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Parallel Programming Fall 2012 
 

Assignment 5 CUDA Programming Assignment 
 

B. Wilkinson and C Ferner, October 31, 2012 
 
For this assignment, you will gain experience in writing and executing CUDA programs.  For this 
assignment, coit-grid07.uncc.edu will be used, which has a single 448-core NVIDIA Tesla C2050 
GPU installed.1  If you have PC or laptop that has a NVIDIA GPU installed, you may wish to also try 
the programs on your PC/laptop.  You will need to install the NVIDIA CUDA Toolkit. (Version 5.0 is 
the most recent.)  
 
The assignment has two parts:  In Part 1, you will practice compiling and executing simple CUDA 
programs - vector addition and matrix multiplication.  The code is either given or is easy to write. In 
Part 2, you are asked to write a program to compute the static heat distribution in a room, which can 
the extended to other situations such as the heat distributed around a printed circuit board. 
 
Preliminaries (2%) 
 
Log onto coit-grid07.uncc.edu.  Your username and password is the same as for the other coit-grid 
systems. You will be able to see your home directory on the cluster. 
 
GPU limitations. Display the details of the GPU(s) installed by issuing the command deviceQuery.  
Keep the output as you may need it.  In particular, note the maximum number of threads in a block and 
maximum sizes of blocks and grid.  Also invoke the bandwidth test by issuing the command 
bandwidthTest. Note the maximum host to device, device to host, and device to device bandwidths. 
 
Part 1 Compiling and executing CUDA program - Vector and matrix operations 
(38%) 
 
Task 1 Compiling and executing vector addition CUDA program  
 
In this task, you will compile and execute a CUDA program to perform vector addition. This program 
is given. 
 
Create a directory called VectorAdd in your home directory and cd into it. Create a file called 
VectorAdd.cu containing the program: 
 
#include <stdio.h> 
#include <cuda.h> 
#include <stdlib.h> 
#define N 10      // size of array 
#define T 10      // threads per block 
#define B 1       // blocks per grid 
 

                                                            
1 coit-grid07.uncc.edu can actually hold four C2050 GPUs. As a backup, we also have coit-grid06.uncc.edu server with the same GPU 
installed although that server can only be accessed off-campus through another server such as coit-grid01.uncc.edu. 
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__global__ void add(int *a,int *b, int *c) { 
 

int tid = blockIdx.x *  blockDim.x + threadIdx.x; 
if(tid < N) { 

c[tid] = a[tid]+b[tid]; 
} 

} 
 
int main(void){ 

int a[N],b[N],c[N]; 
int *dev_a, *dev_b, *dev_c; 

 
cudaMalloc((void**)&dev_a,N * sizeof(int)); 
cudaMalloc((void**)&dev_b,N * sizeof(int)); 
cudaMalloc((void**)&dev_c,N * sizeof(int)); 

 
for(int i=0;i<N;i++) { 

a[i] = i; 
b[i] = i*1; 

} 
 

cudaMemcpy(dev_a, a , N*sizeof(int),cudaMemcpyHostToDevice); 
cudaMemcpy(dev_b, b , N*sizeof(int),cudaMemcpyHostToDevice); 
cudaMemcpy(dev_c, c , N*sizeof(int),cudaMemcpyHostToDevice); 

 
add<<<B,T>>>(dev_a,dev_b,dev_c); 

 
cudaMemcpy(c,dev_c,N*sizeof(int),cudaMemcpyDeviceToHost); 

 
for(int i=0;i<N;i++) { 

printf("%d+%d=%d\n",a[i],b[i],c[i]); 
} 

 
cudaFree(dev_a); 
cudaFree(dev_b); 
cudaFree(dev_c); 

 
return 0; 

} 
 
Next, create a file called Makefile and copy the following into it: 
 
NVCC = /usr/local/cuda/bin/nvcc 
CUDAPATH = /usr/local/cuda 
 
NVCCFLAGS = -I$(CUDAPATH)/include 
LFLAGS = -L$(CUDAPATH)/lib64 -lcuda -lcudart -lm 
 
VectorAdd: 
 $(NVCC) $(NVCCFLAGS) $(LFLAGS) -o VectorAdd VectorAdd.cu 
 
Be careful to have tabs where needed. 
 
To compile the program, type make VectorAdd  (or make as there is only one build command). 
Execute the program by typing the name of the executable (to include the current directory ./), i.e. 
./VectorAdd. Confirm the results are correct. 
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Task 2 Experiments with Vector Addition code 
 
Make the following changes to VectorAdd.cu, with good program structure. (Declare separate 
routines as appropriate.): 
 

(a) Different sizes for the vectors – Replace the static declaration for a[N], b[N], and c[N] with 
dynamically allocated memory and add keyboard input statements to be to specify N.  

 
(b) Add host code to compute the vector addition on the host only. 
 
