= i ≤ n, choose any `i ∈ n + 2 such that
T ′(j, n) 
 [T̃ (i, n, `i)] /∈ ẋm. Finish by defining T ′(i, n) to be T̃ (i, n, `i). �

Corollary 10. Again, let T ∈ L be chosen as in Lemma 8. Then there is a fusion
sequence 〈Tn : n ∈ ω〉 with T1 = T0 = T satisfying, for all n > 1

(∀i 6= j ≤ n) (∀m ≤ n) Tn(j, n) 
 [Tn(i, n)] /∈ ẋm
Proof. Having chosen Tn <n−1 Tn−1, we simply choose Tn+1 <n Tn by applying
Lemma 9, (n+ 2)2-times, i.e. for each j,m ≤ n. �

Now we complete the proof of Theorem 4. Let Tω be the limit of the fusion
sequence 〈Tn : n ∈ ω〉 from Corollary 10, i.e. Tω =

⋂
n Tn. As usual, we have

that Tω <n Tn for all n ≥ 1. Assume, towards a contradiction, that T̃ ≤ Tω
and m ∈ ω are such that T̃ 
 [Tω] ∈ ẋm. Since T 
 g 6= ẋm, we can, by

possibly extending T̃ , arrange that T̃ 
 [T̃ ] /∈ ẋm (more carefully: there are T̃1, T̃2

below T̃ such that T̃1 
 [T̃2] ∈ g \ ẋm, which of course means that T̃1 ≤ T̃2, and

[T̃1] ⊂ [T̃2], hence T̃1 
 [T̃1] /∈ ẋm). There is a unique j ∈ ω such that tT̃ = tTj .
By our assumption on T , TtTj 
 [TtTj ] /∈ ẋm. Choose any n > max(j,m). We

now have that [Tn(j, n)] 
 [Tn(j, n)] /∈ ẋm, and, for all j 6= i ≤ n, Tn(j, n) 

[Tn(i, n)] /∈ ẋm. That is, Tn(j, n) 
 (

⋃
i≤n[Tn(i, n)]) /∈ ẋm. By Lemma 6, this

implies that Tn(j, n) 
 [Tn] /∈ ẋm. Since [Tω] ⊂ [Tn] and T̃ <0 Tn(j, n), we have

the contradictory statement that T̃ 
 [Tω] /∈ ẋm.

3. adding a Single Laver does not add a converging sequence

In this section we will show that in the forcing extension by L, the space
st(ro(2ω) ∩ V ) contains no converging sequences. For convenience we choose any
T0 ∈ L consisting only of elements t of ω<ω that are strictly increasing functions
and we assume that T0 is in the generic filter g. This is just a convenience since
there is a dense set of T ∈ L that satisfy that t \ tT is strictly increasing.

Since st(ro(2ω)) contains copies of βN, it also follows that L does not add a
converging sequence to st(P(N) ∩ V ). We find it easier to work with ro(2ω). It
will be necessary to be more general: if M is a countable elementary submodel of
H(c+), then B = M ∩ ro(2ω) is a countable atomless Boolean algebra. Since st(B)
is homeomorphic to 2ω, we can simplify notation by identifying st(B) with 2ω (via
any suitable homeomorphism). It is similarly true that ro(st(B)) is equal to the
original copy of ro(2ω). Therefore, for an ultrafilter U on ro(2ω) ∩ V , we can treat
U ∩B as the filter base of clopen sets for a point in 2ω under this identification. If
U is an open subset of 2ω and if U̇ is an L-name of an element of st(ro(2ω)∩V ), we

will say that (T forces that) U ∈ U̇ to mean that U contains some regular open set
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from U̇ . The proof consists of constructing an element W of ro(2ω) and a condition
that will force that the clopen subset of st(ro(2ω)) corresponding to W splits a
potential converging sequence.

Now we state and prove the main result of this section.

Theorem 11. In V [g], there is no non-trivial converging sequence in the space
st(ro(2ω) ∩ V ).

Proof. Let {U̇n : n ∈ ω} be L-names of distinct ultrafilters on ro(2ω)∩V . Towards a

contradiction, assume that (possibly some extension of) T0 forces that 〈U̇n : n ∈ ω〉
converges to the ultrafilter U̇ . Choose any countable elementary submodel M of
some H(θ) and assume that {U̇} ∪ {U̇n : n ∈ ω} is an element of M and that T0 is
(M,L)-generic (see [9, III.2.5]). Let B be the Boolean algebra M ∩RO(2ω). Using
the identification between st(B) and 2ω as discussed above, for each n, let ẋn be

the name of the point of 2ω that is in every element of U̇n ∩B. Similarly, let ẋ be
the element of st(B) that is in every element of U̇ ∩ B. By elementarity, T0 forces
that ẋn 6= ẋm and ẋn 6= ẋ for all n 6= m.

Here is a brief outline of the proof that may help motivate the technical details.
We will eventually construct a condition T <0 T0 (or rather T2 <0 T0) together
with a hierarchy of fronts (see below) {Sn : n ∈ ω} of T where each s ∈ Sn satisfies
that Ts is able to decide a suitably small neighborhood, here we will call it, Ws

of ẋ. The notion of front ensures that, for each n, it follows that T forces that
WSn =

⋃
{Ws : s ∈ Sn} is a neighborhood of ẋ. With more work, again using

the key idea as explained before Lemma 8, we also ensure that, for each m ∈ ω, T
forces that the regular open algebra complement of some WSn is an element of ẋm.
We can not expect there to be a <0-extension of T that will decide which n has
this property however. Instead, we use that the ground model subsets of ω remain
splitting and we are able to choose an infinite I ⊂ ω and an extension of T forcing
that WI =

⋃
{WSn \WSn+1

: n ∈ I} is an element of ro(2ω) ∩ V that is forced to

split the sequence {U̇n : n ∈ ω} (but not to decide any given n with WI ∈ U̇n or m

with WI /∈ U̇m).

