SOME SPECIAL REGULAR OPEN SUBSETS OF ω^*

ABSTRACT. We prove the Main Lemma and Theorem 4.11 of [3] (i.e. Bezhanishvili and Harding) in ZFC.

For any family $\mathcal{A} \subset [\omega]^{\aleph_0}$, \mathcal{A}^{\perp} denotes the set of $b \in [\omega]^{\aleph_0}$ that are almost disjoint from each $a \in \mathcal{A}$. \mathcal{A}^+ denotes the set of $X \subset \omega$ that are not in the ideal generated by $\mathcal{A} \cup \mathcal{A}^{\perp}$. In particular, if \mathcal{A} is an adf (almost disjoint family), then \mathcal{A}^{+} denotes the set of $X \subset \omega$ that meet infinitely many members of \mathcal{A} in an infinite set. If U is an open subset of ω^* and $\mathcal{A}_{\mathcal{U}}$ is the ideal of those infinite $a \subset \omega$ satisfying that $a^* \subset U$, then X being in \mathcal{A}^+ is equivalent to X^* meeting the boundary of \overline{U} .

Lemma 1. For any $\mathcal{A} \subset [\omega]^{\aleph_0}$, $(\mathcal{A}^{\perp})^+ \subset \mathcal{A}^+$.

Proof. Since $\mathcal{A} \subset (\mathcal{A}^{\perp})^{\perp}$, if X is not in the ideal generated by $\mathcal{A}^{\perp} \cup (\mathcal{A}^{\perp})^{\perp}$, then X is not in the ideal generated by $\mathcal{A}^{\perp} \cup \mathcal{A} = \mathcal{A} \cup \mathcal{A}^{\perp}$. This proves the Lemma. \Box

Definition 2. A family $\mathcal{A} \subset [\omega]^{\aleph_0}$ is completely separable if for all $X \in \mathcal{A}^+$, there is an $a \in \mathcal{A}$ such that $a \subset^* X$.

Proposition 3 ([2]). There is an infinite completely separable adf.

Lemma 4. For any $m \in \omega$, there are \mathcal{B}_i $(i \leq m)$ such that for all $i \neq j \leq m$,

- (1) \mathcal{B}_i is an infinite completely separable adf,
- (2) $\mathcal{B}_i \subset \mathcal{B}_j^{\perp}$, (3) $\mathcal{B}_i^+ = \mathcal{B}_j^+$ for $i, j \leq m$.

Proof. Let \mathcal{A} be a completely separable adf as in Proposition 3 and let $\{a_{\alpha} : \alpha \in \mathcal{A}\}$ \mathfrak{c} be an enumeration of \mathcal{A} . It is shown in [2, 4.9] that each infinite completely separable adf has cardinality \mathfrak{c} and that $\{a \in \mathcal{A} : a \subset^* X\}$ has cardinality \mathfrak{c} for all $X \in \mathcal{A}^+$. Let $\{X_{\xi} : \xi \in \mathfrak{c}\}$ be an enumeration of \mathcal{A}^+ so that each $X \in \mathcal{A}^+$ is listed infinitely many times. By induction on $\xi \in \mathfrak{c}$, choose $H_{\xi} \in [\mathfrak{c} \setminus \bigcup_{\eta < \xi} H_{\eta}]^{m+1}$ so that $a_{\alpha} \subset^* X_{\xi}$ for each $\alpha \in H_{\xi}$. Choose pairwise disjoint subsets of \mathfrak{c} , $\{J_i : i < m\}$, so that $|J_i \cap H_{\xi}| = 1$ for all i < m and $\xi < \mathfrak{c}$. For i < m, set $\mathcal{B}_i = \{a_\alpha : \alpha \in J_i\}$ and let $\mathcal{B}_m = \{a_\alpha : \alpha \in \mathfrak{c} \setminus \bigcup_{i < m} J_i\}$. Clearly each $X \in \mathcal{A}^+$ contains mod finite infinitely many elements of \mathcal{B}_i for each $i \leq m$. It thus follows that each of $\{\mathcal{B}_i : i < m\}$ is completely separable and that $\mathcal{B}_i^+ = \mathcal{A}^+$ for each $i \leq m$. Since \mathcal{A} is an adf and the famliy $\{J_i : i < m\}$ are pairwise disjoint, we also have that $\mathcal{B}_i \subset \mathcal{B}_i^{\perp}$ for $i \neq j \leq m$.