(c) Add code to verify that both CPU and GPU versions of vector addition produce the same 

correct results 
 
(d) Different CUDA grid/block structures – Add keyboard statements to input different values for: 
 

 Numbers of threads in a block (T)  
 Number of blocks in a grid (B) 

 
 Include checks for invalid input. Ensure that GPUs limitations are met from the data given in 

deviceQuery (Preliminaries). 
 
(e) Timing -- Add statements to time the execution of the code using CUDA events, both for the 

host-only (CPU) computation and with the device (GPU) computation, and display results.  
Compute and display the speed-up factor. 

 
Arrange that the code returns to keyboard input after each computation with entered keyboard input 
rather than re-starting the code and having kernel code re-launch. Include print statements to show all 
input values. 
 
During code development, it is recommended that the code is recompiled and tested after each of (a), 
(b),  (c), (d) and (e). 
 
Execute your code and experiment with different input values (at least eight different combinations of  
T, B, and N) and collect timing results including speed-up factor. What is the effect of the first kernel 
launch? Discuss results. 
 
Task 3 Matrix multiplication 
 
Modify the vector-addition code to perform matrix multiplication using two dimensional thread and 
block structures.  Provide input keyboard input for different square 2-D grid/block structures. Modify 
the make file according to compile the code. Execute your code and experiment with different input 
values (at least eight different combinations of  T, B, and N) and collect timing results including speed-
up factor. Discuss results. 
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Part 2 Static Heat distribution problem 
(Undergraduates: Tasks 1, 2, and 3 60%, Graduates: Tasks 1, 2, and 3 45%, Task 4 15%) 
 
Preliminaries. we will write CUDA programs to determine the heat distribution in a space using 
synchronous iteration on a GPU. We will be solving Laplace's equation, which has wide application in 
science and engineering [1][2]. We will start with 2-dimensional space (square) and simple boundary 
conditions (walls at fixed temperatures). This program can then be modified to satisfy additional 
requirements. 
 
Determining Heat Distribution by a Finite Difference Method. Consider an area that has known 
temperatures along each of its edges. The objective is to find the temperature distribution within. The 
temperature of the interior will depend upon the temperatures around it. We can find the temperature 
distribution by dividing the area into a fine mesh of points, hi,j. The temperature at an inside point can 
be taken to be the average of the temperatures of the four neighboring points, as illustrated in Figure 1. 
For this calculation, it is conve-
nient to describe the edges by 
points adjacent to the interior 
points. The interior points of hi,j 
are where 0 < i < n, 0 < j < n [(n - 
1)  (n - 1) interior points]. The 
edge points are when i = 0, i = n, j 
= 0, or j = n, and have fixed val-
ues corresponding to the fixed 
temperatures of the edges. Hence, 
the full range of hi,j is 0  i  n, 0 
 j  n, and there are (n + 1)  (n 
+ 1) points. We can compute the 
temperature of each point by 
iterating the equation: 
 
 

 
(0 < i < n, 0 < j < n) for a fixed number of iterations or until the difference between iterations of a point 
is less than some very small prescribed amount. This iteration equation occurs in several other similar 
problems; for example, with pressure and voltage. More complex versions appear for solving 
important problems in science and engineering. In fact, we are solving a system of linear equations. 
The method is known as the finite difference method. It can be extended into three dimensions by 
taking the average of six neighboring points, two in each dimension. We are also solving Laplace’s 
equation. 
 
Sequential Code. Suppose the temperature of each point is held in an array h[i][j] and the boundary 
points h[0][x], h[x][0], h[n][x], and h[x][n] (0  x  n) have been initialized to the edge temperatures. 
The calculation as sequential code could be 
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Figure 1 Heat distribution problem.
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for (iteration = 0; iteration < limit; iteration++) { 
 
 for (i = 1; i < n; i++) 
  for (j = 1; j < n; j++) 
   g[i][j] = 0.25*(h[i-1][j]+h[i+1][j]+h[i][j-1]+h[i][j+1]; 
 
 for (i = 1; i < n; i++)// update points, Jacobi iteration 
  for (j = 1; j < n; j++) 
   h[i][j] = g[i][j]; 
 
} 
 
using a fixed number of iterations. Notice that a second array g[][] is used to hold the newly computed 
values of the points from the old values. The array h[][] is updated with the new values held in g[][]. 
This is known as Jacobi iteration. Multiplying by 0.25 is done for computing the new value of the point 
rather than dividing by 4 because multiplication is usually more efficient than division. Normal 
methods to improve efficiency in sequential code carry over to GPU code and should be done where 
possible in all instances. (Of course, a good optimizing compiler would make such changes.) 
 
