
SOME SPECIAL REGULAR OPEN SUBSETS OF ω∗

Abstract. We prove the Main Lemma and Theorem 4.11 of [3] (i.e. Bezhan-

ishvili and Harding) in ZFC.

For any family A ⊂ [ω]ℵ0 , A⊥ denotes the set of b ∈ [ω]ℵ0 that are almost disjoint
from each a ∈ A. A+ denotes the set of X ⊂ ω that are not in the ideal generated
by A∪A⊥. In particular, if A is an adf (almost disjoint family), then A+ denotes
the set of X ⊂ ω that meet infinitely many members of A in an infinite set. If U
is an open subset of ω∗ and AU is the ideal of those infinite a ⊂ ω satisfying that
a∗ ⊂ U , then X being in A+ is equivalent to X∗ meeting the boundary of U .

Lemma 1. For any A ⊂ [ω]ℵ0 ,
(
A⊥
)+ ⊂ A+.

Proof. Since A ⊂
(
A⊥
)⊥

, if X is not in the ideal generated by A⊥ ∪
(
A⊥
)⊥

, then

X is not in the ideal generated by A⊥ ∪A = A∪A⊥. This proves the Lemma. �

Definition 2. A family A ⊂ [ω]ℵ0 is completely separable if for all X ∈ A+, there
is an a ∈ A such that a ⊂∗ X.

Proposition 3 ([2]). There is an infinite completely separable adf.

Lemma 4. For any m ∈ ω, there are Bi (i ≤ m) such that for all i 6= j ≤ m,

(1) Bi is an infinite completely separable adf,
(2) Bi ⊂ B⊥j ,

(3) B+i = B+j for i, j ≤ m.

Proof. Let A be a completely separable adf as in Proposition 3 and let {aα : α ∈
c} be an enumeration of A. It is shown in [2, 4.9] that each infinite completely
separable adf has cardinality c and that {a ∈ A : a ⊂∗ X} has cardinality c for all
X ∈ A+. Let {Xξ : ξ ∈ c} be an enumeration of A+ so that each X ∈ A+ is listed
infinitely many times. By induction on ξ ∈ c, choose Hξ ∈ [c\

⋃
η<ξHη]m+1 so that

aα ⊂∗ Xξ for each α ∈ Hξ. Choose pairwise disjoint subsets of c, {Ji : i < m}, so
that |Ji∩Hξ| = 1 for all i < m and ξ < c. For i < m, set Bi = {aα : α ∈ Ji} and let
Bm = {aα : α ∈ c \

⋃
i<m Ji}. Clearly each X ∈ A+ contains mod finite infinitely

many elements of Bi for each i ≤ m. It thus follows that each of {Bi : i < m}
is completely separable and that B+i = A+ for each i ≤ m. Since A is an adf
and the famliy {Ji : i < m} are pairwise disjoint, we also have that Bi ⊂ B⊥j for
i 6= j ≤ m. �

Definition 5. B ≺+ A if

(1) for each b ∈ B, there is an a ∈ A with b ⊂∗ a (or B ≺ A),
(2) for each X ∈ A+, there is an a ∈ A with X ∩ a ∈ B+.

Lemma 6. For each completely separable adf A and each m < ω, there is a family
{Bi : i ≤ m} such that, for each i 6= j ≤ m,
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(1) Bi ≺+ A and is an infinite completely separable adf,
(2) Bi ⊂ B⊥j ,

(3) B+i = B+j and A ⊂ B+i ,

(4) B+m =
(

(B0 ∪ · · · ∪ Bm−1)
⊥
)+

.

Proof. For each a ∈ A, choose {Bi(a) : i < m} as in Lemma 4 so that Bi(a) ⊂ [a]ℵ0

for each i ≤ m. Set B =
⋃
{Bi(a) : a ∈ A}. We verify each item.

(1) It is clear that Bi ≺ A. Similarly, if X ∈ A+, then there is an a ∈ A such
that a ⊂ X, hence it follows that X ∈ B+i .