Definition 5. $\mathcal{B} \prec^+ \mathcal{A}$ if

(1) for each $b \in \mathcal{B}$, there is an $a \in \mathcal{A}$ with $b \subset^* a$ (or $\mathcal{B} \prec \mathcal{A}$),

(2) for each $X \in \mathcal{A}^+$, there is an $a \in \mathcal{A}$ with $X \cap a \in \mathcal{B}^+$.

Lemma 6. For each completely separable adf \mathcal{A} and each $m < \omega$, there is a family $\{\mathcal{B}_i : i < m\}$ such that, for each $i \neq j < m$,

Date: June 27, 2019.

- (1) $\mathcal{B}_i \prec^+ \mathcal{A}$ and is an infinite completely separable adf,
- (2) $\mathcal{B}_i \subset \mathcal{B}_j^{\perp}$, (3) $\mathcal{B}_i^+ = \mathcal{B}_j^+$ and $\mathcal{A} \subset \mathcal{B}_i^+$,

(4)
$$\mathcal{B}_m^+ = \left((\mathcal{B}_0 \cup \cdots \cup \mathcal{B}_{m-1})^\perp \right)^+$$
.

Proof. For each $a \in \mathcal{A}$, choose $\{\mathcal{B}_i(a) : i < m\}$ as in Lemma 4 so that $\mathcal{B}_i(a) \subset [a]^{\aleph_0}$ for each $i \leq m$. Set $\mathcal{B} = \bigcup \{ \mathcal{B}_i(a) : a \in \mathcal{A} \}$. We verify each item.

- (1) It is clear that $\mathcal{B}_i \prec \mathcal{A}$. Similarly, if $X \in \mathcal{A}^+$, then there is an $a \in \mathcal{A}$ such that $a \subset X$, hence it follows that $X \in \mathcal{B}_i^+$.
- (2) It is obvious that $\mathcal{B}_i \cap \mathcal{B}_j$ is empty.
- (3) Suppose that $X \in \mathcal{B}_i^+$. If there is an $a \in \mathcal{A}$ such that $X \cap a \in \mathcal{B}_i(a)^+$, then $X \in \mathcal{B}_i^+$. Otherwise $X \in \mathcal{A}^+$, and so there is an $a \in \mathcal{A}$ such that $a \subset X$. Of course this ensures that $X \in \mathcal{B}_j(a)^+$.
- (4) It is immediate from (1) (3) that $\mathcal{B}_m \subset (\mathcal{B}_0 \cup \cdots \cup \mathcal{B}_{m-1})^{\perp}$ and this implies that $\mathcal{B}_m^+ \subset ((\mathcal{B}_0 \cup \cdots \cup \mathcal{B}_{m-1})^{\perp})^+$. Now assume that $X \notin \mathcal{B}_m^+$. By (3), there is a B in the ideal generated by $\bigcup_{i \le m} \mathcal{B}_i$ such that $X \setminus B$ is in \mathcal{B}_i^{\perp} for each $i \leq m$. Therefore, $X \setminus B$ is in $(\mathcal{B}_0 \cup \cdots \cup \mathcal{B}_{m-1})^{\perp}$ and so X is in the ideal generated by $(\mathcal{B}_0 \cup \cdots \cup \mathcal{B}_{m-1}) \cup (\mathcal{B}_0 \cup \cdots \cup \mathcal{B}_{m-1})^{\perp}$. Equivalently, X is not in $((\mathcal{B}_0 \cup \cdots \cup \mathcal{B}_{m-1}))^+$. By Lemma 1, this completes the proof of (4).

Definition 7. If \mathcal{A} is an adf, let $\{\mathcal{B}_i : i \leq m\} \prec_m^+ \mathcal{A}$ denote the relations as in Lemma 6.

Using an easy inductive process and Lemma 6 we have the following.

Corollary 8. Let $0 < m, n \in \omega$ and let T be the maximum subtree of $(m+1)^{< n}$ satisfying that $t \in T$ is maximal if t(k) = m for some (unique) $k \in dom(t)$ (of course k is the maximum element of dom(t)). Then there is a sequence $\{\mathcal{B}_t : t \in T\}$ satisfying

- (1) $\mathcal{B}_{\varnothing} = \{\omega\},\$
- (2) if $t \in T$ is not maximal, then $\{\mathcal{B}_{t \frown i} : i \leq m\} \prec_m^+ \mathcal{B}_t$.

