SOME SPECIAL REGULAR OPEN SUBSETS OF ω^{*}

Abstract. We prove the Main Lemma and Theorem 4.11 of [3] (i.e. Bezhanishvili and Harding) in ZFC.

For any family $\mathcal{A} \subset[\omega]^{\aleph_{0}}, \mathcal{A}^{\perp}$ denotes the set of $b \in[\omega]^{\aleph_{0}}$ that are almost disjoint from each $a \in \mathcal{A} . \mathcal{A}^{+}$denotes the set of $X \subset \omega$ that are not in the ideal generated by $\mathcal{A} \cup \mathcal{A}^{\perp}$. In particular, if \mathcal{A} is an adf (almost disjoint family), then \mathcal{A}^{+}denotes the set of $X \subset \omega$ that meet infinitely many members of \mathcal{A} in an infinite set. If U is an open subset of ω^{*} and $\mathcal{A}_{\mathcal{U}}$ is the ideal of those infinite $a \subset \omega$ satisfying that $a^{*} \subset U$, then X being in \mathcal{A}^{+}is equivalent to X^{*} meeting the boundary of \bar{U}.

Lemma 1. For any $\mathcal{A} \subset[\omega]^{\aleph_{0}},\left(\mathcal{A}^{\perp}\right)^{+} \subset \mathcal{A}^{+}$.
Proof. Since $\mathcal{A} \subset\left(\mathcal{A}^{\perp}\right)^{\perp}$, if X is not in the ideal generated by $\mathcal{A}^{\perp} \cup\left(\mathcal{A}^{\perp}\right)^{\perp}$, then X is not in the ideal generated by $\mathcal{A}^{\perp} \cup \mathcal{A}=\mathcal{A} \cup \mathcal{A}^{\perp}$. This proves the Lemma.

Definition 2. A family $\mathcal{A} \subset[\omega]^{\aleph_{0}}$ is completely separable if for all $X \in \mathcal{A}^{+}$, there is an $a \in \mathcal{A}$ such that $a \subset^{*} X$.

Proposition 3 ([2]). There is an infinite completely separable adf.
Lemma 4. For any $m \in \omega$, there are $\mathcal{B}_{i}(i \leq m)$ such that for all $i \neq j \leq m$,
(1) \mathcal{B}_{i} is an infinite completely separable adf,
(2) $\mathcal{B}_{i} \subset \mathcal{B}_{j}^{\perp}$,
(3) $\mathcal{B}_{i}^{+}=\mathcal{B}_{j}^{+}$for $i, j \leq m$.

Proof. Let \mathcal{A} be a completely separable adf as in Proposition 3 and let $\left\{a_{\alpha}: \alpha \in\right.$ $\mathfrak{c \}}$ be an enumeration of \mathcal{A}. It is shown in [2, 4.9] that each infinite completely separable adf has cardinality \mathfrak{c} and that $\left\{a \in \mathcal{A}: a \subset^{*} X\right\}$ has cardinality \mathfrak{c} for all $X \in \mathcal{A}^{+}$. Let $\left\{X_{\xi}: \xi \in \mathfrak{c}\right\}$ be an enumeration of \mathcal{A}^{+}so that each $X \in \mathcal{A}^{+}$is listed infinitely many times. By induction on $\xi \in \mathfrak{c}$, choose $H_{\xi} \in\left[\mathfrak{c} \backslash \bigcup_{\eta<\xi} H_{\eta}\right]^{m+1}$ so that $a_{\alpha} \subset^{*} X_{\xi}$ for each $\alpha \in H_{\xi}$. Choose pairwise disjoint subsets of $\mathfrak{c},\left\{J_{i}: i<m\right\}$, so that $\left|J_{i} \cap H_{\xi}\right|=1$ for all $i<m$ and $\xi<\mathfrak{c}$. For $i<m$, set $\mathcal{B}_{i}=\left\{a_{\alpha}: \alpha \in J_{i}\right\}$ and let $\mathcal{B}_{m}=\left\{a_{\alpha}: \alpha \in \mathfrak{c} \backslash \bigcup_{i<m} J_{i}\right\}$. Clearly each $X \in \mathcal{A}^{+}$contains mod finite infinitely many elements of \mathcal{B}_{i} for each $i \leq m$. It thus follows that each of $\left\{\mathcal{B}_{i}: i<m\right\}$ is completely separable and that $\mathcal{B}_{i}^{+}=\mathcal{A}^{+}$for each $i \leq m$. Since \mathcal{A} is an adf and the famliy $\left\{J_{i}: i<m\right\}$ are pairwise disjoint, we also have that $\mathcal{B}_{i} \subset \mathcal{B}_{j}^{\perp}$ for $i \neq j \leq m$.