It follows, from the fact that L preserves ω-splitting families [2], that we might
as well assume that T forces that ẋ is not in V . Recall that L(T, t) denotes the
set {` : t_` ∈ T}. By a straightforward fusion, we can find T <0 T0 satisfying the
following:

(1) for each t ∈ Br(T ) and each n ≤ |t|, there is a point y(t, n) ∈ 2ω such that
for each ` ∈ L(T, t), Tt_` 
 y(t, n) � ` = ẋn � `,

(2) for each t ∈ Br(T ), there is a point yt ∈ 2ω such that for each ` ∈ L(T, t),
Tt_` 
 yt � ` = ẋ � `.

Note that if T ′ <0 Tt, then what one might designate as yT
′

t is simply equal to yt.
Recall that a set S is a front of T ∈ L if T ′ ∩ S is not empty for each T ′ < T . If

S is a front of T , then the set of minimal elements of S is also a front. So we will
assume that the elements of a front are pairwise incompatible in ω<ω. Let S0 be
the singleton set consisting of the stem of T . By recursion on n, Sn is the front of
elements of T satisfying that there is an s′ ⊂ s with s′ ∈ Sn−1 such that ys 6= ys′

(Sn is a front because ẋ is not in V ). For each n, and s′ ∈ Sn−1, s ∈ Sn with s′ < s
let ks be the minimum of {k : ys � k 6= ys′ � k}. By a trivial pruning, we can assume
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that ks < min(L(T, s)) for all s ∈ Sn. In this proof, [y � k] will denote the standard
clopen subset of 2ω for y ∈ 2ω and k ∈ ω.

Claim 1. By performing a fusion, we can assume that T satisfies that for incom-
parable s, s′ ∈

⋃
{Sn : 0 < n ∈ ω}, [ys � ks] and [ys′ � ks′ ] are disjoint, and that if

s, s′ ∈ Sn+1 have the same predecessor in Sn, then 2 < |ks − ks′ |.

Proof of Claim: The fusion is simply an operation on each Sn at once. When S is
any front, we can define a rank function ρS on t ∈ Br(T ) where ρS(t) = 0 if there
is an s ∈ S with s ⊆ t, and for other t ∈ Br(T ), define ρS(t) to be the minimum
α ∈ ω1 (if one exists) such that there are infinitely many ` ∈ L(T, t) such that
ρS(t_`) < α. If no such α exists, then ρS(t) = ∞. If there is a t̄ ∈ Br(T ), such
that ρS(t̄) =∞, then

T̄ = {t ∈ T : t ⊆ t̄, or t̄ ⊆ t and ρS(t) =∞}

is a condition below T . This condition contradicts that S is a front.
For n > 0, define S−n to be the set {t : ρSn(t) = 1}. We may assume that

T has been pruned to a <0 extension satisfying that, for all 0 < n ∈ ω and
t ∈ S−n , ρSn(t_`) = 0 for all ` ∈ L(T, t). Also for each t ∈ S−n , it follows that
{kt_` : ` ∈ L(T, t)} diverges to infinity. Now fix any s′ ∈ Sn−1 and focus on
Ts′ . Therefore, in our desired fusion, we need only remove finitely many immediate
successors (and all nodes above them of course) from above each s′ ∈ S−n so as to
ensure that the map sending s′ ⊂ s ∈ Sn to ks is 1-to-1. Therefore, if s′ ⊂ s1 and
s′ ⊂ s2 with s1, s2 ∈ Sn and ks1 < ks2 , then ys2 � ks1 = ys′ � ks1 and ys′ � ks1 is
incomparable with ys1 � ks1 . �

Claim 2. For all s ∈
⋃
n Sn, Ts forces that [ys � ks] is in U̇ .

Since we arranged that ks < min(L(T, s)), it follows that Ts forces that ys�ks ⊂ ẋ
(i.e. Ts_` 
 ys � ` ⊂ ẋ for all ` ∈ L(T, s)). It will be useful to note that T has been
sufficiently pruned so that the following holds.

Claim 3. For each n ∈ ω and s ∈ T ∩ Sn, the set
⋃
{[ys̃ � ks̃] : s ⊂ s̃ ∈ T ∩ Sn+1} is

a proper regular open subset of [ys � ks].

Proof of Claim: For each ks ≤ j ∈ ω, let tsj ∈ 2j+1 be defined by tsj(j) 6= ys(j) and
ys � j ⊂ tsj . Note that, for s ⊂ s′ ∈ Sn+1, ys′ � ks′ = tsks′ . The family {[tsj ] : ks ≤ j ∈
ω} is a pairwise disjoint family with union equal to [ys � ks] \ {ys}. It follows that
the only accumulation point of

⋃
{[ys′ � ks′ ] : s ⊂ s′ ∈ T ∩Sn+1} is ys. By Claim 1,

ys is also an accumulation point of
⋃
{[tsj ] : ks ≤ j /∈ {ks′ : s ⊂ s′ ∈ T ∩ Sn+1} }. It

follows that
⋃
{[ys′ � ks′ ] : s ⊂ s′ ∈ T ∩ Sn+1} is equal to the interior of its closure,

i.e. it is regular open. �

Claim 4. For each n ∈ ω, t ∈ Sn, and T̃ <0 Tt, there is a T ′ <0 T̃ satisfying that,
for each m ≤ n, if T ′ 


⋃
{[ys � ks] : t ⊂ s ∈ Sn+1 ∩ T ′} ∈ U̇m, then there exists

s ∈ Sn+1, with t ⊂ s, such that T ′ 
 [ys � ks] ∈ U̇m.

