SOME SPECIAL REGULAR OPEN SUBSETS OF w*

ABSTRACT. We prove the Main Lemma and Theorem 4.11 of [3] (i.e. Bezhan-
ishvili and Harding) in ZFC.

For any family A C [w]™, A* denotes the set of b € [w]™° that are almost disjoint
from each a € A. AT denotes the set of X C w that are not in the ideal generated
by AU AL, In particular, if A is an adf (almost disjoint family), then A denotes
the set of X C w that meet infinitely many members of A in an infinite set. If U
is an open subset of w* and A, is the ideal of those infinite a C w satisfying that
a* C U, then X being in AT is equivalent to X* meeting the boundary of U.

Lemma 1. For any A C [w]™, (A41)" c AT,

Proof. Since A C (AL)l, if X is not in the ideal generated by A+ U (Al)l, then
X is not in the ideal generated by A+ U.A = AUAL. This proves the Lemma. [

Definition 2. A family A C [w]® is completely separable if for all X € A", there
is an a € A such that a C* X.

Proposition 3 ([2]). There is an infinite completely separable adf.

Lemma 4. For any m € w, there are B; (i < m) such that for alli # j < m,
(1) B; is an infinite completely separable adf,
(2) B; C By,
(3) B = B;-r fori,j <m.

Proof. Let A be a completely separable adf as in Proposition 3 and let {a, : o €
¢} be an enumeration of A. It is shown in [2, 4.9] that each infinite completely
separable adf has cardinality ¢ and that {a € A : a C* X} has cardinality ¢ for all
X € A*. Let {X¢ : £ € ¢} be an enumeration of A" so that each X € A" is listed
infinitely many times. By induction on £ € ¢, choose He € [¢\U, ¢ H,]™*! so that
aq C* X¢ for each o € He. Choose pairwise disjoint subsets of ¢, {.J; : i < m}, so
that [J;NHe| =1foralli < mand § < ¢. For i <m, set B; = {aq : € J;} and let
B = {aa : @ € ¢\ U,,, Ji}. Clearly each X € A" contains mod finite infinitely
many elements of B; for each ¢ < m. It thus follows that each of {B; : i < m}
is completely separable and that B;r = At for each i < m. Since A is an adf
and the famliy {J; : i < m} are pairwise disjoint, we also have that B; C BjL for
i#Fj<m. O

Definition 5. B <™ A if

(1) for each b € B, there is an a € A with b C* a (or B< A),
(2) for each X € AT, there is an a € A with X Na € BT.

Lemma 6. For each completely separable adf A and each m < w, there is a family
{B; : i <m} such that, for each i # j < m,
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+—B;’ and A C B},

P

Bt = ((Bo U...Uzsm_l)if .

Proof. For each a € A, choose {B;(a) : i < m} as in Lemma 4 so that B;(a) C [a]™°
for each i < m. Set B = |J{Bi(a) : a € A}. We verify each item.
(1) Tt is clear that B; < A. Similarly, if X € AT, then there is an a € A such
that a C X, hence it follows that X € Bi+.
(2) It is obvious that B; N B; is empty.
(3) Suppose that X € B;f. If there is an a € A such that X Na € B;(a)T, then
X e B;'. Otherwise X € AT, and so there is an a € A such that a C X.
Of course this ensures that X € B;(a)™.
(4) Tt is immediate from (1) - (3) that B,, C (BoU---UBp_1)" and this
implies that B}, C ((Bo U---U Bm,l)L)+. Now assume that X ¢ B. By
(3), there is a B in the ideal generated by |J,_,, B; such that X \ B is in B;-
for each i < m. Therefore, X\ Bisin (ByU - U B,,_1)" and so X is in the
ideal generated by (BoU---UB;—1) U (BpU---U Bm_l)L. Equivalently,
X is not in (BoU---UBym_1))". By Lemma 1, this completes the proof
of (4).
(]

Definition 7. If A is an adf, let {B; : i < m} <. A denote the relations as in
Lemma 6.

Using an easy inductive process and Lemma 6 we have the following.

Corollary 8. Let 0 < m,n € w and let T' be the mazimum subtree of (m + 1)<™
satisfying that t € T is mazimal if t(k) = m for some (unique) k € dom(t) (of
course k is the mazimum element of dom(t)). Then there is a sequence {B; : t € T}
satisfying

(1) By = {w},

(2) if t € T is not mazimal, then {By~; : i < m} < By.

Following [3], for a finite tree T C w<% the topology 7r is defined by simply
saying that a set U C T is open if for each t € U, t' = {s : ¢t C s € T} is a subset
of U. Thus each maximal node is isolated and the closure of any node equals the
set of all nodes below it.