Definition 5. $\mathcal{B} \prec^{+} \mathcal{A}$ if
(1) for each $b \in \mathcal{B}$, there is an $a \in \mathcal{A}$ with $b \subset^{*} a($ or $\mathcal{B} \prec \mathcal{A})$,
(2) for each $X \in \mathcal{A}^{+}$, there is an $a \in \mathcal{A}$ with $X \cap a \in \mathcal{B}^{+}$.

Lemma 6. For each completely separable adf \mathcal{A} and each $m<\omega$, there is a family $\left\{\mathcal{B}_{i}: i \leq m\right\}$ such that, for each $i \neq j \leq m$,

[^0](1) $\mathcal{B}_{i} \prec^{+} \mathcal{A}$ and is an infinite completely separable adf,
(2) $\mathcal{B}_{i} \subset \mathcal{B}_{j}^{\perp}$,
(3) $\mathcal{B}_{i}^{+}=\mathcal{B}_{j}^{+}$and $\mathcal{A} \subset \mathcal{B}_{i}^{+}$,
(4) $\mathcal{B}_{m}^{+}=\left(\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{m-1}\right)^{\perp}\right)^{+}$.

Proof. For each $a \in \mathcal{A}$, choose $\left\{\mathcal{B}_{i}(a): i<m\right\}$ as in Lemma 4 so that $\mathcal{B}_{i}(a) \subset[a]^{\aleph_{0}}$ for each $i \leq m$. Set $\mathcal{B}=\bigcup\left\{\mathcal{B}_{i}(a): a \in \mathcal{A}\right\}$. We verify each item.
(1) It is clear that $\mathcal{B}_{i} \prec \mathcal{A}$. Similarly, if $X \in \mathcal{A}^{+}$, then there is an $a \in \mathcal{A}$ such that $a \subset X$, hence it follows that $X \in \mathcal{B}_{i}^{+}$.
(2) It is obvious that $\mathcal{B}_{i} \cap \mathcal{B}_{j}$ is empty.
(3) Suppose that $X \in \mathcal{B}_{i}^{+}$. If there is an $a \in \mathcal{A}$ such that $X \cap a \in \mathcal{B}_{i}(a)^{+}$, then $X \in \mathcal{B}_{j}^{+}$. Otherwise $X \in \mathcal{A}^{+}$, and so there is an $a \in \mathcal{A}$ such that $a \subset X$. Of course this ensures that $X \in \mathcal{B}_{j}(a)^{+}$.
(4) It is immediate from (1)-(3) that $\mathcal{B}_{m} \subset\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{m-1}\right)^{\perp}$ and this implies that $\mathcal{B}_{m}^{+} \subset\left(\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{m-1}\right)^{\perp}\right)^{+}$. Now assume that $X \notin \mathcal{B}_{m}^{+}$. By (3), there is a B in the ideal generated by $\bigcup_{i<m} \mathcal{B}_{i}$ such that $X \backslash B$ is in \mathcal{B}_{i}^{\perp} for each $i \leq m$. Therefore, $X \backslash B$ is in $\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{m-1}\right)^{\perp}$ and so X is in the ideal generated by $\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{m-1}\right) \cup\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{m-1}\right)^{\perp}$. Equivalently, X is not in $\left(\left(\mathcal{B}_{0} \cup \cdots \cup \mathcal{B}_{m-1}\right)\right)^{+}$. By Lemma 1, this completes the proof of (4).

Definition 7. If \mathcal{A} is an adf, let $\left\{\mathcal{B}_{i}: i \leq m\right\} \prec_{m}^{+} \mathcal{A}$ denote the relations as in Lemma 6.

Using an easy inductive process and Lemma 6 we have the following.
Corollary 8. Let $0<m, n \in \omega$ and let T be the maximum subtree of $(m+1)^{<n}$ satisfying that $t \in T$ is maximal if $t(k)=m$ for some (unique) $k \in \operatorname{dom}(t)$ (of course k is the maximum element of dom (t)). Then there is a sequence $\left\{\mathcal{B}_{t}: t \in T\right\}$ satisfying
(1) $\mathcal{B}_{\varnothing}=\{\omega\}$,
(2) if $t \in T$ is not maximal, then $\left\{\mathcal{B}_{t-i}: i \leq m\right\} \prec_{m}^{+} \mathcal{B}_{t}$.

Following [3], for a finite tree $T \subset \omega^{<\omega}$ the topology τ_{T} is defined by simply saying that a set $U \subset T$ is open if for each $t \in U, t^{\uparrow}=\{s: t \subseteq s \in T\}$ is a subset of U. Thus each maximal node is isolated and the closure of any node equals the set of all nodes below it.