Following [3], for a finite tree $T \subset \omega^{<\omega}$ the topology τ_T is defined by simply saying that a set $U \subset T$ is open if for each $t \in U$, $t^{\uparrow} = \{s : t \subseteq s \in T\}$ is a subset of U. Thus each maximal node is isolated and the closure of any node equals the set of all nodes below it.

Lemma 9. If t is a maximal node of a finite tree T and if T^{-t} is the subtree of T obtained by removing t, then $f:(T,\tau_T)\mapsto (T^{-t},\tau_{T^{-t}})$ is open and continuous (and onto) if f(s) = s for $s \in T^{-t}$ and f(t) = x is any maximal node of T^{-t} that is above the immediate predecessor of t.

Proof. We first prove that f is continuous. Let $U \in \tau_{T^{-t}}$ and consider any $s \in$ $f^{-1}(U)$. We must show that $s^{\uparrow} \subset f^{-1}(U)$. Note that $U \subset f^{-1}(U)$. Since each of t and x are maximal, we may assume that $s \notin \{t, x\}$. If s is not below the immediate predecessor of t, then s^{\uparrow} (in T) is contained in U and therefore in $f^{-1}(U)$. If s is below the immediate predecessor of t, then both x and each point of s^{\uparrow} (in T^{-t})

2

are in U. This implies that s^{\uparrow} (in T) is contained in U and completes the proof that f is continuous.

Now assume that U is an open subset of T. It is immediate that $U \cap T^{-t}$ is an open subset of T^{-t} . Since each of U and $U \cup \{x\}$ are open in T^{-t} , it follows that f(U) is open in T^{-t} .

Proposition 10. If $f : X \mapsto Y$ and $g : Y \mapsto Z$ are open, continuous, and onto maps, then $g \circ f : X \mapsto Z$ is also open, continuous, and onto.

Corollary 11. There is an open, continuous, and onto mapping from the tree topology (T, τ_T) of Corollary 8 to $m^{\leq n}$ with the subspace topology.

Theorem 12. For each $m, n \in \omega$, there is an open, continuous, and onto mapping from ω^* to $m^{\leq n}$ such that the preimage of every point is locally compact and has no isolated points.

Proof. By Lemma 9 and Proposition 10 it suffices to prove the Theorem for values of m > 0. Similarly, it suffices to prove that for each T as in Lemma 8, there is an open, continuous mapping f from ω^* onto T also with the stated property on point pre-images. Let $\{\mathcal{B}_t : t \in T\}$ be the family as stated in Lemma 8. For each maximal $t \in m^{\leq n}$, let $U_t = \bigcup \{b^* : b \in \mathcal{B}_t\}$ and set $f(U_t) = t$. For each non-maximal $t \in T$, let

$$U_{t \frown m} = \bigcup \{ b^* : b \in (\mathcal{B}_{t \frown 0} \cup \dots \cup \mathcal{B}_{t \frown (m-1)})^{\perp} \} \text{ and set } f(U_{t \frown m}) = t \frown m .$$

Define $U_{\emptyset} = \omega^*$ and for non-maximal $\emptyset \neq t \in T$, $U_t = \bigcup \{b^* : b \in \mathcal{B}_t\}$. We set $f(U_t \setminus \bigcup \{U_s : t \subsetneq s \in T\}) = t$. For each $b \in \mathcal{B}_t$, $f^{-1}(t) \cap b^*$ is closed so it follows that $f^{-1}(t)$ is locally compact.

Claim 1. For each $t \in T$, $t^{\uparrow} = f(U_t)$ and

$$t \in f(X^*)$$
 iff $X \in \mathcal{B}_{t^{\frown} 0}^+$

if t is non-maximal and $X \subset \omega$.