(2) It is obvious that Bi ∩ Bj is empty.
(3) Suppose that X ∈ B+i . If there is an a ∈ A such that X ∩ a ∈ Bi(a)+, then

X ∈ B+j . Otherwise X ∈ A+, and so there is an a ∈ A such that a ⊂ X.

Of course this ensures that X ∈ Bj(a)+.

(4) It is immediate from (1) - (3) that Bm ⊂ (B0 ∪ · · · ∪ Bm−1)
⊥

and this

implies that B+m ⊂
(

(B0 ∪ · · · ∪ Bm−1)
⊥
)+

. Now assume that X /∈ B+m. By

(3), there is a B in the ideal generated by
⋃
i<m Bi such that X \B is in B⊥i

for each i ≤ m. Therefore, X \B is in (B0 ∪ · · · ∪ Bm−1)
⊥

and so X is in the

ideal generated by (B0 ∪ · · · ∪ Bm−1) ∪ (B0 ∪ · · · ∪ Bm−1)
⊥

. Equivalently,

X is not in ((B0 ∪ · · · ∪ Bm−1))
+

. By Lemma 1, this completes the proof
of (4).

�

Definition 7. If A is an adf, let {Bi : i ≤ m} ≺+
m A denote the relations as in

Lemma 6.

Using an easy inductive process and Lemma 6 we have the following.

Corollary 8. Let 0 < m,n ∈ ω and let T be the maximum subtree of (m + 1)<n

satisfying that t ∈ T is maximal if t(k) = m for some (unique) k ∈ dom(t) (of
course k is the maximum element of dom(t)). Then there is a sequence {Bt : t ∈ T}
satisfying

(1) B∅ = {ω},
(2) if t ∈ T is not maximal, then {Bt_i : i ≤ m} ≺+

m Bt.

Following [3], for a finite tree T ⊂ ω<ω the topology τT is defined by simply
saying that a set U ⊂ T is open if for each t ∈ U , t↑ = {s : t ⊆ s ∈ T} is a subset
of U . Thus each maximal node is isolated and the closure of any node equals the
set of all nodes below it.

Lemma 9. If t is a maximal node of a finite tree T and if T−t is the subtree of
T obtained by removing t, then f : (T, τT ) 7→ (T−t, τT−t) is open and continuous
(and onto) if f(s) = s for s ∈ T−t and f(t) = x is any maximal node of T−t that
is above the immediate predecessor of t.

Proof. We first prove that f is continuous. Let U ∈ τT−t and consider any s ∈
f−1(U). We must show that s↑ ⊂ f−1(U). Note that U ⊂ f−1(U). Since each of t
and x are maximal, we may assume that s /∈ {t, x}. If s is not below the immediate
predecessor of t, then s↑ (in T ) is contained in U and therefore in f−1(U). If s is
below the immediate predecessor of t, then both x and each point of s↑ (in T−t)
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are in U . This implies that s↑ (in T ) is contained in U and completes the proof
that f is continuous.

Now assume that U is an open subset of T . It is immediate that U ∩ T−t is an
open subset of T−t. Since each of U and U ∪ {x} are open in T−t, it follows that
f(U) is open in T−t. �

Proposition 10. If f : X 7→ Y and g : Y 7→ Z are open, continuous, and onto
maps, then g ◦ f : X 7→ Z is also open, continuous, and onto.

Corollary 11. There is an open, continous, and onto mapping from the tree topol-
ogy (T, τT ) of Corollary 8 to m<n with the subspace topology.

Theorem 12. For each m,n ∈ ω, there is an open, continuous, and onto mapping
from ω∗ to m<n such that the preimage of every point is locally compact and has
no isolated points.