Lemma 9. Ift is a maximal node of a finite tree T and if T~ is the subtree of
T obtained by removing t, then f : (T,7r) — (T, 7p-+) is open and continuous
(and onto) if f(s) = s for s € Tt and f(t) = x is any mazimal node of T~* that
is above the immediate predecessor of t.

Proof. We first prove that f is continuous. Let U € 7p-: and consider any s €
f~1(U). We must show that s C f~1(U). Note that U C f~(U). Since each of ¢
and z are maximal, we may assume that s ¢ {t,z}. If s is not below the immediate
predecessor of ¢, then s' (in 7)) is contained in U and therefore in f~1(U). If s is
below the immediate predecessor of t, then both x and each point of s (in 77)
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are in U. This implies that s" (in T is contained in U and completes the proof
that f is continuous.

Now assume that U is an open subset of 7. It is immediate that U N7~ is an
open subset of T~*. Since each of U and U U {x} are open in T, it follows that
f(U) is open in T~ O

Proposition 10. If f : X — Y and g : Y — Z are open, continuous, and onto
maps, then go f: X — Z is also open, continuous, and onto.

Corollary 11. There is an open, continous, and onto mapping from the tree topol-
ogy (T,7r) of Corollary 8 to m<™ with the subspace topology.

Theorem 12. For each m,n € w, there is an open, continuous, and onto mapping
from w* to m=<"™ such that the preimage of every point is locally compact and has
no isolated points.

Proof. By Lemma 9 and Proposition 10 it suffices to prove the Theorem for values
of m > 0. Similarly, it suffices to prove that for each 7" as in Lemma 8, there is an
open, continuous mapping f from w* onto T also with the stated property on point
pre-images. Let {B; : t € T} be the family as stated in Lemma 8. For each maximal
t € m<" let Uy = |J{b* : b € B;} and set f(U;) =t. For each non-maximal ¢ € T,
let

Ui~ = U{b* :be (Bro U---u Btﬂ(m,l))L} and set f(Up~m) =t"m .

Define Uy = w* and for non-maximal @ # t € T, Uy = |J{b* : b € B;}. We set
FUNU{Us :t S s€T}) =t Foreach b € By, f~1(t) Nb* is closed so it follows
that f~1(¢) is locally compact.

Claim 1. For each t € T, t' = f(U;) and
te f(X*) iff X eB,
if ¢ is non-maximal and X C w.

The statement of the claim clearly holds for each maximal ¢ € T. We prove the
claim by reverse induction on dom(t). We note that, by definition, f(U;) C ¢ for all
t € T. Fix any non-maximal ¢ € T. To show that f(U;) = t', it suffices, proceeding
by induction, to show that ¢ € f(U;). Choose any b € B; and note that b € B;,
for each i < m. It follows that b* N Uz~ is non-compact and disjoint from Uz~;
for all 0 < ¢ < m. Since b* NUz~¢ C b* C U, we have that b* NUp~g \ Up~o is a
non-empty subset of U; \ |, <,,, Ur~i which is mapped to t. Since B¢ is completely
separable, it therefore follows that t € f(X*) for each X € B;",. Now assume that
x € X* (for some X C w) and that f(z) = t. Choose the unique b € B; so that

x € b*. Since x ¢ Up~,, we have that X Nb is not in (UKm Btai)L. Additionally,
X Mbis not in the ideal generated by |J,.,, B¢~ since z ¢ |J U;~;. Therefore
we have, as needed, that X € (U,_,, Btﬁi)Jr =B/,.

It follows from Claim 1 that f is continuous (i.e. f~1(t") is open for each t € T)
and onto. We finish by proving that f is open. Choose any infinite X C w and
let t € f(X*). We must prove that tT C f(X*). Again, we can proceed by reverse
induction on dom(t). By Claim 1, X € B;", and therefore by the assumptions of
Corollary 8, X € B;'l ; for all i < m. Each B;~; is completely separable, hence there
are {b; : i < m} C [X]Y such that b; € B;~; for each i < m. Since b, C Ui~

<m
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and t7m is maximal in T, t"m € f(X*). Fix any 7 < m, and note that, by (3) of
Lemma 6, b; € B,", . Therefore, by Claim 1, t"i € f(X*) and, by the induction
hypothesis, (t74)T C f(X*).

Finally we prove that f~!(¢) has no isolated points. By Claim 1, it suffices
to show that X* N f~1(¢) is not a single point for any X € B;~,. Choose any
infinite {b, : n € w} C Bi~¢ such that X N b, is infinite for each n. Let Y =
U{b2n \ Ug<y, b2rt1 : n € w}. Note that, for each n € w, X NY Nby, is infinite and
(X \Y) Nbayyy is infinite. Therefore, X NY and X \ Y are both in B;",. Since
(XNY)* and (X \ Y)* are disjoint, the proof is complete. O
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