Lemma 9. If t is a maximal node of a finite tree T and if T^{-t} is the subtree of T obtained by removing t, then $f:\left(T, \tau_{T}\right) \mapsto\left(T^{-t}, \tau_{T^{-t}}\right)$ is open and continuous (and onto) if $f(s)=s$ for $s \in T^{-t}$ and $f(t)=x$ is any maximal node of T^{-t} that is above the immediate predecessor of t.

Proof. We first prove that f is continuous. Let $U \in \tau_{T^{-t}}$ and consider any $s \in$ $f^{-1}(U)$. We must show that $s^{\uparrow} \subset f^{-1}(U)$. Note that $U \subset f^{-1}(U)$. Since each of t and x are maximal, we may assume that $s \notin\{t, x\}$. If s is not below the immediate predecessor of t, then s^{\uparrow} (in T) is contained in U and therefore in $f^{-1}(U)$. If s is below the immediate predecessor of t, then both x and each point of s^{\uparrow} (in T^{-t})
are in U. This implies that s^{\uparrow} (in T) is contained in U and completes the proof that f is continuous.

Now assume that U is an open subset of T. It is immediate that $U \cap T^{-t}$ is an open subset of T^{-t}. Since each of U and $U \cup\{x\}$ are open in T^{-t}, it follows that $f(U)$ is open in T^{-t}.

Proposition 10. If $f: X \mapsto Y$ and $g: Y \mapsto Z$ are open, continuous, and onto maps, then $g \circ f: X \mapsto Z$ is also open, continuous, and onto.
Corollary 11. There is an open, continous, and onto mapping from the tree topology $\left(T, \tau_{T}\right)$ of Corollary 8 to $m^{<n}$ with the subspace topology.
Theorem 12. For each $m, n \in \omega$, there is an open, continuous, and onto mapping from ω^{*} to $m^{<n}$ such that the preimage of every point is locally compact and has no isolated points.

Proof. By Lemma 9 and Proposition 10 it suffices to prove the Theorem for values of $m>0$. Similarly, it suffices to prove that for each T as in Lemma 8, there is an open, continuous mapping f from ω^{*} onto T also with the stated property on point pre-images. Let $\left\{\mathcal{B}_{t}: t \in T\right\}$ be the family as stated in Lemma 8 . For each maximal $t \in m^{<n}$, let $U_{t}=\bigcup\left\{b^{*}: b \in \mathcal{B}_{t}\right\}$ and set $f\left(U_{t}\right)=t$. For each non-maximal $t \in T$, let

$$
U_{t \frown m}=\bigcup\left\{b^{*}: b \in\left(\mathcal{B}_{t \frown 0} \cup \cdots \cup \mathcal{B}_{t \frown(m-1)}\right)^{\perp}\right\} \text { and set } f\left(U_{t \frown m}\right)=t \frown m
$$

Define $U_{\varnothing}=\omega^{*}$ and for non-maximal $\varnothing \neq t \in T, U_{t}=\bigcup\left\{b^{*}: b \in \mathcal{B}_{t}\right\}$. We set $f\left(U_{t} \backslash \bigcup\left\{U_{s}: t \subsetneq s \in T\right\}\right)=t$. For each $b \in \mathcal{B}_{t}, f^{-1}(t) \cap b^{*}$ is closed so it follows that $f^{-1}(t)$ is locally compact.
Claim 1. For each $t \in T, t^{\uparrow}=f\left(U_{t}\right)$ and

$$
t \in f\left(X^{*}\right) \quad \text { iff } \quad X \in \mathcal{B}_{t-0}^{+}
$$