Proof. By Lemma 9 and Proposition 10 it suffices to prove the Theorem for values
of m > 0. Similarly, it suffices to prove that for each T as in Lemma 8, there is an
open, continuous mapping f from ω∗ onto T also with the stated property on point
pre-images. Let {Bt : t ∈ T} be the family as stated in Lemma 8. For each maximal
t ∈ m<n, let Ut =

⋃
{b∗ : b ∈ Bt} and set f(Ut) = t. For each non-maximal t ∈ T ,

let

Ut_m =
⋃
{b∗ : b ∈

(
Bt_0 ∪ · · · ∪ Bt_(m−1)

)⊥} and set f(Ut_m) = t_m .

Define U∅ = ω∗ and for non-maximal ∅ 6= t ∈ T , Ut =
⋃
{b∗ : b ∈ Bt}. We set

f(Ut \
⋃
{Us : t ( s ∈ T}) = t. For each b ∈ Bt, f−1(t) ∩ b∗ is closed so it follows

that f−1(t) is locally compact.

Claim 1. For each t ∈ T , t↑ = f(Ut) and

t ∈ f(X∗) iff X ∈ B+t_0

if t is non-maximal and X ⊂ ω.

The statement of the claim clearly holds for each maximal t ∈ T . We prove the
claim by reverse induction on dom(t). We note that, by definition, f(Ut) ⊂ t↑ for all
t ∈ T . Fix any non-maximal t ∈ T . To show that f(Ut) = t↑, it suffices, proceeding
by induction, to show that t ∈ f(Ut). Choose any b ∈ Bt and note that b ∈ B+t_i

for each i ≤ m. It follows that b∗ ∩ Ut_0 is non-compact and disjoint from Ut_i

for all 0 < i ≤ m. Since b∗ ∩ Ut_0 ⊂ b∗ ⊂ Ut, we have that b∗ ∩ Ut_0 \ Ut_0 is a
non-empty subset of Ut\

⋃
i≤m Ut_i which is mapped to t. Since Bt_0 is completely

separable, it therefore follows that t ∈ f(X∗) for each X ∈ B+t_0. Now assume that
x ∈ X∗ (for some X ⊂ ω) and that f(x) = t. Choose the unique b ∈ Bt so that

x ∈ b∗. Since x /∈ Ut_m, we have that X ∩ b is not in
(⋃

i<m Bt_i

)⊥
. Additionally,

X ∩ b is not in the ideal generated by
⋃
i<m Bt_i since x /∈

⋃
i<m Ut_i. Therefore

we have, as needed, that X ∈
(⋃

i<m Bt_i

)+
= B+t_0.

It follows from Claim 1 that f is continuous (i.e. f−1(t↑) is open for each t ∈ T )
and onto. We finish by proving that f is open. Choose any infinite X ⊂ ω and
let t ∈ f(X∗). We must prove that t↑ ⊂ f(X∗). Again, we can proceed by reverse
induction on dom(t). By Claim 1, X ∈ B+t_0, and therefore by the assumptions of
Corollary 8, X ∈ B+t_i for all i ≤ m. Each Bt_i is completely separable, hence there
are {bi : i < m} ⊂ [X]ℵ0 such that bi ∈ Bt_i for each i ≤ m. Since b∗m ⊂ Ut_m
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and t_m is maximal in T , t_m ∈ f(X∗). Fix any i < m, and note that, by (3) of
Lemma 6, bi ∈ B+t_i_0. Therefore, by Claim 1, t_i ∈ f(X∗) and, by the induction
hypothesis, (t_i)↑ ⊂ f(X∗).

Finally we prove that f−1(t) has no isolated points. By Claim 1, it suffices
to show that X∗ ∩ f−1(t) is not a single point for any X ∈ B+t_0. Choose any
infinite {bn : n ∈ ω} ⊂ Bt_0 such that X ∩ bn is infinite for each n. Let Y =⋃
{b2n \

⋃
k<n b2k+1 : n ∈ ω}. Note that, for each n ∈ ω, X ∩Y ∩ b2n is infinite and

(X \ Y ) ∩ b2n+1 is infinite. Therefore, X ∩ Y and X \ Y are both in B+t_0. Since
(X ∩ Y )∗ and (X \ Y )∗ are disjoint, the proof is complete. �

References
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