Proof of Claim: Let {tm : m ∈ ω} be an enumeration of S−n+1 ∩ T̃ . We perform a

fusion {T̃m : m ∈ ω} and ensure that, for all m ∈ ω,

(1) S−n+1 ∩ T̃ = S−n+1 ∩ T̃m,

(2) for each k ≤ m, the first m elements of L(T̃m, tk) are also in L(T̃m+1, tk),
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(3) for each k ≤ m and each ` among the first m elements of L(T̃m+1, tk) and

for each j ≤ n, if (T̃m+1)t_k ` 

⋃
{[ys �ks] : t ⊂ s ∈ Sn+1∩ T̃m+1} ∈ U̇j then

there is an s ∈ Sn+1 such that t ⊂ s and (T̃m+1)t_k ` 
 [ys � ks] ∈ U̇j .
Each inductive step is similar to the construction in the weak P-point section.
The first step is to choose T̃0 <0 T̃ so that for all t ∈ S−n+1 ∩ T̃0, t_` ∈ Sn+1

for all ` ∈ L(T̃0, t). The construction of T̃m+1 will require a recursion in which
we successively consider a new triple k, `, j as in item (3). It should suffice to
just explain the first step for some choice k, `, j. The inductive assumptions (1)
and (2) will require that there is a finite subset S′ of Sn+1 ∩ Tm that can not be
removed and that t_k ` ∈ S′. By <0-extending (Tm)t_k `, we can arrange that for

each s ∈ S′, either (Tm+1)t_k ` 
 [ys � ks] ∈ U̇j or (Tm+1)t_k ` 
 [ys � ks] /∈ U̇j . If

there is an s ∈ S′ such that we were able to arrange (T̃m+1)t_k ` 
 [ys � ks] ∈ U̇j
then this step is complete. Now we suppose that (T̃m+1)t_k ` 
 [ys � ks] /∈ U̇j for

all s ∈ S′. Choose an infinite S ⊂ Sn+1 \ S′ satisfying that for all t ∈ S−n+1, both

sets {`′ ∈ L(T̃m, t) : t_`′ ∈ S} and {`′ ∈ L(T̃m, t) : t_`′ /∈ S} are infinite. The set

WS =
⋃
{[ys � ks] : s ∈ S} is regular open. We may assume that (T̃m+1)t_k ` has

been <0-extended so as to force either WS ∈ U̇j or WS /∈ U̇j . In the first case, we

may construct T̃m+1 so that S ∩ T̃m+1 is empty. In the second case we may ensure

that Sn+1∩ T̃m+1 is contained in S′∪S. With our collective assumptions on T̃m+1,

we then have that (T̃m+1)t_k ` 

⋃
{[ys � ks] : t ⊂ s ∈ Sn+1 ∩ T̃m+1} /∈ U̇j .

Once this recursion is complete, we have by induction hypothesis (1) and (2),

that T ′ <0 Tt where T ′ =
⋂
{T̃m : m ∈ ω}. It should be clear that the statement

of the Claim then follows from induction hypthesis (3). �

Claim 5. There is a T1 <0 T satisfying, for each n ∈ ω and t ∈ Sn ∩ T1,

(T1)t 

⋃
{[ys � ks] : t ⊂ s ∈ Sn+1 ∩ T1} ∈ U̇m ⇒ (∃t ⊂ s ∈ Sn+1) [ys � ks] ∈ U̇m

for each m ≤ n.

The proof of Claim 5 is to perform a fusion and repeatedly apply Claim 4 .
After obtaining T1 as in Claim 5, we perform another fusion to obtain the following
property. This is the step where we are proceeding as described just before Lemma
8.

Claim 6. There is a T2 <0 T1 satisfying that for each t ∈
⋃
n Sn ∩ T2 and each

m ≤ |t|, there is an m̃ ∈ ω such that, (T2)t 
 ẋm /∈ [ys�ks] for all s ∈ Sm̃∩T2\(T2)t.

Proof of Claim: Construct a fusion sequence 〈T1,n : n ∈ ω〉 (i.e. T1,n+1 <n T1,n)
as follows. Let T1,0 = T1 and let s̄ be the stem of T1 (i.e. the unique element of

S0). Assume, by induction, that the statement of the Claim holds for all t ∈ {tT1,n

` :
` < n} ∩

⋃
j Sj where T1,n is substituted for T2 in the statement. Suppose that

we have chosen T1,n. If the element t
T1,n

n+1 is not in
⋃
m Sm, then let T1,n+1 = T1,n.

Otherwise, t = t
T1,n

n+1 is in
⋃
m Sm. We may suppose (by <0-extending) that (T1,n)t

decides the statement ẋm ∈ [yt � kt] for all m ≤ |t|. Let m̃ ∈ ω be chosen so that

{tT1,n

` : ` ≤ n} ∩
⋃
j Sj is contained in

⋃
j<m̃ Sj . For each m ≤ |t|, let ym denote

the element y(t,m) ∈ 2ω defined above satisfying that Tt_` 
 ym � ` = ẋm � ` for
each ` ∈ L(T, t). For those m ≤ |t| such that (T1,n)t 
 ẋm /∈ [yt � kt], we have that
yt � kt 6⊂ ym. For each m ≤ |t| such that, for the stem s̄, ys̄ � ks̄ is not an initial
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segment of ym, we can assume that, T̃ forces that ys̄ � ks̄ is not an initial segment
of ẋm. Then we have that T̃ forces the statement of the claim holds for t and ẋm.
Let A be the set of m ≤ |t| such that ys̄ � ks̄ ⊂ ym and yt � kt 6⊂ ym. The set
A is the values of m ≤ |t| that (T1,n)t may not yet satisfy the conclusion of the
lemma. For each m ∈ A, choose the maximal sm ∈ T1,n ∩

⋃
`≤m̃ S` satisfying that

ysm � ksm ⊂ ym. Note that t /∈ {sm : m ∈ A}. Let A1 = {m ∈ A : sm ∈ Sm̃}.
By further extending T̃ , we can assume that, for each m ∈ A1, (T̃ )t forces that

ysm � ksm ⊂ ẋm. Furthermore, we can arrange that T̃ ∩ {sm : m ∈ A1} is empty.