if t is non-maximal and $X \subset \omega$.
The statement of the claim clearly holds for each maximal $t \in T$. We prove the claim by reverse induction on $\operatorname{dom}(t)$. We note that, by definition, $f\left(U_{t}\right) \subset t^{\uparrow}$ for all $t \in T$. Fix any non-maximal $t \in T$. To show that $f\left(U_{t}\right)=t^{\uparrow}$, it suffices, proceeding by induction, to show that $t \in f\left(U_{t}\right)$. Choose any $b \in \mathcal{B}_{t}$ and note that $b \in \mathcal{B}_{t \rightarrow i}^{+}$ for each $i \leq m$. It follows that $b^{*} \cap U_{t \sim 0}$ is non-compact and disjoint from U_{t}-i for all $0<i \leq m$. Since $\overline{b^{*} \cap U_{t \sim 0}} \subset b^{*} \subset U_{t}$, we have that $\overline{b^{*} \cap U_{t \sim 0}} \backslash U_{t \sim 0}$ is a non-empty subset of $U_{t} \backslash \bigcup_{i \leq m} U_{t}{ }^{\text {}}$ i which is mapped to t. Since $\mathcal{B}_{t \frown 0}$ is completely separable, it therefore follows that $t \in f\left(X^{*}\right)$ for each $X \in \mathcal{B}_{t-0}^{+}$. Now assume that $x \in X^{*}$ (for some $X \subset \omega$) and that $f(x)=t$. Choose the unique $b \in \mathcal{B}_{t}$ so that $x \in b^{*}$. Since $x \notin U_{t \sim m}$, we have that $X \cap b$ is not in $\left(\bigcup_{i<m} \mathcal{B}_{t \sim i}\right)^{\perp}$. Additionally, $X \cap b$ is not in the ideal generated by $\bigcup_{i<m} \mathcal{B}_{t-i}$ since $x \notin \bigcup_{i<m} U_{t \sim i}$. Therefore we have, as needed, that $X \in\left(\bigcup_{i<m} \mathcal{B}_{t-i}\right)^{+}=\mathcal{B}_{t-0}^{+}$.

It follows from Claim 1 that f is continuous (i.e. $f^{-1}\left(t^{\uparrow}\right)$ is open for each $t \in T$) and onto. We finish by proving that f is open. Choose any infinite $X \subset \omega$ and let $t \in f\left(X^{*}\right)$. We must prove that $t^{\uparrow} \subset f\left(X^{*}\right)$. Again, we can proceed by reverse induction on $\operatorname{dom}(t)$. By Claim 1, $X \in \mathcal{B}_{t-0}^{+}$, and therefore by the assumptions of Corollary $8, X \in \mathcal{B}_{t \rightarrow i}^{+}$for all $i \leq m$. Each \mathcal{B}_{t-i} is completely separable, hence there are $\left\{b_{i}: i<m\right\} \subset[X]^{\aleph_{0}}$ such that $b_{i} \in \mathcal{B}_{t \sim i}$ for each $i \leq m$. Since $b_{m}^{*} \subset U_{t \sim m}$
and $t \frown m$ is maximal in $T, t^{\frown} m \in f\left(X^{*}\right)$. Fix any $i<m$, and note that, by (3) of Lemma $6, b_{i} \in \mathcal{B}_{t \subset i \frown 0}^{+}$. Therefore, by Claim $1, t \subset i \in f\left(X^{*}\right)$ and, by the induction hypothesis, $\left(t^{\frown} i\right)^{\uparrow} \subset f\left(X^{*}\right)$.

Finally we prove that $f^{-1}(t)$ has no isolated points. By Claim 1, it suffices to show that $X^{*} \cap f^{-1}(t)$ is not a single point for any $X \in \mathcal{B}_{t \sim 0}^{+}$. Choose any infinite $\left\{b_{n}: n \in \omega\right\} \subset \mathcal{B}_{t \sim 0}$ such that $X \cap b_{n}$ is infinite for each n. Let $Y=$ $\bigcup\left\{b_{2 n} \backslash \bigcup_{k<n} b_{2 k+1}: n \in \omega\right\}$. Note that, for each $n \in \omega, X \cap Y \cap b_{2 n}$ is infinite and $(X \backslash Y) \cap b_{2 n+1}$ is infinite. Therefore, $X \cap Y$ and $X \backslash Y$ are both in \mathcal{B}_{t-0}^{+}. Since $(X \cap Y)^{*}$ and $(X \backslash Y)^{*}$ are disjoint, the proof is complete.

References

[1] B. Balcar, J. Dočkálková, and P. Simon, Almost disjoint families of countable sets, Finite and infinite sets, Vol. I, II (Eger, 1981), Colloq. Math. Soc. János Bolyai, vol. 37, North-Holland, Amsterdam, 1984, pp. 59-88. MR818228
[2] Bohuslav Balcar and Petr Simon, Disjoint refinement, Handbook of Boolean algebras, Vol. 2, North-Holland, Amsterdam, 1989, pp. 333-388. MR991597
[3] Guram Bezhanishvili and John Harding, The modal logic of $\beta(\mathbb{N})$, Arch. Math. Logic 48 (2009), no. 3-4, 231-242, DOI 10.1007/s00153-009-0123-9. MR2500983
[4] Petr Simon, A note on nowhere dense sets in ω^{*}, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 145-147. MR1056181
[5] P. Simon, A note on almost disjoint refinement, Acta Univ. Carolin. Math. Phys. 37 (1996), no. 2, 89-99. 24th Winter School on Abstract Analysis (Benešova Hora, 1996). MR1600453

[^0]: Date: June 27, 2019.