The statement of the claim clearly holds for each maximal $t \in T$. We prove the claim by reverse induction on dom(t). We note that, by definition, $f(U_t) \subset t^{\uparrow}$ for all $t \in T$. Fix any non-maximal $t \in T$. To show that $f(U_t) = t^{\uparrow}$, it suffices, proceeding by induction, to show that $t \in f(U_t)$. Choose any $b \in \mathcal{B}_t$ and note that $b \in \mathcal{B}_{t^{\frown i}}^+$ for each $i \leq m$. It follows that $b^* \cap U_{t^{\frown 0}}$ is non-compact and disjoint from $U_{t^{\frown i}}$ for all $0 < i \leq m$. Since $\overline{b^* \cap U_{t^{\frown 0}}} \subset b^* \subset U_t$, we have that $\overline{b^* \cap U_{t^{\frown 0}}} \setminus U_{t^{\frown 0}}$ is a non-empty subset of $U_t \setminus \bigcup_{i \leq m} U_{t^{\frown i}}$ which is mapped to t. Since $\mathcal{B}_{t^{\frown 0}}$ is completely separable, it therefore follows that $t \in f(X^*)$ for each $X \in \mathcal{B}_{t^{\frown 0}}^+$. Now assume that $x \in X^*$ (for some $X \subset \omega$) and that f(x) = t. Choose the unique $b \in \mathcal{B}_t$ so that $x \in b^*$. Since $x \notin U_{t^{\frown m}}$, we have that $X \cap b$ is not in $(\bigcup_{i < m} \mathcal{B}_{t^{\frown i}})^{\perp}$. Additionally, $X \cap b$ is not in the ideal generated by $\bigcup_{i < m} \mathcal{B}_{t^{\frown i}}$ since $x \notin \bigcup_{i < m} U_{t^{\frown i}}$. Therefore we have, as needed, that $X \in (\bigcup_{i < m} \mathcal{B}_{t^{\frown i}})^+ = \mathcal{B}_{t^{\frown 0}}^+$.

It follows from Claim 1 that f is continuous (i.e. $f^{-1}(t^{\uparrow})$ is open for each $t \in T$) and onto. We finish by proving that f is open. Choose any infinite $X \subset \omega$ and let $t \in f(X^*)$. We must prove that $t^{\uparrow} \subset f(X^*)$. Again, we can proceed by reverse induction on dom(t). By Claim 1, $X \in \mathcal{B}_{t^{\frown}0}^+$, and therefore by the assumptions of Corollary 8, $X \in \mathcal{B}_{t^{\frown}i}^+$ for all $i \leq m$. Each $\mathcal{B}_{t^{\frown}i}$ is completely separable, hence there are $\{b_i : i < m\} \subset [X]^{\aleph_0}$ such that $b_i \in \mathcal{B}_{t^{\frown}i}$ for each $i \leq m$. Since $b_m^* \subset U_{t^{\frown}m}$ and $t \frown m$ is maximal in $T, t \frown m \in f(X^*)$. Fix any i < m, and note that, by (3) of Lemma 6, $b_i \in \mathcal{B}^+_{t \frown i \frown 0}$. Therefore, by Claim 1, $t \frown i \in f(X^*)$ and, by the induction hypothesis, $(t \frown i)^{\uparrow} \subset f(X^*)$.

Finally we prove that $f^{-1}(t)$ has no isolated points. By Claim 1, it suffices to show that $X^* \cap f^{-1}(t)$ is not a single point for any $X \in \mathcal{B}_{t^-0}^+$. Choose any infinite $\{b_n : n \in \omega\} \subset \mathcal{B}_{t^-0}$ such that $X \cap b_n$ is infinite for each n. Let $Y = \bigcup\{b_{2n} \setminus \bigcup_{k < n} b_{2k+1} : n \in \omega\}$. Note that, for each $n \in \omega$, $X \cap Y \cap b_{2n}$ is infinite and $(X \setminus Y) \cap b_{2n+1}$ is infinite. Therefore, $X \cap Y$ and $X \setminus Y$ are both in $\mathcal{B}_{t^-0}^+$. Since $(X \cap Y)^*$ and $(X \setminus Y)^*$ are disjoint, the proof is complete. \Box

References

- B. Balcar, J. Dočkálková, and P. Simon, Almost disjoint families of countable sets, Finite and infinite sets, Vol. I, II (Eger, 1981), Colloq. Math. Soc. János Bolyai, vol. 37, North-Holland, Amsterdam, 1984, pp. 59–88. MR818228
- Bohuslav Balcar and Petr Simon, *Disjoint refinement*, Handbook of Boolean algebras, Vol. 2, North-Holland, Amsterdam, 1989, pp. 333–388. MR991597
- [3] Guram Bezhanishvili and John Harding, *The modal logic of β*(ℕ), Arch. Math. Logic 48 (2009), no. 3-4, 231–242, DOI 10.1007/s00153-009-0123-9. MR2500983
- [4] Petr Simon, A note on nowhere dense sets in ω*, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 145–147. MR1056181
- P. Simon, A note on almost disjoint refinement, Acta Univ. Carolin. Math. Phys. 37 (1996), no. 2, 89–99. 24th Winter School on Abstract Analysis (Benešova Hora, 1996). MR1600453