Also, let T̃1,n = T1,n \
⋃
{(T1,n)sm : m ∈ A1}. By the definition of m̃, it follows that

T̃1,n <n T1,n.

Let A2 = A \ A1, and for each m ∈ A2, we can assume that (T̃ )t has decided
the statement ẋm = ysm . For each m ∈ A2, fix jm < m̃ so that sm ∈ Sjm . Then,

for any m ∈ A2 such that (T̃ )t 
 ẋm = ysm , we have that (T̃ )t 
 ẋm /∈
⋃
{[ys � ks] :

s ∈ Sjm+1}, hence (T̃ )t 
 ẋm /∈
⋃
{[ys � ks] : s ∈ Sm̃}. Let A3 be the set of

m ∈ A2 such that T̃ forces that ẋm 6= ysm . For each m ∈ A3, let τm denote the

name of the minimum integer such that T̃ 
 ẋm(τm) 6= ysm(τm). We may similarly

assume if some <0-extension of (T̃ )t forces a bound on τm, then (T̃ )t decides the

value of τm. Let Km = {ks′ : sm < s′ ∈ Sjm+1 ∩ T1,n}. If (T̃ )t does force a
value, say k, on τm, then we check that the maximality of sm ensures that k /∈ Km.
Namely, suppose that k = ks′ . Thus ym 6∈ [ysm � ks′ ], but ym ∈ [ysm � ks′ − 1], i.e.,
ym(ks′ − 1) 6= ysm(ks′ − 1), and hence ym(ks′ − 1) = ys′(ks′ − 1) because there are
just two values 0,1 possible. It follows that ym ∈ [ysm � ks′ − 1] = [ys′ � ks′ − 1]
and ym(ks′ − 1) = ys′(ks′ − 1), and hence ym ∈ [ys′ � ks′ ], which contradicts the

maximality. Therefore, if (T̃ )t forces a value on τm then we would again have that

(T̃ )t 
 ẋm /∈
⋃
{[ys � ks] : s ∈ T1,n ∩ Sjm+1}. So we now let A4 be those m ∈ A3

such that (T̃ )t does not force a value on τm. If A4 is not empty, we continue with
the following construction. For each m ∈ A4, choose `m ∈ ω minimal so that s_m j /∈
{tT1,n

` : ` ≤ n} for all j ≥ `m. We may assume that, for each m ∈ A4, (T̃ )t forces

that τm is greater than ks for all s ∈ {tT1,n

` : ` ≤ n}. Now we proceed by induction
on m ∈ A4 and we recursively define a <n-descending sequence {T1,n,m : m ∈ A4}
such that T1,n,m <n T̃1,n for each m ∈ A4 and that (T1,n,m)t <0 T̃ . We will ensure
that (T1,n,m)t forces that ẋm /∈

⋃
{[ys � ks] : sm < s ∈ T1,n,m ∩ Sjm+1

}. By the

assumption on τm we have that (T̃ )t forces that ẋm /∈ Vm =
⋃
{[ys � ks] : sm < s ∈

Sjm+1
∩ {tT1,n

` : ` ≤ n}}. Let T1,n,−1 = T1,n and for m ∈ A4, let m− denote the
maximum element of {−1}∪ (A4∩m). At stage m ∈ A4, let L be an infinite subset
of L(T1,n,m− , sm) \ `m such that L(T1,n,m− , sm) \ L is also infinite. It follows that
UL =

⋃
{[ys � ks] : (∃` ∈ L) s_m ` ≤ s ∈ Sjm+1 ∩ T1,n,m−} and WL =

⋃
{[ys � ks] :

(∃` ∈ L(T1,n,m−)\L) s_m ` ⊆ s ∈ Sjm+1∩T1,n,m−} are disjoint. We choose T1,n,m so
that (T1,n,m)t decides the statement ẋm ∈ UL, and so that L(T1,n,m, sm) \ `m ⊂ L
if (T1,n,m)t 
 ẋm /∈ UL, and L(T1,n,m, sm) ⊂ L(T1,n,m− , sm) \ L otherwise. Since
L(T1,n,m, sm)\`m = L implies that Vm∪UL =

⋃
{[ys�ks] : sm < s ∈ Sjm+1∩T1,n,m},

and L(T1,n,m, sm) = L(T1,n,m− , sm) \ L implies Vm ∪ WL =
⋃
{[ys � ks] : sm < s ∈

Sjm+1 ∩ T1,n,m}, our choice for T1,n,m satisfies the inductive requirement.
We complete the proof of Claim 6, by setting T1,n+1 to be T1,n,m for m =

max(A4) if A4 is not empty, and otherwise, T1,n+1 <n T1,n satisfies that (T1,n+1)t =

T̃ . The verification of the inductive hypothesis for this choice is a routine tracking
through the construction. �
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Now choose any T2 as in Claim 6. For each n ∈ ω and t ∈ T2 ∩ Sn, let Wt =
[yt � kt] \

⋃
{[ys � ks] : t < s ∈ Sn+1 ∩ T2}. We again note, by Claim 3, that Wt and

Wt′ are disjoint for distinct t, t′ ∈ T2 ∩
⋃
n Sn. For each n ∈ ω, let WSn be the join

in ro(2ω) of the family {Wt : t ∈ Sn}. For each s ∈
⋃
n Sn, [ys � ks] is contained

in
∨
nWSn , hence, by Claim 4, T2 


∨
nWSn ∈ U̇ . Let J̇ be the name for the set

{n ∈ ω : (∃m) WSn ∈ U̇m}.

Claim 7. T2 forces that J̇ is infinite.

Proof of Claim: We may assume T2 of Claim 6 forces that ẋm ∈ [ys̄ � s̄] for all
m > m0. Given any m0 < m ∈ ω and L-generic filter G with T2 ∈ G, there is
a T ∈ G and a k satisfying that T 
 ẋ � k 6= ẋm � k. By extending T , we can
assume that T < T2 and that the stem t of T is in Sn for some n. Now it follows
from Claim 7, that there is a m̃ such that valG(ẋm) /∈ WSn for any n ≥ m̃. It also
follows from Claim 6, that there is an s ∈

⋃
`<m̃ S` such that valG(ẋm) ∈Ws, hence

valG(ẋm) ∈WS` for some `.