Note: It is possible to use the same array for the updated points, thereby using some newly computed 
values for subsequent points (a Gauss-Seidel iteration) - this will converge significantly faster but may 
be difficult to implement on the GPU as it implies a sequential calculation. However a sequential 
version should really use Gauss-Seidel iteration for comparison purposes when computing speedup 
factors 
 
Task 1 - Sequential Program 
 
Write a C program to compute the temperature distribution inside 
the room shown in Figure 2 using Jacobi iteration. The room has 
four walls and a fireplace. The temperature of the wall is 20C, and 
the temperature of the fireplace is 100C. Divide the room into N  
N points (including the boundaries), where N is input and can vary. 
The values of the points are stored in an array. 
 
Make the program produce X11 graphics displaying the 
temperature contours at 10C intervals in color. (Details of X11 
code are given separately.). Instrument the code so that the elapsed 
time is displayed. 
 
Execute your program on coit-grid07.uncc.edu. 
 
Task 2 - Basic CUDA Program 
 
Modify the sequential program in Task 1 to be a CUDA program using host synchronization of 
threads. As with Part 1, incorporate: 
 
(a) Use dynamically allocated memory for the data arrays (h[N][N], g[N][N]) and add keyboard input 

statements to be to specify N. 
 
(b) Add host code to compute the heat distribution on the host only. 

20 C
100 C

10 ft

10 ft

4 ft

Figure 2 Room
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(c) Add code to ensure both CPU and GPU versions of heat distribution calculation produce the same 

correct results 
 
(d) Different CUDA grid/block structures -- Add keyboard statements to input different values for the 

CUDA grid/block structure: 
 
 • Numbers of threads in a block (T)  
 • Number of blocks in a grid (B) 
 
(2-D grid and 2-D blocks). Include checks for invalid input.  Ensure that GPUs limitations are met 

from the data given in deviceQuery (Preliminaries). 
 
(e) Timing -- Add statements to time the execution of the code using CUDA events, both for the host-

only (CPU) computation and with the device (GPU) computation, and display results. Compute the 
speed-up factor and display. 

 
Include print statements to show all input values. It is recommended that the code is recompiled and 
tested after each change. Experiment with different input values (at least eight different combinations 
of T, B, and N) and collect results on the Linux GPU server. Discuss. 
 
Task 3 Warm body in room 
 
Modify the CUDA code to compute the temperature distribution inside the room when there is a warm 
body in the room at a fixed temperature of 37C (98.6F) (any fixed location with a suitable size).  
Display results with one grid/block structure.  It is suggested you get the sequential code working first 
with this modification. 
 
Task 4 Termination Detection -- Graduate student only (30%), extra credit for undergraduate 
students 
 
In the sample sequential code in Task 2, termination 
is set by a specific number of iterations. However 
the computed values may not have converged 
sufficiently towards the solution by that time. Re-
write the CUDA code to termination the 
computation when all values computed in iteration 
t+1 differ by those in iteration t by less than a value 
that is input, say e. Repeat the study in Task 2 with 
this CUDA program and comment on the results. 
Use synchronization within blocks to terminate 
each block separately. 
 
Note that the above does not guarantee the computed values are accurate to e, see Figure 3. A more 
complex termination calculation can be done, see [3] page 176. 
 
 
 
 

Computed
value

Error

Iteration

Exact value

Figure 3 Convergence rate.

t+1t
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Grading 
 
Every task and subtask specified will be allocated a score so make sure you clearly identify each part 
you did. The computational efficiency and elegance of your solutions is will be a factor in grading. 
 

Assignment Submission 
 
Produce a document that show that you successfully followed the instructions and performs all tasks 
by taking screen shots and include these screen shots in the document. Give sufficient screen shots to 
demonstrate each task and sub-task has been fully completed.   Provide insightful conclusions. Submit 
by the due date as described on the course home page. Include all code, not as screen shots but 
complete properly documented code listing.  All work must be your own. 
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Derivation of Jacobi Iteration Equation 
(from [3] page 357) 

 
The steady-state heat distribution is governed by Laplace’s equation: 
 
 
 
 
 
 (in two dimensions). The two-dimensional solution space is “discretized” into a large number of solution points, 
as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
If the distance between the points in the x and y directions, , is made small enough, the central difference 
approximation of the second derivative can be used: 

 

 
[See Bertsekas and Tsitsiklis (1989) for proof.] Substituting into Laplace’s equation, we  get 
 

Rearranging, we get 

The formula can be rewritten as an iterative formula:  

where fk(x, y) is the value obtained from kth iteration, and fk1(x, y) is the value obtained from the (k 1)th iter-
ation. By repeated application of the formula, we can converge on the solution. 
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Further Information 
[1] Wikipedia “Laplace’s equation” http://en.wikipedia.org/wiki/Laplace%27s_equation 
[2] Wikipedia “Heat equation” http://en.wikipedia.org/wiki/Heat_equation 
[3] Barry Wilkinson and Michael Allen, Parallel Programming: Techniques and Application Using Networked 
Workstations and Parallel Computers 2nd edition, Prentice Hall Inc., 2005. 

  
 