Since L preserves that the ground model is splitting, choose any I ⊂ ω and
T3 < T2 such that T3 forces that J̇ ∩I and J̇ \I are infinite. Let U =

⋃
{Un : n ∈ I}

and W =
⋃
{Un : n ∈ ω \ I}. Assume (by symmetry) that T3 
 U ∈ U̇ and that

T3 
 U ∈ U̇m for all m > n0. Let t = stem(T3) and assume for convenience that
t ∈ Sj for some j ∈ ω and that |t| > n0. Choose m̃ as in Claim 7, that is, so

that T3 forces that Un /∈ U̇m for all n ≥ m̃ and m ≤ |t|. Choose any pair T4 < T3

and n > max(n0, m̃) such that T4 
 n ∈ J̇ \ I. By possibly extending T4, we can

ensure that there is some m such that T4 
 Un ∈ U̇m. Since n > m̃, it follows
that m > |t| ≥ n0. But now we have that T4 forces that the disjoint sets Un and⋃
{U` : ` ∈ I} are each in U̇m. �

4. Now add many Laver reals

In this section we prove

Theorem 12 (CH). In the ω2-Laver extension, there is an Efimov space of weight
ℵ1.

The proof is at the end of the section as it will require a series of Lemmas and
Definitions. We again let B be the Boolean algebra ro(2ω) in the ground model
(of CH). We let Pλ be the countable support iteration of the usual Laver poset L.
We adopt the convention that elements p of Pλ are functions with domain that is
a countable subset of λ and that, implicitly, p(α) is the maximal element of L for
α ∈ λ \ dom(p). With this convention it follows that Pλ is a (complete) subposet
of Pµ for all λ ≤ µ ≤ ω2. When we use the forcing symbol “
” in an expression we
will assume that the context makes clear which poset(s) is intended. We prove, by
induction on λ that Pω2

forces that no Pλ-name of an ultrafilter on B is the limit
of a converging sequence. By Theorem 11, we may assume that λ > 1. Since B
has cardinality ℵ1 and Pω2

has the ℵ2-cc, each Pω2
-name of an ultrafilter on B is

equal to a Pµ-name for some µ < ω2. Let U̇ be a Pλ-name of an ultrafilter on B
and assume that no condition forces it is equal to a Pδ-name for any δ < λ. Also
let λ ≤ µ and let {U̇n : n ∈ ω} be Pµ-names of ultrafilters on B.

The rough outline of the proof is the same as in the previous section except that
this time the notion of a front is much more complicated. Indeed, we simply treat



LAVER FORCING AND CONVERGING SEQUENCES 11

Pµ (using Laver’s notions) as a poset in much the same was as we did with L. Since
the proof relies on ro(2ω) being a complete Boolean algebra, which it fails to be
in the forcing extensions, we were unable to formulate an iterable condition and a
preservation result to give a more standard iteration proof of the theorem.

Let M be a countable elementary submodel of H(ℵ2) such that U̇ and {U̇n : n ∈
ω} are elements of M . We assume that 1 forces U̇ 6= U̇n for all n ∈ ω. Let p0 be

an (M,Pµ)-generic condition. For each n ∈ ω, fix a Pµ-name U̇n ∈M such that p0

forces that U̇n ∈ U̇ \ U̇n. If U̇ ∈M is a Pµ-name of an element of B, then it may be
regarded, for the purposes of Lemma 18 below, as a name of an integer. We make
this more precise with this definition.

Definition 13. Fix an enumeration {U(M, `) : ` ∈ ω} of B. For each Pµ-name

U̇ in M for an element of B, let ˙̀(U̇) be a Pµ-name satisfying that p0 forces that

U̇ = U(M, ˙̀(U̇)).

We assume that p0 forces that every member of U̇ is a member of infinitely many
U̇m (otherwise U is not even a limit of the sequence {U̇m : m ∈ ω}). We prove that
the sequence does not converge.

We record some of Laver’s iteration notation.

Definition 14. For p ∈ Pµ, finite F ⊂ dom(p), n ∈ ω, and σ : F → n, we define
pσ,n to be the condition where, for α ∈ F , pσ,n � α 
 pσ,n(α) = (pσ,n(α))(σ(α), n)
(as in Definition 5) and for α ∈ dom(p) \ F , pσ,n � α 
 pσ,n(α) = p(α).

As shown by Laver we have the following.

Proposition 15. For each finite F ⊂ dom(p) and n ∈ ω, the set {pσ,n : σ : F → n}
is an antichain that is pre-dense below p.

Definition 16. For n ∈ ω, q ∈ Pµ, and finite F ⊂ dom(q), define p <nF q to mean
p < q and for all α ∈ F , p � α 
 p(α) <n q(α) (i.e. the stem of (p(α))(i, n) equals
that of (q(α))(i, n) for each i ≤ n.

Analogous to Lemma 7 we have the following technique for construction of new
conditions.

Corollary 17. Let p ∈ Pµ, n ∈ ω and let F be a finite subset of dom(p). Given
any set {q′(σ) : σ ∈ nF } ⊂ Pµ satisfying, for each σ ∈ nF , q′(σ) <0

F pσ,n, then
there is a q <nF p such that, for each σ ∈ nF , qσ,n = q′(σ).

This next lemma is basically due to Laver and condition (3) can be applied to

names of the form ˙̀(U̇) from Definition 13.

Lemma 18. Let α < δ ≤ µ and let ṁ be a Pδ-name of an integer. For any p ∈ Pδ,
there are q ∈ Pδ and ṅ such that

(1) q � α = p � α and q <0
α p,

(2) ṅ is a Pα+1-name, and
(3) q 
 ṅ = ṁ

Proof. Let p � α ∈ Gα be a Pα-generic filter. Let T be valGα(p(α)) ∈ L. In V [Gα],
there is a dense set of conditions that decide the value of ṁ. Let S be the set of
mininal s ∈ Br(T ) such that there is some qs ∈ Pδ such that qs ∈ Gα, qs(α) is a
stem preserving extension of Ts, and qs < p forces a value on ṁ. The definition of
q is that is that p �α forces that q(α) =

⋃
{qs(α) : s ∈ S} and, for each s ∈ S, qs(α)



12 ALAN DOW

forces that q � [α + 1, δ) is qs � (α, δ). In other words, q � (α, δ) is a Pα+1-name as
described. �

The proof of Lemma 18 motivates the following definitions and corollary.

Definition 19. For α < δ ≤ µ and Pδ-name ˙̀ of an integer, we say that q ∈ Pδ
forces that a Pα-name ṁ is a Pα-name for ˙̀ if q 
 ṁ = ˙̀.

We will say that q strongly forces that ṁ is a Pα+1-name for ˙̀ if q forces that ṁ

is a Pα+1-name for ˙̀ and there is a Pα-name Ṡ such that q � α forces that Ṡ is a

front of q(α) satisfying that, for each Pα-name ṡ, if q�α 
 ṡ ∈ Ṡ, then q�α_(q(α))ṡ
forces that ṁ (and ˙̀) is a Pα-name.

Corollary 20. Let p ∈ Pµ, n ∈ ω, and finite F ⊂ dom(p)∩α. For every α < δ ≤ µ
and Pδ-name ˙̀ of an integer, there is a q <nF∪{α} p and a Pα+1-name ṁ such that

q strongly forces that ṁ is a Pα+1-name for ˙̀.

Definition 21. A sequence 〈pn, Fn : n ∈ ω〉 is a Pµ fusion sequence providing

(1) {pn : n ∈ ω} ⊂ Pµ,
(2) for each n, Fn is a finite subset of dom(pn) and pn+1 <

n
Fn

pn
(3) the family {Fn : n ∈ ω} is increasing
(4)

⋃
{Fn : n ∈ ω} is equal to

⋃
{dom(pn) : n ∈ ω}.

Proposition 22 (Laver). If 〈pn, Fn : n ∈ ω〉 is a Pµ fusion sequence, then there is
a condition pω ∈ Pµ satisfying that pω <

n
Fn

pn for all n ∈ ω.

In this next definition we introduce our tool for analyzing the interaction between
the forcing and st(B).

Definition 23. For each p ∈ Pµ and F ∈ [µ]<ℵ0 , let

U̇pF = {U ∈ B : (∃q)q <0
F p q 
 U ∈ U̇}

and define, for each m ∈ ω, (U̇m)pF similarly. Also let (U̇pF )∗ (similarly for U̇m)

denote the set of ultrafilters W (in whatever model) on B satisfying that W ⊂ U̇pF .

Remark 24. Since U̇ is a Pλ-name, U̇pF = U̇p�λF∩λ.

We omit the proof of these obvious relationships in this next result.

Proposition 25. If q <0
F p then U̇qF ⊂ U̇

p
F and (U̇qF )∗ ⊂ (U̇pF )∗.

Lemma 26. For all p ∈ Pλ and F ∈ [λ]<ℵ0 , (U̇pF )∗ is a compact subset of st(B),

and for all U ∈ U̇pF , there is a WU in (U̇pF )∗ with U ∈ WU .

Proof. To show that (U̇pF )∗ is compact, we just note that its complement is open.

Indeed, if W ∈ st(B) and W ∈ W \ U̇pF , then evidently the clopen set of ultrafilters

that include W is disjoint from (U̇pF )∗. Now suppose that U ∈ U̇pF and choose

q <0
F p such that q 
 U ∈ U̇ . Assume there is no WU as in the Lemma. Then, for

all U ∈ W ∈ st(B) there is some WW ∈ W \ U̇pF . By the compactness of the clopen
set of ultrafilters that include the set U , there is a finite set of such ultrafilters
{Wi : i < `} such that

⋃
{WWi

: i < `} contains a dense subset of U (i.e. the join
in B is greater or equal to U). By Lemma 18, there is a q′ <0

F q <0
F p such that,

for each i < `, q′ has decided the truth value of WWi
∈ U̇ . Since q′ 
 U ∈ U̇ , we

have our contradiction, since q′ must force that U̇ ∩{WWi
: i < `} is not empty. �
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This next result uses that we are proceeding by induction on λ > 1.

Lemma 27. For all p ∈ Pλ and F ∈ [λ]<ℵ0 , the set (U̇pF )∗ is infinite.

Proof. Suppose that (U̇pF )∗ is finite and choose α ∈ F maximal so that, in some

V [Gα] (with p � α ∈ Gα), (U̇p�[α,λ)
F\α )∗ is contained in (U̇pF )∗. Let T = valGα(p(α)).

For each t ∈ T , let pt denote the extension of p � [α, λ) where pt(α) = Tt and

pt(β) = p(β) for α < β ∈ dom(p). Let tT ⊆ t ∈ T and we check that (U̇p
s

F )∗ is

contained (U̇p
t

F\α)∗ for all but finitely many immediate successors s ∈ T of t. Given

any such t assume that there is an infinite set S ⊂ T of immediate successors of

t such that, for each s ∈ S, (U̇p
s

F )∗ is not contained in (U̇p
t

F\α)∗. For each s ∈ S,

choose any Ws ∈ (U̇p
s

F )∗ \ (U̇p
t

F\α)∗. Since (U̇pF )∗ is finite, and, by induction, the

sequence {Ws : s ∈ S} has no converging subsequences, so there is an infinite

S′ ⊂ S and a U ∈ B (with complement W ) such that U ∈ W for all W ∈ (U̇pF )∗

and W ∈ Ws for all s ∈ S′. Note that pt forces that W is not in U̇ . For each s ∈ S′
choose qs <

0
F\α p

s such that qs 
W ∈ U̇ . There is a q <0
F\α p

t such that S′ is the

set of immediate successors of t in the tree q(α) and, borrowing the notation from

pt, qs = qs for all s ∈ S′. Evidently q forces that W ∈ U̇ which contradicts that pt

forces that W /∈ U̇ .
Now it follows, by a simple pruning, that we can choose p1 <0

F p such that

p1 � α ∈ Gα and (U̇p
t
1

F\α)∗ is a subset of (U̇pF )∗ for all t ∈ T . Let Gα+1 ⊃ Gα be any

generic filter with p1 �α+1 ∈ Gα+1. By maximality of α, there is some q such that

q � α + 1 ∈ Gα+1, q � [α + 1, λ) <0
F\α+1 p, and some U ∈ B such that q 
 U ∈ U̇

and U /∈ W for all W ∈ (U̇pF )∗. Even if α = max(F ) this makes sense. But now,

we can assume there is a t ∈ T such that q � α 
 t = tq(α) and this, by Lemma 26,

contradicts that (U̇p
t

F\α)∗ \ (U̇pF )∗ is empty since U ∈ (U̇p
t

F\α)∗. �

Lemma 28. For each p ∈ Pµ, n ∈ ω and F ∈ [µ]<ℵ0 and U such that p 
 U ∈ U̇ ,

there is a W ∈ B and a q <nF p such that, W ⊂ U , q 
 W ∈ U̇ , and for all m ≤ n

and σ : F → n, if (U̇q
σ,n

F )∗ and ((U̇m)q
σ,n

F )∗ are disjoint then qσ,n 
W /∈ ˙Um.

Proof. Let Σ denote the set of σ : F → n. We may assume that, for each σ ∈ Σ and

m ∈ ω, either (U̇p
σ,n

F )∗ and ((U̇m)p
σ,n

F )∗ are disjoint or for all q <0
F p, (U̇q

σ,n

F )∗ and

((U̇m)q
σ,n

F )∗ are not disjoint. By applying Lemma 26 to each pσ,n, we can ensure

that, for each σ ∈ Σ, there is a U(σ) ∈ U̇p
σ,n

F such that U(σ) ⊂ U . Let U1 equal⋃
{U(σ) : σ ∈ Σ} and so long as we choose W for the statement of the lemma so

that W ⊂ U1, we will have that W ⊂ U .

For each σ ∈ Σ, let Lσ be the set of m < n such that (U̇p
σ,n

F )∗ and ((U̇m)p
σ,n

F )∗

are disjoint. Let Σ0 be the set of σ ∈ Σ such that Lσ is not empty. Of course if Σ0 is
empty there is nothing to do. Otherwise, choose σ0 ∈ Σ0 and let m be the minimal

element of Lσ0
. Pick any Wσ0

m ∈ ( (U̇m)p
σ0,n

F )∗ and pick Wσ0
m ∈ Wσ0

m \ U̇
pσ0,n

F . For
each σ0 6= σ ∈ Σ, we may, by <0

F -extending pσ,n, force that some member ofWσ0
m is

not in U̇ . This uses that (U̇p
σ,n

F )∗ is infinite (and so not equal toWσ0
m ). Shrink Wσ0

m

so as to be the intersection of all these finitely many elements. Also extend pσ0,n so
as to force that Wσ0

m ∈ U̇m. We now have that p forces that Wσ0
m /∈ U̇ . We can also

assume that (the current value of p) has the property that, for all σ ∈ Σ, pσ,n has
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decided the truth value of Wσ0
m ∈ U̇k for all k < n. Let m1 be the smallest value

of Lσ0 (if there is one) such that pσ0,n forces that Wσ0
m is not in U̇m1 . Similarly

choose Wσ0
m1
∈ ((U̇m1

)σ0,n
F )∗ and Wσ0

m1
∈ Wσ0

m1
\ U̇p

σ0,n

F and a <nF -extension of p that

forces Wσ0
m1

/∈ U̇ and pσ0,n 
 Wσ0
m1
∈ U̇m1 . Continue this process until we have a

Wσ0 and p such that p 
Wσ0 /∈ U̇ and pσ0,n 
Wσ0 ∈ U̇k for all k ∈ Lσ0
. We also

ensure that for all σ ∈ Σ and all k < n, pσ,n decides the truth value of Wσ0 ∈ U̇k.
Next choose σ1 ∈ Σ0 such that, for some k ∈ Lσ1

, pσ1,n 
 Wσ0 /∈ U̇k, and simply
continue. In the end, the value of W is the intersection of U1 with the complement
in B of the union of the chosen Wσi ’s for σ ∈ Σ0. �

We are ready to construct a fusion sequence that will produce a condition that
will force that the sequence {U̇n : n ∈ ω} does not converge to U̇ . At the beginning
of the section we chose a countable elementary submodel M and an (M,Pµ)-generic
condition p0. Now choose a countable elementary submodel M1 of H(ℵ2) such that

M and p0 are elements of M1. Fix an enumeration { ˙̀
m : m ∈ ω} of all the elements

of M1 that are Pµ-names for integers. Of course if ˙̀ ∈ M1 is a Pδ-name for an

integer for some δ < µ, then ˙̀ is in the list { ˙̀
m : m ∈ ω}.

Lemma 29. There is a Pµ fusion sequence {pn, Fn : n ∈ ω} ⊂M1 together with a
sequence {Wn : n ∈ ω} ⊂ B so that, for each n ∈ ω,

(1)
⋃
n∈ω Fn = M1 ∩ µ,

(2) W0 = 2ω and pn 
Wn ∈ U̇ ,
(3) q = pn+1 and W = Wn+1 satisfy the conclusion of Lemma 28 for p = pn

and U = Wn,
(4) if α < δ are successive elements of Fn ∪ {µ} and ˙̀

m (m ≤ n) is a Pδ-
name, then pn+1 � δ strongly forces that ˙̀

m has a Pα+1-name (in the list

{ ˙̀
k : k ∈ ω}),

(5) if pσ,nn+1 has a <0
Fn

-extension forcing a value on ˙̀
m (m ≤ n), then pσ,nn+1

forces a value on ˙̀
m.

Also let pω ∈ Pµ be chosen so that pω <
n
Fn

pn for all n ∈ ω.

The proof is a standard fusion argument that can probably be left to the reader.

Lemma 30. If q < pω forces that ˙̀(U̇m) = kq, then there are q̄ ≤ q, an n ≥
max(m, kq), and a σ : Fn → n such that q̄ < (pn+1)σ,nFn and (pn+1)σ,nFn also forces

that ˙̀(U̇m) = kq.

Proof. To prove the Lemma we prove a seemingly more general statement. If δ ≤ µ
is in M1, m ∈ ω, and q ∈ Pδ satisfies that q < pω �δ and q 
 ˙̀ = k̄ for some Pδ-name
˙̀ ∈ M1, then there is an m < n ∈ ω and a σ : Fn → n such that q is compatible
with pσ,nn+1 and such that pσ,nn+1 
 ˙̀ = k̄. We can prove this statement by induction
on δ ∈M1. We skip the trivial argument for the base case δ = 1.

If 1 < δ < µ we may assume that m is large enough so that δ ∈ Fm. Now choose
any m < m0 ∈ ω so that ˙̀ ∈ { ˙̀

k : k ≤ m0}. Let β0 be the maximum value of

Fm0
∩ δ. Then, by Lemma 29, pm0+1 strongly forces that ˙̀ has a Pβ0+1-name. Let

Ṡ0 ∈ M1 denote the Pβ0
-name of the front as in Definition 19. By extending q we

may assume that there is a Pβ0-name ṡ0 ∈M1 such that pm0+1 
 ṡ0 ∈ Ṡ0 and that
there is t0 ∈ ω<ω such that q � β0 forces that t0 = ṡ0 and is the stem of q(β0).
Note that q � β0 forces that t0 is a branching node of pω(β0). Therefore, we may
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also assume there is a k0 ∈ ω so that q � β0 forces that t0 is the k0-th element in
the canonical enumeration of the branching nodes of pω(β0). Let m̄0 be chosen so

that ˙̀
m̄0

is the Pβ0
-name (of an integer) that is forced to equal ˙̀ by the condition

pm0+1 � β_0 (pm0+1(β0))ṡ0
_pm0+1 � (β0, δ).

Now let m1 equal max{m0 +1, m̄0, k0} and let β1 = max(Fm1 ∩β0). Choose any
extension q1 of q so that q1 
 q1(β0) <0 q(β0) and so that there is a σ1 : Fm1 → m1

such that q1 < pσ1,m1

m1+1 � β0 + 1. Since pω <
m1

Fm1
pm1+1, it follows that σ1(β0) = k0

and that q1 
 ˙̀
m̄0

= k̄. Now we apply the induction hypothesis for the pair

q1 � β0 and ˙̀
m̄0

. We choose n > m1 and q̄ < q1 � β0 and σ1 : Fn → n such

that q̄ < pσ1,n
n+1 and pσ1,n

n+1 forces that ˙̀
m̄0 = k̄. It now follows that pσ1,n

n+1 is an

extension of pm0+1 �β0
_(pm0+1(β0))ṡ0

_pm0+1 �(β0, δ) and so also forces that ˙̀ = k̄
as required. �

Corollary 31. For each m ∈ ω, pω forces that, for some n ∈ ω, Wn ∈ U̇ and
Wn \Wn+1 is an element of U̇m.

Proof. For each n ∈ ω, pn 
 Wn ∈ U̇ and, since pω < pn, we have that pω 
 Wn ∈
U̇ . Now fix any m ∈ ω and arbitrary q < pω. By extending q we may assume that
q 
 ˙̀(U̇m) = k for some integer kq. By Lemma 30, we can choose m < n ∈ ω and

σ : Fn → n so that q is compatible with pσ,nn+1 and, such that, pσ,nn+1 
 ˙̀(U̇m) = k.

By the choice of the Pµ-name U̇m, we have that pσ,nn+1 forces that U(M,k) ∈ B is

an element of U̇ and its regular open complement (also in B) is element of U̇m.
For readability, let q refer to pn+1 and let F refer to Fn (as in Lemma 28). It

then follows that U(M,k) ∈ W for all W ∈ ((U̇)p
σ,n

F )∗ and U(M,k) /∈ W for all

W ∈ ((U̇m)p
σ,n

F )∗. Therefore, by the last clause in Lemma 28, it follows from the

choice of Wn+1 in Lemma 29 that pσ,nn+1 
 Wn+1 /∈ U̇m. Naturally it follows from

this that pσ,nn+1 forces that there is a k ≤ n such that Wk \W k+1 is an element of

U̇m. �

Proof of Theorem 12. Let {pn, Fn,Wn : n ∈ ω} and pω be the objects as con-

structed in Lemma 29. Let J̇ = {n ∈ ω : (∃m)Wn \Wn+1 ∈ U̇m}. We have that

pω 
 J̇ ∈ [ω]ℵ0 because of Corollary 31 and the fact that p0 forces that, for each

n ∈ ω there is an m ∈ ω, such that Wn ∈ U̇m. Choose I ⊂ ω and q < pω so that
q 
 |J̇ ∩ I| = |J̇ \ I| (since the ground model reals remain splitting). By symmetry

we may assume (additionally) that q 
 U =
⋃
{Wn \Wn+1 : n ∈ I} /∈ U̇ (notice

that U ∈ B since the sequence {Wn \Wn+1 : n ∈ I} is in V ). Since q 
 J̇ ∩ I is

infinite, it follows that {m : U ∈ U̇m} is infinite. �
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